Effects of livestock on vegetation and arthropod community
Livestock grazing reduced vegetation cover and height, prompting trophic cascade effects on arthropod community. Grass cover differed among control trees of different farms due to differences in grazing intensity. Moreover, it was higher beneath the canopies of trees subjected to one-year and long-term livestock exclosures. Those places with lower grass height and cover (control trees in all farms) exhibited lower species richness and diversity. Grass height is a fine predictor of plant and insect diversity under contrasting grazing intensities (Kruess & Tscharntke, 2002).
Livestock and phytophagous arthropods compete for the same food resource: vegetation. Competition takes place through direct and indirect interactions; both affect each other directly by decreasing food resources (density-mediated interaction (Dennis et al., 2008; Evans et al., 2015; Feeley et al., 2006; Werner & Peacor, 2003)). The interaction is, however, frequently asymmetrical due to differences in body size that also favour other antagonistic interactions, such as incidental intraguild predation of phytophagous arthropods by livestock (Canelo et al., 2021b; Gómez & González-Megías, 2002; Zamora & Gómez, 1993). Moreover, the negative effects of livestock go beyond phytophagous arthropods and extend to predators and parasitoid species, which may also be incidentally predated by livestock albeit at lower rates than herbivores (Berman & Inbar, 2022). Predatory arthropods also suffer the scarcity of prey (phytophagous invertebrates) due to livestock grazing (King et al., 2014; Prieto-Benítez & Méndez, 2011).
The richness and diversity of arthropods increased after livestock exclusion, but, surprisingly, it did not increase with the length of the exclusion period: it peaked at short-term (one year) exclosures; only Family level diversity was significantly higher at long-term exclosures compared to control trees. After one-year of livestock exclusion, vegetation cover was higher and medium-sized grass prevailed. This meant more food for herbivore arthropods –owing to the lack of competition with livestock–, a greater availability of refuge, and reduced intra-guild predation risk. Local herbivore arthropods at the excluded trees may increase their population size and new species may arrive from neighbouring areas (Catford et al., 2012; Harvey et al., 2016; Townsend et al., 1997). Higher grass cover in one year-exclosures was also related with an increase of arthropod functional diversity, including an increase in parasitic species. Therefore, the increase in primary production triggers a bottom-up trophic cascade at this initial period. This quick peak supports the predictions of the intermediate disturbance hypothesis (IDH).
The intermediate disturbance hypothesis predicts a peak of species richness at intermediate levels of disturbance. Within the context of our study, this would be the situation after one year of livestock exclusion. The sequence would be: high disturbance (livestock present), time-spaced disturbance (one-year exclusion, the disturbance starts to disappear) and no disturbance (ten-years exclusion). Shortly after exclusion, grass cover increases and vegetation composition changes (Sims et al., 2019). In parallel, microhabitat heterogeneity increases (Song et al., 2020), what favours species with different habitat and food requirements (for example, open-habitat omnivore generalists, herbivore specialists, or parasitoids) (Stephan et al., 2017). For instance, it has been shown that, in Mediterranean regions, bee and ant richness increases after a wildfire due to the new niches created (Vidal-Cordero et al., 2023).
Certain species find a suitable habitat at the recently-undisturbed areas (one-year exclosures), where they may arrive from the surroundings, and establish in the short-term. This could explain the similarity between arthropod communities under the one-year-exclusion trees seen in the Z-diversity graphs. Nevertheless, after 10 years of livestock exclusion, the competition between arthropods increases. Grass cover and height increase, and the habitat becomes more homogeneous. According to the competitive exclusion principle (Hardin, 1960; McPeek, 2014), species which compete strongly for the same resource cannot coexist; one of them will overtake the other. This is what may happen in long-term exclosures, the lack of grazing homogenizes the habitat and promotes competition among herbivores. However, the homogenization of the habitat may favour certain specialists: as times go by the overall number of species will be slightly reduced, some will disappear, but others may increase their abundance.
The slight decrease in taxonomic richness and diversity does not mean that arthropod communities become homogeneous at long-term exclosures, rather, they differed a lot among them and compared to the trees of the other categories. Species composition differed with respect to short-term exclosures probably because certain some taxa (like Colembolla) disappear as grass height increases. On the other side, the rather large variability within long-term exclosure trees shown in the Z-diversity analysis indicate that communities diverged towards different and unique species compositions. Further studies considering additional functional traits will help to understand the process underlying such temporal changes in arthropod communities.
In summary, our results support the intermediate-disturbance hypothesis (Connell, 1978; Gao & Carmel 2020; Roxburgh et al., 2004; Svensson et al., 2007; Yan et al., 2015). Arthropod diversity peaks after short-time livestock exclusion, where vegetation cover has increased compared to control trees but habitat heterogeneity is still higher than at long-term exclosures dominated by tall grass. Regarding the livestock-driven biological control of acorn pests (Canelo et al. 2021b), the present study shows that intensive grazing does reduce arthropod taxonomic richness and diversity. Our results also put forward that the recovery after livestock exclusion is fast. Thus, the proposed rotative management combining, within the same dehesa farm, plots with temporary increased grazing and short-term livestock exclosures, would be appropriate. This innovative livestock management would increase the productivity of Iberian oak savannas by reducing acorn pests, while also preserving its unique and rich arthropod biodiversity.
DATA AVAILABILITY
All sequencing raw data has been deposited at NCBI’s Short Read Archive (SRA) under project PRJNA928708. Multiplexing information, sample metadata, vegetation raw data, as well as COI and 16S metabarcoding and functional traits datasets, can be found along with the supplemental material.
AUTHOR CONTRIBUTIONS
TC, RB and JB conceived and designed the study; TC, AG and CP-I conducted the sampling; TC and DM carried out the laboratory work and the bioinformatic processing; TC, DM and SC performed the data analysis; TC wrote the first draft, and TC and DM prepared the manuscript and the figures. All authors reviewed and contributed to subsequent drafts of the manuscript.
ACKNOWLEDGEMENTS
We are indebted to Rodrigo Esparza-Salas for his assistance in the laboratory and to E. Morano for his help during the fieldwork. The authors would like to acknowledge support from Science for Life Laboratory, the National Genomics Infrastructure, NGI, and Uppmax (Swedish National Infrastructure for Computing) for providing assistance in massive parallel sequencing and computational infrastructure. We are grateful for stakeholders of “Finca Casablanca” and “Finca Las Carboneras” for their good disposition to conduct this study.
TC was supported by a Margarita Salas postdoctoral fellowship (Ayuda del Programa de Recualificación del Sistema Universitario Español - NextGeneration EU, MS-20). DM was supported by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 642241 (BIG4 project, https://big4-project.eu). This research was funded by the project AGL2014-54739-R from Spanish Ministry of Economy and Competitiveness and the European Social Fund (Spanish National Plan for Scientific and Technical Research and Innovation).
REFERENCES
Abdala‐Roberts, L., Puentes, A., Finke, D. L., Marquis, R. J., Montserrat, M., Poelman, E. H., … & Björkman, C (2019). Tri-trophic interactions: bridging species, communities and ecosystems.Ecology Letters , 22(12), 2151–2167. https://doi.org/10.1111/ele.13392
Adams, S.N. (1975). Sheep and Cattle Grazing in Forests: A Review.Journal of Applied Ecology , 12, 143–152. https://doi.org/10.2307/2401724
Adler, P., Raff, D., & Lauenroth, W. (2001). The effect of grazing on the spatial heterogeneity of vegetation. Oecologia , 128(4), 465–479. https://doi.org/10.1007/s004420100737
Andrés, P., Mateos, E., & Ascaso, C. (1999). Soil arthropods. In: F. Rodà, C. A. Gracia, C. L. Lange, M. M. Caldwell, G. Heldmaier, J. Bellot, … & U. Sommer (Eds.) Ecology of Mediterranean Evergreen Oak Forests (pp. 341–354). Springer-Verlag.
Andrews S. (2010). FastQC: a quality control tool for high-throughput sequence data. Available online at: http://www.bioinformatics.babraham.ac.uk/projects/fastqc
Armas-Herrera, C. M., Badía-Villas, D., Mora, J. L., & Gómez, D. (2020). Plant-topsoil relationships underlying subalpine grassland patchiness. Science of the Total Environment , 712, 134483. https://doi.org/10.1016/j.scitotenv.2019.134483
Batovska, J., Piper, A. M., Valenzuela, I., Cunningham, J. P., & Blacket, M. J. (2021). Developing a non-destructive metabarcoding protocol for detection of pest insects in bulk trap catches.Scientific Reports , 11(1), 1–14. https://doi.org/10.1038/s41598-021-85855-6
Berman, T. S., & Inbar, M. (2022). Revealing cryptic interactions between large mammalian herbivores and plant‐dwelling arthropods via DNA metabarcoding. Ecology , 103(1), e03548. https://doi.org/10.1002/ecy.3548
Binladen, J., Gilbert, M. T. P., Bollback, J. P., Panitz, F., Bendixen, C., Nielsen, R., & Willerslev, E. (2007). The use of coded PCR primers enables high-throughput sequencing of multiple homolog amplification products by 454 parallel sequencing. PLoS One , 2(2), 1–9. https://doi.org/10.1371/journal.pone.0000197
Bogdziewicz, M., Canelo, T., & Bonal, R. (2019). Rainfall and host reproduction regulate population dynamics of a specialist seed predator.Ecological Entomology , 1–10. https://doi.org/10.1111/een.12770
Bonal, R., & Muñoz, A. (2007). Multi-trophic effects of ungulate intraguild predation on acorn weevils. Oecologia 152, 533–540. https://doi.org/10.1007/s00442-007-0672-8
Bonal, R., Muñoz, A., & Díaz, M. (2007). Satiation of predispersal seed predators: The importance of considering both plant and seed levels.Evolutionary Ecology , 21, 367–380. https://doi.org/10.1007/s10682-006-9107-y
Bommarco, R., Kleijn, D., & Potts, S. G. (2013). Ecological intensification: harnessing ecosystem services for food security.Trends in Ecology & Evolution , 28(4), 230–238. https://doi.org/10.1016/j.tree.2012.10.012
Botta-Dukát, Z. (2005). Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. Journal of Vegetation Science , 16(5), 533. https://doi.org/10.1111/j.1654-1103.2005.tb02393.x
Boyer, F., Mercier, C., Bonin, A., Le Bras, Y., Taberlet, P., & Coissac, E. (2016). obitools: A unix-inspired software package for DNA metabarcoding. Molecular Ecology Resources 16(1), 176–182. https://doi.org/10.1111/1755-0998.12428
Brambila, A., Chesnut, J. W., Prugh, L. R., & Hallett, L. M. (2020). Herbivory enhances the effect of environmental variability on plant community composition and beta diversity. Journal of Vegetation Science , 31(5), 744–754. https://doi.org/10.1111/jvs.12862
Brooks, M. E., Kristensen, K., Darrigo, M. R., Rubim, P., Uriarte, M., Bruna, E., & Bolker, B. M. (2019). Statistical modeling of patterns in annual reproductive rates. Ecology , 100(7), e02706. https://doi.org/10.1002/ecy.2706
Bugalho, M. N., Caldeira, M. C., Pereira, J. S., Aronson, J., Pausas, G. J. (2011). Mediterranean cork oak savannas require human use to sustain biodiversity and ecosystem services. Frontiers in Ecology and the Environment , 9(5), 278-286. https://doi.org/10.1890/100084
Canelo, T., Gaytán, Á., Pérez-Izquierdo, C., & Bonal, R. (2021a). Effects of Longer Droughts on Holm Oak Quercus ilex L. Acorn Pests: Consequences for Infestation Rates, Seed Biomass and Embryo Survival.Diversity , 13(3), 110; https://doi.org/10.3390/d13030110
Canelo, T., Pérez-Izquierdo, C., Gaytán, Á., & Bonal, R. (2021b). Intraguild predation of weevils by livestock reduces acorn pests in oak silvopastoral systems. Journal of Pest Science , 94(2), 541–551. https://doi.org/10.1007/s10340-020-01278-8
Catford, J. A., Daehler, C. C., Murphy, H. T., Sheppard, A. W., Hardesty, B. D., Westcott, D. A., … & Hulme, P. E. (2012). The intermediate disturbance hypothesis and plant invasions: Implications for species richness and management. Perspectives in Plant Ecology, Evolution and Systematics , 14(3), 231–241. https://doi.org/10.1016/j.ppees.2011.12.002
Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs: high diversity of trees and corals is maintained only in a nonequilibrium state. Science , 199(4335), 1302–1310. https://doi.org/10.1126/science.199.4335.1302
Dennis, P., Skartveit, J., McCracken, D. I., Pakeman, R. J., Beaton, K., Kunaver, A., & Evans, D. M. (2008). The effects of livestock grazing on foliar arthropods associated with bird diet in upland grasslands of Scotland. Journal of Applied Ecology , 279–287. https://doi.org/10.1111/j.1365-2664.2007.01378.x
Diaz-Siefer, P., Olmos-Moya, N., Fonturbel, F. E., Lavandero, B., Pozo, R. A. & Celis-Diez, J. L. (2021). Bird-mediated effects of pest control services on crop productivity: a global synthesis. Journal of Pest Science , 95, 567–576. https://doi.org/10.1007/s10340-021-01438-4
Didham, R. K., Barker, G. M., Costall, J. A., Denmead, L. H., Floyd, C. G., & Watts, C. H. (2009). The interactive effects of livestock exclusion and mammalian pest control on the restoration of invertebrate communities in small forest remnants. New Zealand Journal of Zoology , 36(2), 135–163. https://doi.org/10.1080/03014220909510148
Dufrene, M., & Legendre, P. (1997). Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs , 67(3), 345–366.
EC (2013). Interpretation Manual of European Union Habitats— EUR28. European Commission DG Environment: Brussels.
Elbrecht, V., & Leese, F. (2017). Validation and development of COI metabarcoding primers for freshwater macroinvertebrate bioassessment.Frontiers in Environmental Science , 11. https://doi.org/10.3389/fenvs.2017.00011
Eldridge, D. J., Poore, A. G., Ruiz‐Colmenero, M., Letnic, M., & Soliveres, S. (2016). Ecosystem structure, function, and composition in rangelands are negatively affected by livestock grazing.Ecological Applications , 26(4), 1273–1283. https://doi.org/10.1890/15-1234.1
Eldridge, D. J., Travers, S. K., Manning, A. D., & Barton, P. (2017) Direct and indirect effects of herbivore activity on Australian vegetation. In: D.A Keith, (Ed.), Australian Vegetation (pp. 135–155). Cambridge University Press.
Eskelinen, A., Harpole, W. S., Jessen, M. T., Virtanen, R., & Hautier, Y. (2022). Light competition drives herbivore and nutrient effects on plant diversity. Nature , 611(7935), 301–305. https://doi.org/10.1038/s41586-022-05383-9
Evans, D. M., Villar, N., Littlewood, N. A., Pakeman, R. J., Evans, S. A., Dennis, P., … & Redpath, S. M. (2015). The cascading impacts of livestock grazing in upland ecosystems: a 10‐year experiment.Ecosphere , 6(3), 1–15. https://doi.org/10.1890/ES14-00316.1
FAO, IFAD, UNICEF, WFP and WHO. 2022. The State of Food Security and Nutrition in the World 2022. Repurposing food and agricultural policies to make healthy diets more affordable. Rome, FAO. https://doi.org/10.4060/cc0639en
Feeley, K. J., & Terborgh, J. W. (2006). Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness. Ecology , 87(1), 144–150. https://doi.org/10.1890/05-0652
Filazzola, A., Brown, C., Dettlaff, M. A., Batbaatar, A., Grenke, J., Bao, T., … & Cahill Jr, J. F. (2020). The effects of livestock grazing on biodiversity are multi‐trophic: a meta‐analysis.Ecology Letters , 23(8), 1298–1309. https://doi.org/10.1111/ele.13527
Frøslev, T. G., Kjøller, R., Bruun, H. H., Ejrnæs, R., Brunbjerg, A. K., Pietroni, C., & Hansen, A. J. (2017). Algorithm for post-clustering curation of DNA amplicon data yields reliable biodiversity estimates.Nature communications , 8(1), 1–11. https://doi.org/10.1038/s41467-017-01312-x
García, D., Miñarro, M., & Martínez-Sastre, R. (2021). Enhancing ecosystem services in apple orchards: Nest boxes increase pest control by insectivorous birds. Journal of Applied Ecology , 58(3), 465–475. https://doi.org/10.1111/1365-2664.13823
Gao, J., & Carmel, Y. (2020). Can the intermediate disturbance hypothesis explain grazing–diversity relations at a global scale?Oikos , 129(4), 493–502. https://doi.org/10.1111/oik.06338
Gaytán, Á., Bergsten, J., Canelo, T., Pérez‐Izquierdo, C., Santoro, M., & Bonal, R. (2020). DNA Barcoding and geographical scale effect: The problems of undersampling genetic diversity hotspots. Ecology and Evolution , 10(19), 10754–10772. https://doi.org/10.1002/ece3.6733
Gómez, J. M., & González-Megías, A. (2002). Asymmetrical interactions between ungulates and phytophagous insects: being different matters.Ecology , 83(1), 203–211
Gómez, J. M., & González-Megías, A. (2007). Long-term effects of ungulates on phytophagous insects. Ecological Entomology , 32(2), 229–234. https://doi.org/10.1111/j.1365-2311.2006.00859.x
Gossner, M. M., Lewinsohn, T. M., Kahl, T., Grassein, F., Boch, S., Prati, D., … & Allan, E. (2016). Land-use intensification causes multitrophic homogenization of grassland communities. Nature , 540(7632), 266–269. https://doi.org/10.1038/nature20575
Hardin, G. (1960). The Competitive Exclusion Principle: An idea that took a century to be born has implications in ecology, economics, and genetics. Science , 131(3409), 1292–1297. https://doi.org/10.1126/science.131.3409.1292
Harvey, E., Gounand, I., Ganesanandamoorthy, P., & Altermatt, F. (2016). Spatially cascading effect of perturbations in experimental meta-ecosystems. Proceedings of the Royal Society B: Biological Sciences , 283(1838), 20161496. https://doi.org/10.1098/rspb.2016.1496
Hui, C., & McGeoch, M. A. (2014). Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. The American Naturalist , 184(5), 684–694. https://doi.org/10.1086/678125
IPBES (2019): Summary for policymakers of the global assessment report on biodiversity and ecosystem services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. S. Díaz, J. Settele, E. S. Brondízio, H. T. Ngo, M. Guèze, J. Agard, A. Arneth, P. Balvanera, K. A. Brauman, S. H. M. Butchart, K. M. A. Chan, L. A. Garibaldi, K. Ichii, J. Liu, S. M. Subramanian, G. F. Midgley, P. Miloslavich, Z. Molnár, D. Obura, A. Pfaff, S. Polasky, A. Purvis, J. Razzaque, B. Reyers, R. Roy Chowdhury, Y. J. Shin, I. J. Visseren-Hamakers, K. J. Willis, and C. N. Zayas (eds.). IPBES secretariat, Bonn, Germany. 56 pages. https://doi.org/10.5281/zenodo.3553579
Iwaszkiewicz-Eggebrecht, E., Granqvist, E., Buczek, M., Prus, M., Kudlicka, J., Roslin, T., Tack, A. J. M., Andersson, A. F., Miraldo, A., Ronquist, F., & Łukasik, P. (2023). Optimizing insect metabarcoding using replicated mock communities. Methods in Ecology and Evolution , 00, 1–7. https://doi.org/10.1111/2041-210X.14073
Jackson, K. E., Whiles, M. R., Dodds, W. K., Reeve, J. D., Vandermyde, J. M., & Rantala, H. M. (2015). Patch‐burn grazing effects on the ecological integrity of tallgrass prairie streams. Journal of Environmental Quality , 44(4), 1148–1159. https://doi.org/10.2134/jeq2014.10.0437
Joubert, L., Pryke, J. S., & Samways, M. J. (2016). Positive effects of burning and cattle grazing on grasshopper diversity. Insect Conservation and Diversity , 9(4), 290–301. https://doi.org/10.1111/icad.12166
Kaltsas, D., Trichas, A., Kougioumoutzis, K., & Chatzaki, M. (2013). Ground beetles respond to grazing at assemblage level, rather than species-specifically: the case of Cretan shrublands. Journal of Insect Conservation , 17(4), 681–697. https://doi.org/10.1007/s10841-013-9553-0
Kati, V., Zografou, K., Tzirkalli, E., Chitos, T., & Willemse, L. (2012). Butterfly and grasshopper diversity patterns in humid Mediterranean grasslands: the roles of disturbance and environmental factors. Journal of Insect Conservation , 16(6), 807–818. https://doi.org/10.1007/s10841-012-9467-2
Kaunisto, K. M., Roslin, T., Sääksjärvi, I. E., & Vesterinen, E. J. (2017). Pellets of proof: First glimpse of the dietary composition of adult odonates as revealed by metabarcoding of feces. Ecology and Evolution , 7(20), 8588–8598. https://doi.org/10.1002/ece3.3404
Kilgarriff, P., Ryan, M., O’Donoghue, C., & Green, S. (2020). Livestock exclusion from watercourses: Policy effectiveness and implications.Environmental Science & Policy , 106, 58–67. https://doi.org/10.1016/j.envsci.2020.01.013
King, B. H., Colyott, K. L., & Chesney, A. R. (2014). Livestock bedding effects on two species of parasitoid wasps of filth flies. Journal of Insect Science , 14(1). https://doi.org/10.1093/jisesa/ieu047
Kirk, D. A., Hébert, K., & Goldsmith, F. B. (2019). Grazing effects on woody and herbaceous plant biodiversity on a limestone mountain in northern Tunisia. PeerJ , 7, e7296. https://doi.org/10.7717/peerj.7296
Knight, T. M., McCoy, M. W., Chase, J. M., McCoy, K. A., & Holt, R. D. (2005). Trophic cascades across ecosystems. Nature , 437(7060), 880–883. https://doi.org/10.1038/nature03962
Kröpfl, A. I., Cecchi, G. A., Villasuso, N. M., & Distel, R. A. (2011). Degradation and recovery processes in semi‐arid patchy rangelands of northern Patagonia, Argentina. Land Degradation & Development , 24(4), 393–399. https://doi.org/10.1002/ldr.1145
Kruess, A., & Tscharntke, T. (2002). Contrasting responses of plant and insect diversity to variation in grazing intensity. Biological Conservation , 106(3), 293–302. https://doi.org/10.1016/S0006-3207(01)00255-5
Kulikova, T., Aldebert, P., Althorpe, N., Baker, W., Bates, K., Browne, P., … & Apweiler, R. (2004). The EMBL nucleotide sequence database.Nucleic Acids Research , 32(suppl_1), D27-D30. https://doi.org/10.1093/nar/ gki098
Laliberté, E., Legendre, P., & B. Shipley. (2014). FD: measuring functional diversity from multiple traits, and other tools for functional ecology. R package version 1.0-12.1.
Latombe G, McGeoch M, Nipperess D and Hui C (2020). zetadiv: Functions to Compute Compositional Turnover Using Zeta Diversity. R package version 1.2.0, https://CRAN.R-project.org/package=zetadiv
Lavorel, S., Grigulis, K., McIntyre, S., Williams, N. S. G., Garden, D., Dorrough, J., Berman, S., Quétier, F., Thébault, A., & Bonis, A. (2008). Assessing functional diversity in the field - Methodology matters! Functional Ecology , 22(1), 134–147. https://doi.org/10.1111/j.1365-2435.2007.01339.x
Lázaro, A., Tscheulin, T., Devalez, J., Nakas, G., & Petanidou, T. (2016a). Effects of grazing intensity on pollinator abundance and diversity, and on pollination services. Ecological Entomology , 41(4), 400–412. https://doi.org/10.1111/een.12310
Lázaro, A., Tscheulin, T., Devalez, J., Nakas, G., Stefanaki, A., Hanlidou, E., & Petanidou, T. (2016b). Moderation is best: effects of grazing intensity on plant–flower visitor networks in Mediterranean communities. Ecological Applications , 26(3), 796–807. https://doi.org/10.1890/15-0202
Lê, S., Josse, J. & Husson, F. (2008). FactoMineR: An R Package for Multivariate Analysis. Journal of Statistical Software , 25(1), 1–18.
Liu, M., Clarke, L. J., Baker, S. C., Jordan, G. J., & Burridge, C. P. (2020). A practical guide to DNA metabarcoding for entomological ecologists. Ecological Entomology , 45(3), 373–385. https://doi.org/10.1111/een.12831
Maestre, F. T., Le Bagousse-Pinguet, Y., Delgado-Baquerizo, M., Eldridge, D. J., Saiz, H., Berdugo, M., … & Gross, N. (2022). Grazing and ecosystem service delivery in global drylands. Science , 378(6622), 915–920. https://doi.org/10.1126/science.abq4062
Magnano, A. L., Krug, P., Casa, V., & Quintana, R. D. (2019). Changes in vegetation composition and structure following livestock exclusion in a temperate fluvial wetland. Applied Vegetation Science , 22(4), 484–493. https://doi.org/10.1111/avsc.12453
Mahé, F., Rognes, T., Quince, C., De Vargas, C., & Dunthorn, M. (2015). Swarm v2: highly-scalable and high-resolution amplicon clustering.PeerJ , 3, e1420. https://doi.org/10.7717/peerj.1420.
Marquina, D., Esparza‐Salas, R., Roslin, T., & Ronquist, F. (2019a). Establishing arthropod community composition using metabarcoding: Surprising inconsistencies between soil samples and preservative ethanol and homogenate from Malaise trap catches. Molecular Ecology Resources , 19(6), 1516–1530. https://doi.org/10.1111/1755-0998.13071
Marquina, D., Andersson, A. F., & Ronquist, F. (2019b). New mitochondrial primers for metabarcoding of insects, designed and evaluated using in silico methods. Molecular Ecology Resources , 19(1), 90–104. https://doi.org/10.1111/1755-0998.12942
Marquina, D., Roslin, T., Łukasik, P., & Ronquist, F. (2022). Evaluation of non-destructive DNA extraction protocols for insect metabarcoding: gentler and shorter is better. Metabarcoding and Metagenomics , 6, e78871. https://doi.org/10.3897/mbmg.6.78871
McCune, B., & Grace, J. B. (2002). Analysis of Ecological Communities. MjM Software Design.
McGeoch, M. A., Latombe, G., Andrew, N. R., Nakagawa, S., Nipperess, D. A., Roigé, M., … & Hui, C. (2019). Measuring continuous compositional change using decline and decay in zeta diversity.Ecology , 100(11), e02832. https://doi.org/10.1002/ecy.2832
McPeek, M. A. (2014). Limiting factors, competitive exclusion, and a more expansive view of species coexistence. The American Naturalist , 183(3), iii–iv. https://doi.org/10.1086/675305
Montesinos, D. (2019). Forest Ecological Intensification. Trends in Plant Science , 24(6), 484–486. https://doi.org/10.1016/j.tplants.2019.03.009
Moreno, G., Pulido, F. J. (2009) The Functioning, Management and Persistence of Dehesas. In: A. Rigueiro-Rodríguez, J. McAdam, & M. R. Mosquera-Losada (Eds.), Agroforestry in Europe: Current Status and Future Prospects (pp. 127–160). Springer Science + Business Media B.V.
Moretti, M., Obrist, M. K., & Duelli, P. (2004). Arthropod biodiversity after forest fires: winners and losers in the winter fire regime of the southern Alps. Ecography , 27(2), 173–186. https://doi.org/10.1111/j.0906-7590.2004.04101.x
Muñoz, A., Bonal, R., & Díaz, M. (2009). Ungulates, rodents, shrubs: interactions in a diverse Mediterranean ecosystem. Basic and Applied Ecology , 10(2), 151–160. https://doi.org/10.1016/j.baae.2008.01.003
Nielsen, M., Gilbert, M. T. P., Pape, T., & Bohmann, K. (2019). A simplified DNA extraction protocol for unsorted bulk arthropod samples that maintains exoskeletal integrity. Environmental DNA , 1(2), 144–154. https://doi.org/10.1002/edn3.16
O’Callaghan, P., Kelly‐Quinn, M., Jennings, E., Antunes, P., O’Sullivan, M., Fenton, O., & Huallachain, D. O. (2019). The environmental impact of cattle access to watercourses: A review. Journal of Environmental Quality , 48(2), 340–351. https://doi.org/10.2134/jeq2018.04.0167
Oksanen J, Blanchet G, Kindt FR, et al., (2013) vegan: Community Ecology Package. R package version 2.0-7. https://CRAN.R-project.org/package=vegan
O’Sullivan, M., Ó hUallacháin, D., Antunes, P. O., Jennings, E., & Kelly-Quinn, M. (2019). The impacts of cattle access points on deposited sediment levels in headwater streams in Ireland. River Research and Applications , 35(2), 146–158. https://doi.org/10.1002/rra.3382
Prieto-Benítez, S., & Méndez, M. (2011). Effects of land management on the abundance and richness of spiders (Araneae): A meta-analysis.Biological Conservation , 144(2), 683–691. https://doi.org/10.1016/j.biocon.2010.11.024
Prober, S. M., Standish, R. J., & Wiehl, G. (2011). After the fence: vegetation and topsoil condition in grazed, fenced and benchmark eucalypt woodlands of fragmented agricultural landscapes.Australian Journal of Botany , 59(4), 369–381. https://doi.org/10.1071/BT11026
Qin, X., Ma, J., Huang, X., Kallenbach, R. L., Lock, T. R., Ali, M. P., & Zhang, Z. (2017). Population dynamics and transcriptomic responses of Chorthippus albonemus (Orthoptera: Acrididae) to herbivore grazing intensity. Frontiers in Ecology and Evolution , 5, 136. https://doi.org/10.3389/fevo.2017.00136
Ratnasingham, S., & Hebert, P. D. (2007). BOLD: The Barcode of Life Data System (http://www. barcodinglife. org). Molecular Ecology Notes , 7(3), 355–364. https://doi.org/10.1111/j.1471-8286.2006.01678.x
Redlich, S., Martin, E. A., & Steffan-Dewenter, I. (2018). Landscape-level crop diversity benefits biological pest control.Journal of Applied Ecology , 55(5), 2419–2428. https://doi.org/10.1111/1365-2664.13126
Retamosa, E. C., Jordano, D., & Fernandez-Haeger, J. (2004). Positive effects of the stem borer Ceutorhynchus sp. on its host plant Iberis contracta (Cruciferae ) can be overwhelmed by vertebrate grazers. Proceedings 10th MEDECOS Conference, pp.1 – 7. Millpress.
Roberts, D. W. (2016). labdsv: Ordination and Multivariate Analysis for Ecology. R package version 1.8-0. https://CRAN.R-project.org/package=labdsv
Roger, F., Ghanavi, H. R., Danielsson, N., Wahlberg, N., Löndahl, J., Pettersson, L. B., Andersson, G. K. S., Boke Olén, N., & Clough, Y. (2022). Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects—A proof of concept from the field.Environmental DNA , 4, 790–807. https://doi.org/10.1002/edn3.290
Rognes, T., Flouri, T., Nichols, B., Quince, C., & Mahé, F. (2016). VSEARCH: a versatile open source tool for metagenomics. PeerJ , 4, e2584. https://doi.org/10.7717/peerj.2584.
Rota, E., Caruso, T., Migliorini, M., Monaci, F., Agamennone, V., Biagini, G., & Bargagli, R. (2015). Diversity and abundance of soil arthropods in urban and suburban holm oak stands. Urban Ecosystems , 18(3), 715–728. https://doi.org/10.1007/s11252-014-0425-5
Roxburgh, S. H., Shea, K., & Wilson, J. B. (2004). The intermediate disturbance hypothesis: patch dynamics and mechanisms of species coexistence. Ecology , 85(2), 359–371. https://doi.org/10.1890/03-0266
Sadaka, N., & Ponge, J. F. (2003). Soil animal communities in holm oak forests: influence of horizon, altitude and year. European Journal of Soil Biology , 39(4), 197–207. https://doi.org/10.1016/j.ejsobi.2003.06.001
Sankaran, M., & Augustine, D. J. (2004). Large herbivores suppress decomposer abundance in a semiarid grazing ecosystem. Ecology , 85(4), 1052–1061. https://doi.org/10.1890/03-0354
Sá-Sousa, P. (2014). The Portuguese montado: conciliating ecological values with human demands within a dynamic agroforestry system.Annals of Forest Science , 71(1), 1–3. https://doi.org/10.1007/s13595-013-0338-0
Sims, R. J., Lyons, M., & Keith, D. A. (2019). Limited evidence of compositional convergence of restored vegetation with reference states after 20 years of livestock exclusion. Austral Ecology , 44(4), 734–746. https://doi.org/10.1111/aec.12744
Song, S., Zhu, J., Zheng, T., Tang, Z., Zhang, F., Ji, C., … & Zhu, J. (2020). Long-term grazing exclusion reduces species diversity but increases community heterogeneity in an alpine grassland.Frontiers in Ecology and Evolution , 8, 66. https://doi.org/10.3389/fevo.2020.00066
Stephan, J. G., Pourazari, F., Tattersdill, K., Kobayashi, T., Nishizawa, K., & De Long, J. R. (2017). Long-term deer exclosure alters soil properties, plant traits, understory plant community and insect herbivory, but not the functional relationships among them.Oecologia , 184(3), 685–699. https://doi.org/10.1007/s00442-017-3895-3
Su, H., Liu, W., Xu, H., Wang, Z., Zhang, H., Hu, H., & Li, Y. (2015). Long‐term livestock exclusion facilitates native woody plant encroachment in a sandy semiarid rangeland. Ecology and Evolution , 5(12), 2445–2456. https://doi.org/10.1002/ece3.1531 https://doi.org/10.1002/ece3.1531
Sucena-Paiva, L., Correia, O., Rosário, L. & Chozas S. (2022) Holm oak wood pastures in SE Portugal: a spatial and temporal multiscale approach. Agroforest Syst 96, 173–186. https://doi.org/10.1007/s10457-021-00714-7
Svensson, J. R., Lindegarth, M., Siccha, M., Lenz, M., Molis, M., Wahl, M., & Pavia, H. (2007). Maximum species richness at intermediate frequencies of disturbance: consistency among levels of productivity.Ecology , 88(4), 830–838. https://doi.org/10.1890/06-0976
Townsend, C. R., Scarsbrook, M. R., & Dolédec, S. (1997). The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography , 42(5), 938–949. https://doi.org/10.4319/lo.1997.42.5.0938
Trigo, C. B., Villagra, P. E., Coles, P. C., Marás, G. A., Andrade-Díaz, M. S., Núñez-Regueiro, M. M., … & Tálamo, A. (2020). Can livestock exclusion affect understory plant community structure? An experimental study in the dry Chaco forest, Argentina. Forest Ecology and Management , 463, 118014. https://doi.org/10.1016/j.foreco.2020.118014
Turon, M., Nygaard, M., Guri, G., Wangensteen, O. S., & Præbel, K. (2022). Fine-scale differences in eukaryotic communities inside and outside salmon aquaculture cages revealed by eDNA metabarcoding.Frontiers in Genetics , 13, 957251. https://doi.org/10.3389/fgene.2022.957251
Vandegehuchte, M. J., Schütz, M., Schaetzen, F. de, & Risch, A. C. (2017). Mammal‐induced trophic cascades in invertebrate food webs are modulated by grazing intensity in subalpine grassland. Journal of Animal Ecology , 86, 1434–1446.
Vidal-Cordero, J. M., Angulo, E., Molina, F. P., Boulay, R., & Cerdá, X. (2023). Long-term recovery of Mediterranean ant and bee communities after fire in southern Spain. Science of The Total Environment , 164132.
Vojta, J., Volařík, D., & Kovář, P. (2020). Interaction between light availability and grazing enhances species richness and turnover of vascular plants in shrubby pastures in Romania. Community Ecology , 21(1), 67–77. https://doi.org/10.1007/s42974-020-00007-6
Wangensteen, O. S., Palacín, C., Guardiola, M., & Turon, X. (2018). DNA metabarcoding of littoral hard-bottom communities: high diversity and database gaps revealed by two molecular markers. PeerJ , 6 , e4705. https://doi.org/10.7717/peerj.4705
Wassie, A., Sterck, F. J., Teketay, D., & Bongers, F. (2009). Effects of livestock exclusion on tree regeneration in church forests of Ethiopia. Forest Ecology and Management , 257(3), 765–772. https://doi.org/10.1016/j.foreco.2008.07.032
Werner, E. E., & Peacor, S. D. (2003). A review of trait‐mediated indirect interactions in ecological communities. Ecology , 84(5), 1083–1100. https://doi.org/10.1890/0012-9658(2003)084[1083:AROTII]2.0.CO;2
Winck, B. R., Rigotti, V. M., & de Sá, E. L. S. (2019). Effects of different grazing intensities on the composition and diversity of collembola communities in southern brazilian grassland. Applied Soil Ecology , 144, 98–106. https://doi.org/10.1016/j.apsoil.2019.07.003
Yan, R., Xin, X., Yan, Y., Wang, X., Zhang, B., Yang, G., … & Li, L. (2015). Impacts of differing grazing rates on canopy structure and species composition in Hulunber meadow steppe. Rangeland Ecology & Management , 68(1), 54–64. https://doi.org/10.1016/j.rama.2014.12.001
Yuan, Z. Y., Jiao, F., Li, Y. H., & Kallenbach, R. L. (2016). Anthropogenic disturbances are key to maintaining the biodiversity of grasslands. Scientific Reports , 6(1), 1–8. https://doi.org/10.1038/srep22132
Zaballos, J. (1983). Los Carabidae (Col.) de las dehesas de encina de la provincia de Salamanca. Boletín de la Asociación española de Entomología , 6(2), 295–323.
Zamora, R., & Gómez, J. M. (1993). Vertebrate herbivores as predators of insect herbivores: an asymmetrical interaction mediated by size differences. Oikos , 223–228. https://doi.org/10.2307/3544808
Zhang, T., Li, F. Y., Shi, C., Li, Y., Tang, S., & Baoyin, T. (2020). Enhancement of nutrient resorption efficiency increases plant production and helps maintain soil nutrients under summer grazing in a semi-arid steppe. Agriculture, Ecosystems & Environment , 292, 106840. https://doi.org/10.1016/j.agee.2020.106840
Zhu, P., Zheng, X., Xie, G., Chen, G., Lu, Z., & Gurr, G. (2020). Relevance of the ecological traits of parasitoid wasps and nectariferous plants for conservation biological control: a hybrid meta-analysis.Pest Management Science , 76(5), 1881–1892. https://doi.org/10.1002/ps.5719
Table 1 . Taxonomic identifications summary.