Leho Tedersoo

and 17 more

Fungi are a key component of tropical biodiversity. Due to their inconspicuous and largely subterranean nature, they are however usually neglected in biodiversity inventories. The goal of this study was to identify the key determinants of fungal richness, community composition, and turnover in tropical rainforests. We tested specifically for the effect of soil properties, habitat, and locality in Amazonia. For these analyses, we used high-throughput sequencing data of short and long reads of fungal DNA present in soil and organic litter samples, combining existing and novel genomic data. Habitat type (phytophysiognomies) emerges as the strongest factor in explaining fungal community composition. Naturally open areas – campinas – are the richest habitat overall. Soil properties have different effects depending on the soil layer (litter or mineral soil) and the choice of genetic marker. We suggest that campinas could be a neglected hotspot of fungal diversity. An underlying cause for their rich diversity may be the overall low soil fertility, which increases the reliance on biotic interactions essential for nutrient absorption in these environments, notably ectomycorrhizal fungi–plant associations. Our results highlight the advantages of using both short and long DNA reads produced through high-throughput sequencing to characterize fungal diversity. While short-reads can suffice for diversity and community comparison, long-reads add taxonomic precision and have the potential to reveal population diversity.

Wengang Kang

and 10 more

Diatoms (Bacillariophyceae) are widely used as bioindicators of present and past water quality because they inhabit the vast majority of aquatic ecosystems, are very diverse, highly sensitive to a variety of environmental conditions, and are characterized by silicified cell walls that favor their long-term preservation in sediments. Alongside with traditional morphological analyses, metabarcoding has become a valuable tool to study the community structures of various organisms, including diatoms. Here, we aimed to test whether the quantity of sediment sample used for DNA extraction is affecting the results obtained from high-throughput sequencing (metabarcoding) of the diatom rbcL region by isolating DNA from 10 g and 0.5 g (wet weight) of lake surface sediment samples. Because bioinformatics processing of metabarcoding data may affect the outcome, we also tested the consistency of the results from three different pipelines. Additionally, the agreement between metabarcoding data and morphological inventories of corresponding samples were compared. Our results demonstrate highly uniform patterns between the diatom rbcL amplicons from 10 g and 0.5 g of DNA extracts (HTS 10 and HTS 0.5, respectively). Furthermore, metabarcoding results were highly consistent among the data sets produced by different bioinformatics pipelines. Comparing results from metabarcoding and microscopy, we identified some taxonomic mismatches, which are related to the common issue of incompleteness of the sequence databases, but also to inconsistencies in diatom taxonomy in general and potential dissolution effects of diatom valves caused by high alkalinity of the investigated lake waters. Nevertheless, multivariate community analysis demonstrated highly similar results between data sets identified by microscopy and metabarcoding, further confirming that metabarcoding is a viable alternative for identifying diatom-environment relationships.

Melinda Greenfield

and 6 more

In recent decades, multipartite mutualisms involving microorganisms such as fungi have been discovered in associations traditionally thought of as bipartite. Ant-plant mutualisms were long thought to be bipartite despite fungi being noticed in an epiphytic ant-plant over 100 years ago. We sequenced fungal DNA from the three distinct domatium chambers of the epiphytic ant-plant Myrmecodia beccarii Hook.f. to establish if fungal communities differ by chamber type across five locations spanning 675 km. The three chamber types serve different ant-associated functions including: ‘waste’ chambers, where ant workers deposit waste; ‘nursery’ chambers, where the brood are kept; and ‘ventilation’ chambers, that allow air into the domatium. Overall, fungi from the order Chaetothyriales dominated the chambers in terms of the proportion of OTUs (13.4%) and sequence abundances of OTUs (28% of the total), however a large portion of OTUs (28%) were unidentified at the order level. Notably, the fungal community in the waste chambers differed consistently from the nursery and ventilation chambers across all five locations. We identified 13 fungal OTUs as ‘common’ in the waste chambers that were rare or in very low sequence abundance in the other two chambers. Fungal communities in the nursery and ventilation chambers were also significantly different, but variation between these chambers was less pronounced. Differences in dominance of the common OTUs drive the observed patterns in the fungal communities for each of the chamber types. This suggests a multipartite mutualism involving fungi exists in this ant-plant and that the role of fungi differs among chamber types.