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1 Introduction

We investigate in this paper the existence of global weak solutions for fluid-structure interaction

(FSI) systems, which takes the following form

utt +∇ · σ = 0, x ∈ Ωs × (0, T ),

vt + v · ∇v −∆v +∇p = 0, x ∈ Ωf × (0, T ),

∇ · v = 0, x ∈ Ωf × (0, T ),

v = 0, x ∈ Γout × (0, T ),

ut = v(x), x ∈ Γ× (0, T ),

∇u · n = 0, x ∈ Γ× (0, T ),

−σn =
1

2
v · nv − n · ∇v + pn, x ∈ Γ× (0, T ),

u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ωs,

v(x, 0) = v0, x ∈ Ωf .

(1.1)

where u is the displacement of elastic structure, v is the incompressible fluid velocity, p denotes

the pressure of fluid, σ = ∇(a(x)∆u) − 1
2 |∇u|

2∇u is the stress tensor. we consider that elastic

structure Ωs and fluid Ωf is in a fixed connected bounded domain Ω ⊂ Rd, d = 2, 3, and

Ωs ∩ Ωf = ∅, Denote the interface of structure and fluid as Γ = ∂Ωs ∩ ∂Ωf , the interface of

fluid and total domain Ω as Γout = ∂Ωf \ Γ. n is the outer normal vector of fluids boundary

Γ, the d-order matrix a(x) satisfies the uniformly elliptic condition. For the derivation of (1.1)1,

see [1].

In this paper, we assume no rigid motion and the structure undergoes only the high frequency,

small displacement oscillation. Then, since the motion of FSI is wholly determined by the small

elastic displacement, one may assume that the interface is stationary(see [2] for more informa-

tion). Thus, system (1.1) can simulate the high frequency and small displacement oscillation of

an elastic structure immersed in an incompressible fluid.

The high frequency and small displacement oscillation of a structure immersed in an incom-

pressible fluid have been studied extensively, see [2–5] and therein references. In chapter one,

section 9 of [3], Lions discusses FSI model in geology, which the structure motion is described by

the wave equation utt −∆u = g. The existence of global weak solution has been proved and the

uniqueness in two-dimensional space has been got in [3]. In [2], the structure motion is described

by the following elastodynamics equation with St.Ventant-Kirchhoff elastic material

utt = µ∇ · (∇u+∇uT )− λ∇(∇ · u) + f.

The existence and uniqueness of the global weak solution have been derived, and the existence of

an L2 integrable pressure field has been established after the verification of an inf-sup condition

in [2]. Other related studies about fixed interface can be found in the references [4–10].

When the structure have a rigid motion or large displacement oscillation, the motion would

result in a moving fluid-structure interface. For the existence of solutions for moving FSI prob-
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lems, see [11–20] and therein references. For a numerical algorithm for solving moving FSI

problems, see [21–23] and therein references.

In the paper, we are interested in the high frequency and small displacement oscillation FSI

model. The main purpose of this paper is to establish the global existence of the weak solution

to FSI systems in two and three-dimension. The FSI problem with moving interface shall be

addressed in later work.

2 Main results

We begin by specifying our notation. For any given domain Ωf ,Ωs ⊂ Rd,Ω = Ω̄s ∪ Ω̄f ,Γ =

Ω̄s ∩ Ω̄f , we define

Lms = (Lm(Ωs))
d,Hm

s = (Hm(Ωs))
d,

Lmf = (Lm(Ωf ))d,Hm
f = (Hm(Ωf ))d,

Lm = (Lm(Ω))d,Hm = (Hm(Ω))d,

LmΓ = (Lm(Γ))d,Hm
Γ = (Hm(Γ))d,

V1
f =

{
ψ ∈ H1

f |ψ(x) = 0, x ∈ Γout,∇ · ψ = 0, x ∈ Ωf
}
,

V2
f =

{
ψ ∈ H2

f |ψ(x) = 0, x ∈ Γout,∇ · ψ = 0, x ∈ Ωf
}
,

V2
s =

{
ϕ ∈ H2

s|∇ϕ · n = 0, x ∈ Γ
}
,

V =
{
φ ∈ H2|φ(x) = 0, x ∈ Γout,∇ · φ = 0, x ∈ Ωf ,∇ϕ · n = 0, x ∈ Γ

}
,

(f, φ) =

∫
Ω

fφdx, (u, ϕ)s =

∫
Ωs

uϕdx, (v, ψ)f =

∫
Ωf

vψdx,

Then, we give the weak formulations of (1.1) as follows.

Definition 2.1 (Weak Solution). We say function

u ∈ L∞(0, T ; V2
s), v ∈ L∞(0, T ; L2

f ) ∩ L2(0, T ; V1
f ),

is a weak solution of (1.1) provided

(i) ut ∈ L∞(0, T ; L2
s), {utt, vt} ∈ L2(0, T ; V′);

(ii)

(utt, ϕ)s + (a(x)∆u,∆ϕ)s +
1

2

(
|∇u|2∇u,∇ϕ

)
s

+ (vt, ψ)f + (v · ∇v, ψ)f + (∇v,∇ψ)f −
1

2

∫
Γ

(v · n)vψdx = 0,
(2.1)

for each ϕ ∈ V2
s , ψ ∈ V1

f , ψ = ϕ, x ∈ Γ and a.e. 0 ≤ t ≤ T.
(iii) ut = v, x ∈ Γ × (0, T ), u(x, 0) = u0, ut(x, 0) = u1, x ∈ Ωs × (0, T ), v(x, 0) = v0, x ∈

Ωf × (0, T ).

Remark:(1) Assume ϕ ∈ (C∞0 (Ωs))
d and ψ = 0, we can deduce (1.1)1 from (2.1); assume

ψ ∈ (C∞0 (Ωf ))d and ϕ = 0, we can deduce (1.1)2, (1.1)3 from (2.1).
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(2)Multiply (1.1)1, (1.1)2 by ϕ,ψ, respectively, sum the two equations to find

(utt, ϕ)s + (a(x)∆u,∆ϕ)s +
1

2

(
|∇u|2∇u,∇ϕ

)
s

+ (vt, ψ)f + (v · ∇v, ψ)f + (∇v,∇ψ)f

+

∫
Γ

(
∇ (a(x)∆u)− 1

2
|∇u|2∇u

)
nϕdΓ +

∫
Γ

(p−∇v)nψdΓ = 0
(2.2)

Comparing (2.1) and (2.2), we deduce (1.1)6 and (1.1)7 by using ψ = ϕ, x ∈ Γ and the arbitrari-

ness of ψ,ϕ .

Now, we state our main Theorems as follows.

Theorem 2.1. Assume a(x) ∈ L∞(Ωs), a(x)∆ is uniformly elliptic operator , and u0 ∈ H2(Ωs), u1 ∈
L2(Ωs), v0 ∈ L2(Ωf ) ,there exists a solution of (1.1). Moreover

u ∈ L∞(0, T ; V2
s),

ut ∈ L∞(0, T ; L2
s),

v ∈ L∞(0, T ; L2
f ) ∩ L2(0, T ; V1

f ),

{utt, vt} ∈ L2(0, T ; V′).

Remark: uniqueness is complex since the coupled FSI systems has strong nonlinear term.

We now briefly outline the proof in the following:

Step 1: employing Galerkin’s method to construct solutions of certain finite-dimensional

approximations to (1.1);

Step 2: using the energy method to find the uniform estimates of the finite-dimensional

approximations solutions;

Step 3: using compactness method to obtain the weak solutions of (1.1), the main difficulty

is dealing with nonlinear terms.

In order to prove Theorem 2.1, we list a few basic tools for bounded domains to be used in the

subsequent sections. We start with the well-known Gagliardo-Nirenberg interpolation inequality

for bounded domains (see, e.g. [24]).

Lemma 2.1. Let Ω0 ⊂ Rd be a bounded domain with smooth boundary. Let 1 ≤ p, q, r ≤ ∞ be

real numbers and j ≤ m be non-negative integers. If a real number α satisfies

1

p
− j

d
= α

(
1

r
− m

d

)
+ (1− α)

1

q
,

j

m
≤ α ≤ 1

Then ∥∥Djf
∥∥
Lp(Ω0)

≤ C1 ‖Dmf‖αLr(Ω0) ‖f‖
1−α
Lq(Ω0) + C2‖f‖Ls(Ω0)

where s > 0, and the constants C1 and C2 depend upon Ω0 and the indices p, q, r,m, j, s only.

According to the Gagliardo-Nirenberg interpolation inequality and trace theorem, we can

deduce the following Lemma without any essential difficulty.
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Lemma 2.2. Let Ω0 ⊂ Rd be a bounded domain with smooth boundary, 2
p + 1

d = 1, 0 < ε < 1
2 ,

assume φ ∈ H2(Ω0), ϕ ∈ H1(Ω0), then

‖ϕ‖Lp(Ω0) ≤ C1‖∇ϕ‖
1
2

L2(Ω0)‖ϕ‖
1
2

L2(Ω0) + C2‖ϕ‖L2(Ω0) ≤ c‖ϕ‖H1(Ω0) (2.3)

‖φ‖L∞(Ω0) ≤ c‖ϕ‖H2(Ω0), (2.4)

‖∇φ‖Ld(Ω0) ≤ c‖ϕ‖H d
2 (Ω0)

≤ c‖ϕ‖H1(Ω0), (2.5)

‖φ‖L3(Ω0) ≤ c3‖φ‖H 1
2 (Ω0)

≤ c4‖φ‖H1−ε(Ω0). (2.6)

Lemma 2.3. Let Ω0 ⊂ Rd be a bounded domain with smooth boundary Γ0, assume φ ∈
H2(Ω0), ϕ ∈ H1(Ω0), thus

‖ϕ‖L3(Γ0) ≤ c1‖ϕ‖H 1
2 (Γ0)

≤ c2‖ϕ‖H1(Ω0), (2.7)

‖φ‖L6(Γ0) ≤ c3‖φ‖H1(Γ0) ≤ c4‖φ‖H2(Ω0). (2.8)

Now, we give the Aubin-Lions Lemma (see, e.g. [3] ).

Lemma 2.4. Suppose B0, B,B1 are Banach Space, if

(i){ui}∞i=1 is bounded in Lp0(0, T ;B0);

(ii){ui,t}∞i=1 is bounded in Lp1(0, T ;B1);

(iii) B0 		 B 	 B1,

then {ui}∞i=1 admits a strongly converging subsequence in Lp0(0, T ;B), provided p0 <∞, p1 > 1.

3 The proof of Theorem 2.1

Step 1: Galerkin approximations

We construct our weak solution by first solving a finite dimensional approximation. Assume

{φj}∞j=1 is an orthogonal basis of V, (3.1)

and

{φj}∞j=1 is an orthonormal basis of L2. (3.2)

the function ϕj = φj(x), x ∈ Ωs, ψj = φj(x), x ∈ Ωf (j = 1, 2, · · · ) , ψj = ϕj , x ∈ Γ

Fix a positive integer m. We will look for function {um, vm} : [0, T ]→ V of the form

um(t) =

m∑
j=1

amj (t)ϕj(x), vm(t) =

m∑
j=1

bmj (t)ψj(x), (3.3)

where we hope to select the vector amj (t), bmj (t)(0 ≤ t ≤ T, j = 1, 2, · · · ) so that

(um,tt, ϕj)s +
(
a(x)∆um,∆ϕj

)
s

+
1

2
(|∇um|2∇um, ϕj)s

+

∫
Γ

(
∇
(
a(x)∆um

)
− 1

2
|∇um|2∇um

)
nϕjdΓ = 0,

(3.4)
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(vm,t, ψj)f + (vm · ∇vm, ψj)f + (∇vm,∇ψj)f −
1

2

∫
Γ

(vm · nf )vmψjdΓ

−
∫

Γ

(
∇
(
a(x)∆um

)
− 1

2
|∇um|2∇um

)
nψjdΓ = 0,

(3.5)

and when m→∞,

um(0) = u0m =

m∑
j

αmj ϕj(x)→ u0, in H2(Ωs); (3.6)

um,t(0) = u1m =

m∑
j

βmj ϕj(x)→ u1, in L2(Ωs); (3.7)

vm(0) = v0m =

m∑
j

γmj ψj(x)→ v0, in L2(Ωf ). (3.8)

Lemma 3.1. Give a(x), u0, u1, v0 satisfying the assumptions of Theorem 2.1, for each integer

m = 1, 2, · · · , there exists a unique function um, vm of the form (3.3) satisfying (3.4)-(3.8) for

0 ≤ t ≤ tm.

Proof. We first note form (3.2) that

(um,tt, ϕj)s = amj,tt(t), (vm,t, ψj)f = bmj,t(t). (3.9)

Let us now define the time-dependent form

B1[um, ϕj ; t] :=
(
a(x)∆um,∆ϕj

)
s

+
1

2
(|∇um|2∇um, ϕj)s, (3.10)

B2[um, ϕj ; t] :=

∫
Γ

(
∇
(
a(x)∆um

)
− 1

2
|∇um|2∇um

)
· nϕjdΓ, (3.11)

B3[vm, ψj ; t] := (vm · ∇vm, ψj)f + (∇vm,∇ψj)f (3.12)

B4[vm, ψj ; t] := −1

2

∫
Γ

(vm · nf )vmψjdΓ−B2[um, ϕj ; t] (3.13)

Furthermore

B1[um, ϕj ; t] :=

m∑
i=1

ami
(
a∆ϕi,∆ϕj

)
s

+
1

2

m∑
i,k=1

(ami )2amk (|∇ϕi|2∇ϕk, ϕj)s, (3.14)

B2[um, ϕj ; t] :=

∫
Γ

( m∑
i=1

ami ∇
(
a∆ϕi

)
− 1

2

m∑
i,k=1

(ami )2amk |∇ϕi|2∇ϕk
)
· nϕjdΓ, (3.15)

B3[vm, ψj ; t] :=

m∑
i,k=1

bmi (t)bmk (t)(ψi · ∇ψk, ψj)f +

m∑
i=1

bmi (t)(∇ψi,∇ψj)f , (3.16)

B4[vm, ψj ; t] := −1

2

m∑
i,k=1

bmi (t)bmk (t)

∫
Γ

(ψi · ni)ψkψjdΓ−B2[um, ϕj , t]. (3.17)

Then (3.4),(3.5) become the following system of ODE

amj,tt(t) +B1[um, ϕj , t] +B2[um, ϕj , t] = 0, (3.18)

bmj,t(t) +B3[vm, ψj , t] +B4[vm, ψj , t] = 0. (3.19)
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subject to the initial condition

amj (0) = αmj , a
m
j,t(0) = βmj , b

m
j (0) = γmj . (3.20)

From (3.14)-(3.17), Bi, i = 1, 2, 3, 4 are the polynomial function of ami (t) and bmi (t). Since the

polynomial function is Lipschitz continuous, according to standard existence theory for ODE ,

there exists a unique absolutely continuous function amj , b
m
j , j = 1, · · · ,m satisfying (3.18)-(3.20)

for 0 ≤ t ≤ tm := t(m) . And then um, vm defined by (3.3) solves (3.4)-(3.8) for 0 ≤ t ≤ tm .

Step 2: Energy estimates

Lemma 3.2. Give a(x), u0, u1, v0 satisfying the assumptions of Theorem 2.1, there exists a

positive constant C, depending only on Ωf ,Ωs, T, a(x), such that

‖um,t‖2L∞(0,T ;L2(Ωs)) + ‖um‖2L∞(0,T ;V2
s) + ‖vm‖2L∞(0,T ;L2(Ωf )) + ‖vm‖2L2(0,T ;V1

f )

≤ C
(
‖u0‖2H2(Ωs) + ‖u1‖2L2(Ωs) + ‖v0‖2L2(Ωf )

) (3.21)

for m = 1, 2, · · · .

Proof. Multiplying equation (3.4) , (3.5) by (amj (t))t, b
m
j (t),respectively, summing the re-

sulting two equations, then summing for j = 1, 2, · · · ,m, recalling ϕ(x) = ψ(x), x ∈ Γ and (3.3),

we find

(um,tt, um,t)s +B1[um, um,t; t] + (vm,t, vm)f + (∇vm,∇vm)f = 0. (3.22)

for a.e. 0 ≤ t ≤ tm,m = 1, 2, · · · , where (vm · ∇vm, vm)f − 1
2

∫
Γ
(vm · n)v2

mdx = 0 is used.

Furthermore
(um,tt, um,t)s =

1

2

d

dt
‖um,t‖2L2(Ωs), (vm,t, vm)f =

1

2

d

dt
‖vm‖2L2(Ωf ),

(∇vm,∇vm)f = ‖∇vm‖2L2(Ωf ), (|∇um|
2∇um,∇um,t)L2(Ωs) =

1

4

d

dt
‖∇um‖4L4(Ωs).

(3.23)

Consequently (3.22) yields the inequality

d

dt

(
‖um,t‖2L2(Ωs) +

∫
Ωs

a(x)|∆um|2dx+ ‖vm‖2L2(Ωsf) +
1

4

d

dt
‖∇um‖4L4(Ωs)

)
+2‖∇vm‖2L2(Ωs) = 0.

(3.24)

for a.e. 0 ≤ t ≤ tm,m = 1, 2, · · · . Then,we can deduce (3.21), where we used the inequality

c‖∆um‖2L2(Ωs) ≤
∫

Ωs

a(x)|∆um|2dx (3.25)

which follows from the uniformly elliptic condition.

Remark: Form the Energy estimates, we obtain C is independent on m. Since u(tm) ∈
H2(Ωs), ut(tm) ∈ L2(Ωs), v(tm) ∈ L2(Ωs) , by using Lemma 3.1, we deduce that there exists a

unique absolutely continuous function amj , b
m
j , j = 1, · · · ,m satisfying (3.18)-(3.20) for tm ≤ t ≤

2tm, and so on, we finally get tm → T,m→∞.
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Lemma 3.3. Give a(x), u0, u1, v0 satisfying the assumptions of Theorem 2.1, and assume {um,tt, vm,t}
is the solutions of (3.4)-(3.8), thus

{um,tt, vm,t} ∈ L2(0, T ; V′) (3.26)

Proof. For any w ∈ V, we define η, φj , Qm, as follow

η =

{
ut, x ∈ Ωs

v, x ∈ Ωf
, φj =

{
ϕj , x ∈ Ωs

ψj , x ∈ Ωf
(3.27)

Qm : V 7→ V, (3.28)

satisfly

Qmw =

m∑
j=1

(w, φj)φj , a.e.x ∈ Ωs, x ∈ Ωf ; ‖Qmw‖V ≤ C‖w‖V. (3.29)

Multiplying (3.4), (3.5) by (w, φj)s, (w, φj)f , respectively, summing for j = 1, 2 · · · ,m, then

we observe that

(ηm,t, Qmw) =−
(
a(x)∆um,∆(Qmw)

)
s
− 1

2
(|∇um|2∇um, Qmw)s

− (vm · ∇vm, Qmw)f − (∇vm,∇(Qmw))f +
1

2

∫
Γ

(vm · n)vm(Qmw)dΓ.
(3.30)

Since,
1

2
(vm · ∇vm, ψj)f =

1

2

∫
Γ

(vm · n)vmψjdΓ− 1

2
(vm · ∇ψj , vm)f . (3.31)

Comparing (3.30) and (3.31), we conclude

(ηm,t, Qmw) =−
(
a(x)∆um,∆(Qmw)

)
s
− 1

2
(|∇um|2∇um, Qmw)s

− 1

2
(vm · ∇vm, Qmw)f +

1

2
(vm · ∇(Qmw), vm)f − (∇vm,∇(Qmw))f .

≤C
(
‖a(x)‖L∞(Ωs)‖∆um‖L2(Ωs)‖∆Qmw‖L2(Ωs) + ‖∇um‖3L6(Ωs)‖Qmw‖L2(Ωs)

+ ‖vm‖L2(Ωf )‖∇vm‖L2(Ωf )‖Qmw‖L∞(Ωf ) + ‖vm‖2Lp(Ωf )‖∇(Qmw)‖Ld(Ωf )

+ ‖∇vm‖L2(Ωf )‖∇(Qmw)‖L2(Ωf )

)
≤C
(
‖um‖V2

s
+ ‖um‖3V2

s
+ ‖vm‖H1

f
+ ‖vm‖2H1

f

)
‖Qmw‖V

≤C
(
‖um‖V2

s
+ ‖um‖3V2

s
+ ‖vm‖H1

f
+ ‖vm‖2H1

f

)
‖w‖V.

(3.32)

where (3.29) and Lemma 2.2 are used.

We write w as w = Qmw + (w −Qmw) , and then we have

(ηm,t, w) = (ηm,t, Qmw) + (ηm,t, w −Qmw) = (ηm,t, Qmw). (3.33)

where (φj , φk) = 0, j = 1, · · · ,m, k > m is used. Comparing (3.32) and (3.33), we have

(ηm,t, w) ≤ C
(
‖um‖V2

s
+ ‖um‖3V2

s
+ ‖vm‖H1

f
+ ‖vm‖2H1

f

)
‖w‖V. (3.34)
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Then we deduce

‖ηm,t‖V′ ≤ C
(
‖um‖V2

s
+ ‖um‖3V2

s
+ ‖vm‖H1

f
+ ‖vm‖2H1

f

)
. (3.35)

According to (3.21) and (3.35), we deduce

ηm,t is bounded in L2(0, T ; V′). (3.36)

Thus,

{um,tt, vm,t} is bounded in L2(0, T ; (V2
s)
′ × (V2

f )′).

Step 3: Limiting processes and existence of the weak solutions

1. According to the energy estimates (3.21) and (3.36), we see that

um is bounded in L∞(0, T ; V2
s), (3.37)

um,t is bounded in L∞(0, T ; L2
s), (3.38)

vm is bounded in L∞(0, T ; L2
f ) ∩ L2(0, T ; V1

f ), (3.39)

{um,tt, vm,t} is bounded in L2(0, T ; V′). (3.40)

Consequently there exists subsequence {uµ}∞µ=1 ⊂ {um}∞m=1, {vµ}∞µ=1 ⊂ {vm}∞m=1 and function

u ∈ L∞(0, T ; V2
s),

ut ∈ L∞(0, T ; L2
s),

v ∈ L∞(0, T ; L2
f ) ∩ L2(0, T ; V1

f ),

{utt, vt} ∈ L2(0, T ; V′),

such that

uµ ⇀ u weakly * in L∞(0, T ; V2
s), (3.41)

uµ,t ⇀ ut weakly * in L∞(0, T ; L2
s), (3.42)

vµ ⇀ v weakly in L∞(0, T ; L2
f ) ∩ L2(0, T ; V1

f ), (3.43)

{uµ,tt, vµ,t}⇀ weakly in L2(0, T ; V′). (3.44)

2. Thanks to Aubin-Lions Lemma, we deduce the following conclusion for 0 < ε < 1
2 ,

uµ → u strong in L∞(0, T ; H2−ε
s ), (3.45)

{uµ,t, vµ} → {ut, v} strong in L2(0, T ; H−εs ×H1−ε
f ). (3.46)

where H2
s 		 H2−ε

s ,L2
s 		 H−εs ,H1

f 		 H1−ε
f are used. By using trace theorem, we have

mappings v → v|Γ is continuous mapping from H1−ε
f to H

1
2−ε
f . Then we find

vµ|Γ → v|Γ strong in L2(0, T ; H
1
2−ε(Γ)) (3.47)

and in particular

vµ|Γ → v|Γ strong in L2(0, T ; L2(Γ)). (3.48)
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Next we pass to limits as m→∞, let us first prove∫
Γ

(vµ · n)vµψjdΓ→
∫

Γ

(v · n)vψjdΓ weakly in L2(0, T ). (3.49)

Denote ∫
Γ

(vµ · n)vµψj − (v · n)vψjdΓ = I1 + I2. (3.50)

where

I1 =

∫
Γ

(
(vµ − v) · n

)
vµψjdΓ (3.51)

I2 =

∫
Γ

(v · n)(vµ − v)ψjdΓ (3.52)

Thanks to Holder inequality , we have

I1 ≤ c‖vµ − v‖L2(Γ)‖vµ‖L3(Γ)‖ψj‖L6(Γ) (3.53)

Utilizing Lemma 2.3 and (3.48), we have

I1 → 0, in L2(0, T ), as µ→∞. (3.54)

Similarly, we deduce

I2 → 0, in L2(0, T ), as µ→∞. (3.55)

Combining (3.54) and (3.55), we finally conclude (3.49).

Now we prove when µ→∞,

(vµ · ∇vµ, ψj)f → (v · ∇v, ψj)f weakly in L2(0, T ). (3.56)

We note that

(vµ · ∇vµ, ψj)f − (v · ∇v, ψj)f = I3 + I4. (3.57)

where

I3 =
(
(vµ − v) · ∇vµ, ψj

)
, (3.58)

I4 =
(
v · ∇(vµ − v), ψj

)
. (3.59)

Thanks to Holder inequality , we have

I3 ≤ c‖vµ − v‖L3(Ωf )‖∇vµ‖L2(Ωf )‖ψj‖L6(Ωf ) ≤ c‖vµ − v‖H1−ε
f
‖∇vµ‖L2(Ωf )‖ψj‖L6(Ωf ) (3.60)

Utilizing Lemma 2.2 and (3.39), (3.46), we have

I3 → 0, in L2(0, T ), as µ→∞. (3.61)
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According to (3.43) and ‖vkψij‖L2
f
≤ c, we find

I4 → 0, in L2(0, T ), as µ→∞. (3.62)

where vk is the k-th component of v, ψij is the i-th component of ψj . Combining (3.61) and

(3.62), we finally conclude (3.56).

Now we prove

(|∇uµ|2∇uµ, ϕj)s → (|∇u|2∇u, ϕj)s weakly* in L∞(0, T ). (3.63)

We note that

(|∇uµ|2∇uµ − |∇u|2∇u, ϕj)s ≤ 3
(
sup(|∇uµ|2, |∇u|2)|∇(uµ − u)|, |ϕj |

)
s

≤ c(‖∇uµ‖L6(Ωs) + ‖∇u‖L6(Ωs))‖∇(uµ − u)‖s‖ϕj‖L6(Ωs)

≤ c(‖uµ‖Vs
+ ‖u‖Vs

)‖∇(uµ − u)‖s‖ϕj‖Vs

≤ c‖∇(uµ − u)‖s.

(3.64)

Thanks to (3.45) , we deduce

∇uµ → ∇u strong in C(0, T ; L2(Ωs)). (3.65)

Combining (3.64) and (3.65), we finally get (3.63).

According to (3.41)-(3.44), we discover

(uµ,tt, ϕj)s → (utt, ϕj)s in D ′(0, T ),

(vµ,t, ψj)f → (vt, ψj)f in D ′(0, T ),

(a(x)∆uµ,∆ϕj)s → (a(x)∆u,∆ϕj)s weakly * in L∞(0, T ),

(∇vµ,∇ψj)f → (∇v,∇ψj)f weakly in L2(0, T ),

(3.66)

Combining (3.49), (3.56), (3.63), (3.66) , we deduce

(utt, ϕj)s +
(
a(x)∆u,∆ϕj

)
s

+
1

2
(|∇u|2∇u, ϕj)s + (vt, ψj)f

+ (v · ∇v, ψj)f + (∇v,∇ψj)f −
1

2

∫
Γ

(v · n)vψjdΓ = 0,

According to (3.1) and (3.2) , we have

(utt, ϕ)s +
(
a(x)∆u,∆ϕ

)
s

+
1

2
(|∇u|2∇u, ϕ)s + (vt, ψ)f

+ (v · ∇v, ψ)f + (∇v,∇ψ)f −
1

2

∫
Γ

(v · n)vψdΓ = 0,
(3.67)

for each {ϕ,ψ} ∈ V. Then we can deduce that equation (3.67) holds for each ϕ ∈ V2
s , ψ ∈ V1

f .

3. We must now verify

u(0) = u0, ut(0) = u1, v(0) = v0. (3.68)
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According to (3.37) - (3.40), we discover

uµ ∈ C(0, T ; L2(Ωs)), {uµ,t, vµ} ∈ C(0, T ; V′). (3.69)

Then, we have

(uµ(0), ϕ)s → (u(0), ϕ)s

(uµ,t(0), ϕ)s → (ut(0), ϕ)s

(vµ(0), ψj)f → (v(0), ψj)f

(3.70)

On the other hand, according to (3.6)-(3.8), we find

uµ(0)→ u0, in H2(Ωs);

uµ,t(0)→ u1, in L2(Ωs);

vµ(0)→ v0, in L2(Ωf );

(3.71)

Combining (3.70) and (3.71), we deduce (3.68).

Combining the three steps above, we have proved the existence of global weak solutions of

(1.1).
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