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ABSTRACT

The evolutionary origins and hybridization patterns of Canis species in North America has been
hotly debated for the past 30 years. Disentangling ancestry and timing of hybridization in Great
Lakes wolves, eastern Canadian wolves, red wolves, and eastern coyotes is most often
partitioned into a 2-species model that assigns all ancestry to grey wolves and/or coyotes, and a
3-species model that includes a third, North American evolved eastern wolf genome. The
proposed models address recent or sometimes late Holocene hybridization events but have
largely ignored Pleistocene era opportunities for hybridization that may have impacted the
current mixed genomes in eastern Canada and the United States. Here, we re-analyze
contemporary and ancient mitochondrial DNA genomes with Bayesian phylogenetic analyses to
more accurately estimate divergence dates among lineages. We combine that with a review of
the literature on Late Pleistocene Canis distributions to illuminate opportunities for ancient
hybridization events between extinct Beringian grey wolves (C. lupus) and extinct large wolf-like
coyotes (C. latrans orcutti) that we propose as a potentially unrecognized source of

introgressed genomic variation within contemporary Canis genomes. These events speak to the
potential origins of contemporary genomes and provide a new perspective on Canis ancestry,

but do not influence/negate current conservation priorities of dwindling wolf populations with

unique genomic signatures and key ecologically critical roles.



INTRODUCTION

Almost three decades ago, Wayne and Jenks (1991) proposed a gray wolf-coyote hybrid origin
for the endangered red wolf (Canis rufus) in the United States. This conclusion, based on early genetic
analysis with restriction enzymes and sequencing of the mitochondrial DNA (mtDNA) cytochrome b
region, was met with harsh criticism from morphology experts who claimed the hybrid origin
hypothesis was inconsistent with the fossil evidence and morphometric analysis of historical skull
specimens (e.g. Nowak 1992). Nine years later, Wilson et al. (2000) used sequencing of the mtDNA
control region in combination with microsatellite genotyping of wolves in Algonquin Park, Ontario to
propose the “eastern wolf” (C. lycaon) as a North American evolved wolf, distinct from gray wolves
(C. lupus) that originated in Eurasia, but closely related to coyotes (C. latrans) and red wolves that are
endemic to North America. Since then, analyses of Canis evolutionary history have expanded to
include genome-wide single-nucleotide polymorphism (SNP) markers and even whole genomes;
researchers claim support for either a two-species model of Canis evolution in North America, whereby
all ancestry can be attributed to gray wolves (C. lupus) or coyotes (C. latrans) (e.g. vonHoldt et al.
2011, 2016a) or a three-species model, wherein ancestry includes a third wolf-like species unique to
eastern North America that encompasses both the eastern and red wolf (C. lycaon/rufus) (e.g. Rutledge
et al. 2012a, 2015; Hohenlohe et al. 2017).

Despite general acceptance of a small eastern wolf with a predisposition for hybridizing with
coyotes (Rutledge et al. 2010a, 2012b; Heppenheimer et al. 2018), there is additional debate on
whether the red wolf is part of a larger eastern wolf lineage (assuming support for that model) (Wilson
et al. 2000; Kyle et al. 2008; Rutledge et al. 2012a), or if eastern wolves represent coyote-introgressed
red wolves that further hybridized with gray wolves at the northern edge of their historical range
(Nowak 2002). Other Canis populations with contentious origins include: 1) the Great Lakes wolf
(Leonard & Wayne, 2008; Koblmiiller et al. 2009) that has been characterized as a gray wolf x coyote

“eastern wolf” hybrid (C. lupus x latrans, vonHoldt et al. 2016a, 2016b), and alternatively as a gray



wolf x eastern wolf hybrid (C. lupus x lycaon, Wheeldon & White 2008; Mech 2011); and 2) the
eastern coyote that has been described as a Great Lakes gray wolf x coyote hybrid (C. lupus var. x C.
latrans, Kays et al. 2010) and an eastern wolf x coyote hybrid (C. lycaon x latrans; Wilson et al. 2009;
Wheeldon et al. 2010; Wilson et al. 2012; Rutledge et al. 2010a, 2015).

For the most part, these debates focus on the contemporary hybridization between wolves and
coyotes and how these interactions do or don’t contribute to the origins of eastern North American
Canis. This paradigm is likely an oversimplification of a complex system of Canis evolution. A
number of studies have addressed the “enigmatic” nature of eastern wolves and the role of
hybridization in their origin, with some explicitly testing or considering a three-species model (C.
lupus, C. latrans, C.lycaon/rufus) (Hailer & Leonard 2008; Brzeski et al. 2016; Rutledge et al. 2010c,
2015; and see Hohenlohe et al. 2017; Heppenheimer et al. 2018a, 2018b, 2020). Ancestry is, however,
frequently tested with the binary lineages of gray wolf and coyote without considering the potentially
unique North American ancestry of C. lycaon/rufus (e.g. vonHoldt et al. 2011, 2016a, 2016b; Sinding
et al. 2018). This omission may mask the contribution of this third lineage that is a sister species to
coyotes.

Although analysis and genomic simulations of genome-wide SNPs provided support for the
three-species model (Rutledge et al. 2015), these results could not resolve the possibility that eastern
wolves arose from an ancient hybridization event followed by drift (Sefc and Koblmiiller 2016;
Rutledge et al. 2016). Typically, little consideration has been given to ancient hybridization models in
the origins of eastern Canis, with most “ancient” DNA studies focused on early 20" century samples
(Wilson et al. 2003; Koblmiiller et al. 2009) or those from the very late Holocene (350 — 1900 years
ago) (Rutledge et al. 2010b; Brzeski et al. 2016). These studies focus on modern forms of wolves and
coyotes and not their pre-Holocene precursors, with some exception in considering the Beringian wolf
(Leonard et al. 2007) or where the authors simply recognize the potential for ancient hybridization

(Sefc & Koblmiiller 2016; Rutledge et al 2015, 2016; Sinding et al. 2018). The vast majority of Canis



hybridization studies fail to consider the fossil-based morphological studies of Pleistocene and early
Holocene Canis forms that acknowledge variable morphological characteristics, distributions, and
demographic conditions that could facilitate and/or predispose ancient interactions that impact
evolutionary processes (Nowak 1979; Nowak 2002; Meachen and Samuels 2012; Meachen et al. 2014;
Meachen et al. 2016; Tomiya and Meachen 2018).

Although earlier analyses focused on mitochondrial DNA (e.g. Wilson et al. 2000, 2003;
Leonard and Wayne 2008), microsatellite loci (e.g. Roy et al. 1994; Wilson et al. 2000; Wheeldon and
White 2008), and Y-chromosomes (e.g. Fain et al. 2010, Wilson et al. 2012; Wheeldon et al. 2013), a
growing number of studies have incorporated genome-wide SNPs to infer ancestry (Rutledge et al.
2015; vonHoldt et al. 2011, 2016a; Heppenheimer et al. 2018a; 2018b; 2020). However, the transition
to genomic studies has done little to expand our understanding of the patterns of hybridization, with
overall patterns from whole genomes reflecting similar patterns to early studies with several
microsatellites. The utility of haploid markers for these purposes has recently been overshadowed by
the allure of genome sequencing, but needs revisiting because genomic surveys have led to a projection
of significantly shorter speciation timelines between the two most divergent Canis species, gray wolves
(C. lupus) and coyotes (C. latrans). Specifically, vonHoldt et al. (2016a) proposed a 50 kya split based
on whole genomes or even earlier based on mitogenomes (Schweizer and Wayne 2020), compared to
1-2 million years assumed for previous molecular dating studies using mitochondrial DNA (Lehman et
al. 1991; Vila et al. 1999; Wilson et al. 2000; Rutledge et al. 2010c) and originally based on fossil
evidence (Nowak 1979). Clearly, divergence dating needs to be reconciled to more accurately delineate
and reconstruct evolutionary lineages that will help characterize and resolve the origins of North
American Canis species.

A review of previous and emerging literature reveals a significant range in the models of North
American Pleistocene Canis evolution. First, there is potential for dispersal of gray wolves (C. lupus)

from Beringian to more southern distributions inhabited by coyotes (C. latrans) and dire wolves (C.



dirus) prior to the end of the Last Glacial Maximum (LGM) and megafaunal extinctions approximately
13 kya (Heintzman et al. 2016) and 11 kya (Dundas 1999), respectively. Early pre-LGM C. lupus
colonization of southern North America was originally proposed by Vila et al. (1999) with additional
supporting genetic (Koblmiiller et al. 2016) as well as fossil evidence (Fig. 1) of Beringian wolves
(Leonard et al. 2007) moving south prior to the LGM (Meachan et al. 2018). Recently, Loog et al.
(2020) proposed that C. lupus populations only colonized North America from Beringia starting 15 kya
years ago. Second, although there is a paucity of coyote genetic studies considering their Pleistocene
history, fossil evidence supports the presence of a wolf-like coyote (C. latrans orcutti) prior to the
Holocene (Nowak 1979; Meachen and Samuels 2012; Meachen et al. 2014; Tomiya and Meachen
2018). This “coyote” is an important consideration in evaluating the origins of the contemporary Great
Lakes, eastern and red wolves as early contact and potential ancient hybridization would have likely
consisted of the precursor Beringian C. lupus, proposed to be an extinct ecotype (Leonard et al. 2007),
and the Pleistocene coyote, a wolf-like coyote that was larger than modern coyotes and emerged 10 kya
(Meachen and Samuels 2012; Meachen et al. 2014; Tomiya and Meachen 2018).

In addition to the recent and extensive re-assessment of Canis fossil morphology, the presence
of extensive mitochondrial datasets, including ancient C. lupus, provides an opportunity to more
accurately calibrate the timing of species divergence. Accurate dating will allow more robust ancestral
inference of critical haplotypes by addressing co-existence of forms and opportunity for ancient
introgression events. Here, we re-evaluate the origins of contemporary Canis species within the
framework of mtDNA divergence and from the perspective of late Pleistocene wolf and coyote
distribution. We applied Bayesian approaches to previously published modern and ancient mtDNA
datasets to calibrate substitution rates for estimating divergence times (Tong et al. 2018) between
wolves and coyotes. We also used phylogenetic analyses to elucidate the presence of ancestral

Pleistocene lineages within each species. Overall, we propose a new paradigm to test hypotheses of



Canis evolution that re-frames analyses with more accurate divergence times and in consideration of

ancient Pleistocene types and their potential interactions.

MATERIALS & METHODS

We assessed Phylogenetic relationships and divergence times among mitogenome control
region haplotypes using Bayesian methods. The software jModelTest 0.1.1 (Posada 2008) was applied
to identify HKY+G as the best substitution model using the Bayesian Information Criterion for Canis
control region haplotypes downloaded from GenBank (Supplemental S4). Two maximum clade
credibility trees were created using BEAST v1.10.4 (Suchard et al. 2018) using time calibrated tips
from ancient DNA derived haplotypes under a strict clock model, HKY+G substitution model, default
optimization schedule, MCMC chain-length of 200 million, sampling every 20,000 generations and
removing the first 10% of runs. The two independent runs were combined using the BEAST v1.10.4
package LogCombiner. We analyzed results from BEAST in Tracer v1.7 (Rambaut et al. 2018) and all
effective sample sizes (ESS) were much greater than 200, indicating length of MCMC in accurately
representing the posterior distribution was appropriate (Kuhner 2009). The phylogenetic trees we
estimated were summarized in the BEAST v1.10.4 package TreeAnnotator and visualized in FigTree
1.4.4 (Rambaut 2016). Divergence times were calculated as the node heights of the 95% highest
posterior density (HPD) intervals.

Modern and ancient whole mitochondrial DNA sequences were downloaded from GenBank
(Supplemental S4) and aligned in Geneious R11.1.4 (Biomatters Ltd.) with ClustalW and default
settings (UBC Cost matrix, Gap open cost: 15; Gap extend cost: 6.66). Alignment was trimmed on each
end to have the same sequence length and annotated against the domestic dog mtDNA genome
(CFU96639). We removed the control region to estimate divergence based on coding regions of the
mtDNA genome. We used BEAST 2.6.0 (Bouckaert et al. 2019) to estimate divergence dates and

create a phylogenetic tree based on modern and ancient samples. Partitions were assigned as in Loog et
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al. (2020) with the following three independent mutation models: 1) PCDS1, rRNA, & tRNA with
model HKY+I; 2) PCDS2 with model TrN+I; and 3) PCDS3 with model TrN+G. The positions of the
partitions were identified based on start codons found from the reference genome annotations. The tree
models for the partitions were linked and the site and clock models were unlinked. Substitution model
parameters were set for each partition according to the recommended model. We used a strict clock and
added tip dates for the ancient sequences based on the sample ages provided in the source reference.
Parameterization of priors was set as described in Loog et al. (2020). Trees were sampled every 5,000
iterations over 50,000,000 iterations, with a burn-in of 10%. Tracer 1.7.1 was used to assure
convergence of parameters and TreeAnnotator was used to determine the maximum clade credibility
consensus tree. The final tree was visualized with FigTree 1.4.4.

We further estimated a minimum spanning tree haplotype network from mitogenome
haplotypes using the randomized minimum spanning tree method in the R-package pegus (Paradis
2018); and generated a PHYML tree (Dereeper et al. 2008) using the mitochondrial control region

sequences that considered insertion/deletions.

RESULTS & DISCUSSION

The Pleistocene North American landscape was inhabited by three wolf-like canids: the gray
wolf (C. lupus); the coyote (C. latrans); and the dire wolf (C. dirus). Pleistocene coyotes and gray
wolves have been characterized as morphologically different from their modern forms (Nowak 1979;
Leonard et al. 2007; Meachen and Samuels 2012; Meachen et al. 2014; Tomiya and Meachen 2018),
with no modern version of dire wolf due to its loss during the megafaunal extinctions (Dundas 1999).
Incorporating Pleistocene forms of gray wolves and coyotes, their associated ancient lineages, and their
potential interactions, has been limited in framing hypotheses and reconstructing the population
histories of the eastern wolf, red wolf and Great Lakes wolf. Furthermore, estimates of mitochondrial

DNA (mtDNA) divergence have assumed gray wolves and coyotes diverged 1-2 million years ago



based on the fossil evidence (Nowak 1979), an assumption that has carried over into the majority of
molecular studies (e.g. Lehman et al. 1991; Vila et al. 1999; Wilson et al. 2000; Rutledge et al. 2010c).
As aresult, a critical first test in reconstructing the population histories of North American Canis is
calibrating the substitution rates and divergence times of regions of mtDNA with Bayesian derived
phylogenies that include ancient haplotypes from fossils with reliable carbon-dating.

Bayesian reconstruction of two different mitochondrial DNA datasets, a 410 bp and 550 bp
region of the control region, provided substitution rate estimates and the divergence times of a wolf-
coyote split at approximately 7.38 x 107 and 4.12 x 10”7, and 103 kya (74, 188 95% HPD) and 223 kya
(90, 234 95% HPD), respectively. While significantly earlier than 1-2 million years ago, these are
larger than divergence times based on whole nuclear genome analyses (vonHoldt et al. 2016) that dated
the split to approximately 50 kya. A Bayesian phylogeny of whole mitochondrial DNA that included
ancestral sequences and partitioned for different regions and 1%, 2" and 3™ positions, derived 940 kya
(737, 1,147 95% HPD) for the divergence of gray wolf and coyote. The discordant divergence times
likely reflect the single gene regions used for control region versus the full mitogenomic sequences, the
latter providing the more accurate dating estimates (Duchéne et al. 2011). This supports the proposed
million-year gray wolf-coyote divergence assumption (e.g. Nowak 1979; Lehman et al. 1991, Wilson et
al. 2000). While the smaller control region sequences had lower inter-specific timing estimates, they
also had higher variance in the longer estimation than in more recently diverged intra-specific control
region sequences.

Due to the absence of eastern and Great Lakes wolf full mitochondrial DNA sequences, we
focused on two partial control region datasets: a 410 bp dataset (Fig. 1) that included ancient samples
(Leonard et al. 2007), historical southern US wolf samples (Leonard et al. 2005) and representative
eastern wolf/Great Lakes wolf haplotypes (Leonard & Wayne 2008; Kays et al. 2010), and a 550 bp
dataset (Fig. 2) (Rashleigh et al. 2008; Fain et al. 2010; Thalmann et al. 2013; Ersmark et al. 2016) that

was more limited in representative haplotypes but was assessed for concordance with the relatively



smaller control region segment. In general, similar topologies were observed between the two Bayesian
analyses, specifically: ancestral positioning of Mexican, and southern wolf clades for the 410 bp
reconstruction, in the C. /upus clade; and eastern/Great Lakes haplotypes as ancestral to the remaining
C. latrans clade. Despite the similar topologies, the posteriors probabilities for the 550 bp analysis
(Supplemental S2) were substantially more supportive than the 410 bp analysis (Supplemental S1). As
a result, we applied a PhyML analysis (Fig. 3) and a Random Minimum Spanning Tree (RMSP)
(Supplemental S3) to the 410 bp sequence set and confirmed the ancestral positioning of Mexican
wolf/southern clade and eastern/Great Lakes wolf haplotypes to C. lupus and C. latrans, respectively.
As would be predicted, the sequences from ancient specimens (Leonard et al. 2007) were basal
to modern gray wolf haplotypes, with one exception: the “southern” clade from early 1900s Mexican
wolves (C. lupus baileyi) and the Plains wolf (C. lupus nubilus) that was flanked by now extinct
Beringian wolf haplotypes (Fig. 1). The low posterior probability in these relationships limits the
interpretation of this result, but the additional analyses presented here at a minimum supports the
“southern” wolves as ancestral to other modern North American gray wolves. Beringian wolves as an
ecotype of gray wolf have purportedly gone extinct (Leonard et al. 2007; Koblmiiller et al. 2016), and
although their corresponding ancient haplotypes are not seen in contemporary specimens, their role as
progenitors to the southern modern wolves (C. lupus baileyi and C. I. nubilius) cannot be excluded. A
similar basal position of the Mexican wolf was observed with the 550 bp sequence and has been
consistently observed to be the most ancestral North American gray wolf (Vila et al. 1999; Thalmann et
al. 2013; Sinding et al. 2018); its lineage originated approximately 25-30 kya (Fig 2) consistent with
Koblmiiller et al. (2016) prior to the closure of the Ice Free Corridor between the Cordilleran and
Laurentide ice sheets during the Last Glacial Maxima (LGM) (23-13.5 kya; Heintzman et al. 2016).
Interestingly, the 550 bp Bayesian phylogeny revealed modern C. lupus haplotypes flanked by ancient
sequences from Ohio (Rashleigh et al. 2008), a region at the edge of the western range of Great Lakes,

eastern and red wolves (Nowak 2002), and by contemporary coastal British Columbia sequences
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(specifically Vancouver Island; Ersmark et al. 2016). These results further support pre-LGM southern
dispersal or possibly a coastal refugial route 17-18 kya (Shafer et al. 2010; Darvill et al. 2018). The
Ohio gray wolf sequences clustering with ancient sequences support the potential for very early contact
between pre-LGM colonizing gray wolves and Pleistocene coyotes.

The role of the Beringian wolf in modern southern gray wolf (e.g. Mexican and Plains wolf;
Leonard et al. 2005) evolution in North America is further supported by the recent fossil evidence from
the Natural Pit site in Wyoming (Meachen et al. 2016). Evidence suggests these wolves colonized the
south through the ice-free corridor dividing the Cordilleran and Laurentide ice sheets before the Last
Glacial Maximum (LGM) and the maximal closure prior to 21,000 (Kleman et al. 2010) to 23,000
years ago (Heintzman et al. 2016). Multiple waves of gray wolf colonization in southern regions have
been proposed, particularly in the evolution of the Mexican wolf (Vila et al. 1999; Thalmann et al.
2013). However, a single pre-LGM colonization event was interpreted from analysis of whole mtDNA
genomes, with the proposal that modern gray wolves evolved south of the LGM and colonized north
following the re-formation of the ice-free corridor to Beringia (Koblmiiller et al. 2016). Recognition of
the distinctiveness of the Mexican wolf was provided, with speculation that these wolves were
structured from other evolving gray wolves south of the maximal ice sheets. In contrast, and based on a
broader dataset, Loog et al. (2020) proposed that modern gray wolves colonized North America from
Beringia starting 15 kya years ago. However, the basal ancestral position of Mexican wolves to other
North American gray wolves, dating to the pre-LGM period of 30-35 kya in our analyses, was left as an
open question in Loog et al. (2020) with the recognition of potential earlier colonization. Regardless of
the role Beringia had as a cradle for modern C. lupus evolution, there is strong evidence of ancestral
wolves south of the LGM that are likely candidates as being the progenitor of the southern wolf clade
(Leonard et al. 2005). This association of the historical Mexican (C. lupus baileyi) and Plains wolf (C.
lupus nubilus) clade with ancient Beringian wolf haplotypes (Leonard et al. 2007; Fig. 2) further

supports the southern pre-LGM movement of Pleistocene gray wolves through an open glacial corridor
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earlier than 23 kya. Interestingly, the distribution of FAUNMAP Rancholabrean (240 kya - 11 kya)
fossils of gray wolf specimens (Fig. 4) prior to and into the LGM (Fig. 1), largely mapped to New
Mexico and Wyoming, where the proposed corridor to the Natural Pit site is located (Meachen et al.
2016). This distribution pattern is concordant with the proposed distribution of the Mexican and Plains
wolves (Nowak 2002; Leonard 2005).

Whereas fossil and genetic evidence support a southern presence of Pleistocene “Beringian”
gray wolf, it is postulated that its distribution was constrained by the presence of the dire wolf
(Meachen et al. 2012; Meachen et al 2016; Tomiya & Meachen 2018) until the megafaunal extinctions
approximately 10 kya (Dundas 1999). Commonly sympatric with dire wolves was the Pleistocene
coyote (C. latrans orcutti), a larger, more wolf-like canid than contemporary coyotes that only
represent the most recent 10,000 years of the species evolutionary history. The coalescence of coyote-
like mtDNA was approximately 30-60 kya in our Bayesian phylogenetic analyses of the control region,
suggesting that the most ancestral lineages would correspond to the C. latrans orcutti subspecies that
pre-date contemporary coyote lineages. Interestingly, the most basal C. latrans clade dating to the pre-
LGM period were those sequences found in eastern wolves and Great Lakes wolves (Fig. 1). This well-
defined clade supports an ancestral lineage to the eastern and Great Lakes wolves, and it does not
exclusively validate the random introgression of modern coyote haplotypes within the range of natural
variation of the species, although hybridization with modern coyotes and the C. latrans wolves (i.e.
eastern wolves) has most likely occurred in both contemporary and historic times (Wilson et al. 2000,
2003, 2009). Of importance is that the ancestral eastern and Great Lakes wolf lineage in the context of
purely C. latrans positioning (i.e. not factoring in ancient introgression) is on a time frame more
conducive to sub-specific delineation than species-specific status given lineage dating in line with C.
latrans orcutti and not 100-300 kya (Wilson et al. 2000).

Two extant Pleistocene lineages south of the LGM, one C. lupus and one C. latrans, raises the

question whether these species had opportunity for ancient hybridization. Recent genomic
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characterization has estimated the proportion of gray wolf and coyote admixture in the North American
canids as gray wolf:coyote proportions of 70:30 for the Great Lakes wolf and eastern wolf combined,
30:70 for the red wolf, and 90:10 for the Mexican wolf (Sinding et al. 2018); similar proportions for
one or more of these combinations have also been estimated elsewhere (vonHoldt et al. 2011; vonHoldt
et al. 2016a; 2016b). This evidence supports introgressive hybridization but typically this is interpreted
in the context of modern inter-breeding (with some exception see Sefc and Koblmiiller 2015; Sinding
et al. 2018). These studies applied the SABER analytical software to genome-wide SNP and whole
genomes (vonHoldt et al. 2011; vonHoldt et al. 2016a). This approach, however, is limited in its ability
to detect multiple hybridization events (e.g. past versus recent) (Supple and Shapiro 2018).
Furthermore, the gradient of gray wolf-to-coyote ancestry may be expanded in that the pooling of
eastern wolves, typically from Algonquin Provincial Park, with Great Lakes wolves may not be
appropriate (see Rutledge et al. 2012a; Hohenlohe et al. 2017) as previous work shows them to have
significantly less gray wolf genetic signal (Wilson et al. 2009; Rutledge et al. 2010a). Regardless, these
findings support the opportunity for ancient hybridization between the Beringian wolf and the
Pleistocene wolf-like coyote.

This hypothesis of Pleistocene hybridization is further supported by genetic evidence. A
signature of potential ancestral mtDNA introgression may be associated with haplotype 1u60, a coyote
haplotype found in the Mexican wolf (Leonard et al. 2005). This lineage extends into the Pleistocene
(18 kya (Fig. 2)), a time that pre-dates modern coyotes, when C. latrans orcutti inhabited the
landscape. The lu60 haplotype is related to a single observed coyote sequence (1a86) found only in
Texas, a geographic region that overlaps part of the historical range of the Mexican wolf (Hendricks et
al. 2016). The absence of lu60 and highly similar sequences in modern coyotes further supports a more
ancient event, particularly given the maintenance of a high contemporary haplotypic diversity in extant
coyotes. Furthermore, surveys of interspecific gene flow among Canis identified support for ancient

hybridization, including: 1) introgression from the Mexican wolf lineage into coyotes (Gopalakrishnan
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et al. 2018) and vice versa (Sinding et al. 2018); 2) the generation of novel population-specific alleles
in eastern wolves (vonHoldt et al. 2016a; Sinding et al. 2018) including differentiation between Great
Lakes and eastern wolves (Sinding et al. 2018); and 3) relatively consistent levels of wolf versus coyote
genetic makeup in Great Lakes and eastern wolves (Sinding et al. 2018) supporting a more historical
introgression event. Although this evidence does not reject the more recent hybridization that has
clearly taken place (e.g. Wilson et al. 2000, 2003), these contemporary signatures also support our
proposed ancient hybridization between Pleistocene coyotes and Beringian wolves that could have
contributed to modern introgressive signatures.

Resolving the hypothesis of ancient hybridization between Beringian wolves and Pleistocene
coyotes and the impact on the ancestry of contemporary North American Canis requires genetic and
morphometric data from additional ancient specimens (e.g. Beringian wolf skulls and C. latrans
orcutti, respectively, from the Wyoming Natural Trap site (Meachen et al. 2016)). Although evidence
supports the pre-LGM southward movement of Beringian wolves, there is also some evidence to
suggest opportunities for northward movement of C. latrans orcutti. More specifically, a 47 kya fossil
from the Yukon has been identified morphologically as a “coyote” (Fig. 4). Expansion on the existing
ancient DNA dataset associated with Beringian wolves (Leonard et al. 2007) by obtaining more
specimens and/or expanding into genomic-based markers would further refine the evolutionary story
and relationship of Pleistocene Canis species. Overall, the distribution of Pleistocene wolves and
coyotes south of the Collideran/Laurentide ice sheets during the LGM, and signatures of older
introgression, support the likelihood that ancient hybridization has shaped the ancestry of extant wolves
and coyotes in eastern regions of North America, where contemporary hybridization patterns have
muddied ancestry patterns based on nuclear genome scans.

These inferences provide a new perspective that could re-shape our understanding of North
American Canis ancestral origins. Re-calibrating the gray wolf-coyote divergence time allows for more

accurate estimates of deep ancestry and supports eastern wolves as ancestral to modern C. /atrans. This
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suggested nomenclature is based purely on the timing of divergence and not on the ecological
adaptation and/or speciation of modern eastern wolves and coyotes. Given the different niches
occupied by eastern wolves and coyotes, along with the potential association of modern eastern wolves
with the more wolf-like C. latrans orcutti, we suggest the common name “wolf” is most appropriate for
eastern wolves, regardless of admixture with ancient Beringian wolves or modern gray wolves. The
taxonomic nomenclature, given differential hybridization with gray wolves and coyotes, depending on
the eastern wolf in question, is significantly more complex, and more targeted research will be required
to move beyond the binary modern gray wolf x coyote hybridization commonly utilized (vonHoldt et
al. 2011; vonHoldt et al. 2016a; Sinding et al. 2018) versus distinct species lineage (Wilson et al. 2000;
Rutledge et al. 2015). Furthermore, future research should include contributions from C. dirus into the
contemporary Canis genome complex.

By combining a review of recent fossil evidence and Pleistocene Canis distributions with a re-
analysis of existing ancient and modern mitochondrial DNA data, we have introduced a more
comprehensive evolutionary framework based on potential ancient interactions by which to test
hypotheses of North American Canis ancestry. Based on our assessment, future research should
consider several specific aspects to improve our understanding of Canis species origins:

1. Gray wolves and coyotes diverged close to 1 million years ago based on mitochondrial DNA
divergence consistent with previously proposed timing;

2. Gray wolves appear to have colonized the southern distribution of the United States prior to the
LGM before the ice sheets closed from 23 to 13 kya;

3. The Beringian wolf may well have been the ecotype that was the progenitor to the southern
wolf clade of the Mexican wolf (C. lupus baileyi) and potentially the Plains wolf (C. lupus
nubilus);

4. The “coyote” on the landscape during the Beringian wolf southern colonization until the end of

the Pleistocene was a larger more wolf-like animal;
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5. Ancient hybridization, i.e. prior to the Holocene (11kya), may have involved the Beringian wolf
and the large wolf-like Pleistocene coyote. Interbreeding seems possible given the wolf-like
nature of both forms compared to today’s more divergent morphological forms where natural
viable gray wolf x coyote hybridization in western regions is absent;

6. North American Canis operate along a range of hybrid ancestries potentially contributed to by
contemporary and ancient interbreeding;

7. The formal naming of the wolves in eastern North America will be dependent on whether
ancient hybridization has contributed to a formal eastern wolf species, e.g. C. lycaon, with its
range of contemporary hybrids, or a subspecific assignment requires consideration of C. latrans
orcutti within taxonomic designations (Table 1) reflective of Pleistocene events and the modern
eastern wolves.

Although this current study does not resolve the question of the number and nomenclature of eastern
North American wolf species, it is nonetheless an important step to refocus a decades long unresolved

debate on the evolution of North American wolves.
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FIGURE LEGENDS

Figure 1. Dated BEAST phylogeny of 405 bp control region. Green branches are ancient Beringian
wolf haplotypes, Blue are Mexican wolf and southern clade haplotypes, and red are Great Lakes and
eastern wolf haplotypes. The gray area represents the estimated timing the Cordilleran and Laurentide
Ice Sheets closed any corridor from Beringia to North America south of the ice sheet 22,000 to 13,000
years ago.

Figure 2. Dated BEAST phylogeny of 550 bp control region. Great Lakes and eastern wolf haplotypes
are represented by Clyl and Cly2 (Ersmark et al. 2016). The gray area represents the estimated timing
the Cordilleran and Laurentide Ice Sheets closed any corridor from Beringia to North America south of
the ice sheet 22,000 to 13,000 years ago.

Figure 3. PhyML tree plotted with GrapeTree of 410 bp control region. Green are ancient Beringian
wolves, Blue are Mexican wolves, and red are Great Lakes and eastern wolves. Posterior probabilities
are presented for critical nodes.

Figure 4. Distribution of Canis latrans (A) and lupus (B) Faunmap fossils through the Rancholabrean
with maximum ice sheets estimated at 30,000 years ago (ya) (Batchelor et al. 2019). A) Distribution of
Canis latrans fossils by province/state and minimum and maximum age estimates: 1) YU: 47,170-
47,170 ya; 2) AB: 36,800-39,000 ya; 3) OR: 35,000-65,000 ya; 4) ID: 21,000-33,000 ya, 21,000-
33,000 ya, 75,000-125,000 ya, 15,000-72,000 ya, 58,000-86,000 ya; 5) CA: 23,000-27,000 ya, 27,000-
34,000 ya, 26,000-32,000 ya, 30,000-35,000 ya, 67,000-112,000 ya, 40,000-110,000 ya; 6) NV:
40,000-110,000 ya; 7) UT: 40,000-100,000 ya; 8) AZ: 31,000-110,000 ya; 9) NM: 13,000-25,000 ya,
13,500-20,000 ya, 25,000-35,000 ya, 25,000-35,000ya, 20,120-25,000 ya; 10) SD: 26,075-26,075 ya;
11) TX: 25,000-35,000 ya, 31,400-35,000 ya, 23,230-23,230 ya; 12) IN: 24,390-25,710 ya; 13) WV:
17,060-29,400; and 14) PA: 13,740-13,740 ya; 11,000-11,000 ya. B) Distribution of Canis lupus
fossils by province/state and minimum and maximum age estimates: 1) YU: 20,780-49,400 ya, 30,500-
34,000 ya; 27,270-28,570 ya; 2) AB: 25,960-44,800 ya; 3) OR: 35,000-65,000 ya; 4) WY: 12,777-
15,500 ya, 15,500-20,250 ya, 13,500-27,000; 5) SD: 26,075-26,075 ya; 6) UT: 14,500-18,000 ya; 7)
AZ: 31,000-110,000 ya; 8) NM: 13,000-25,000 ya, 13,500-20,000 ya, 15,030-30,000 ya, 25,000-
35,000 ya, 25,000-35,000ya, 20,120-25,000 ya; and 9) GA: 13,560-24,080 ya.
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Figure S1. Bayesian maximum clade credibility tree of 405 bp region of the mitochondrial DNA
control region showing nodal support (=60%) and node bars (blue) indicating the 95% confidence
intervals for the age of nodes. Time is presented in thousands of years ago (kya). Sample codes from
published sources with the following GenBank Accession codes: AY codes (Leonard et al. 2005); FM
“lu” codes (Munoz-Fuentes et al. 2009); FM “la” codes (Hailer & Leonard 2008); GQ “GL” codes
(Leonard & Wayne 2008); GQ “la”, “lu” codes (Koblmiiller et al. 2009); GQ “cla” codes (Kays et al.
2010); JN “la” codes (Koblmiiller et al. 2012); KF codes (Thalmann et al. 2013); KU codes
(Koblmiiller et al. 2016); and PW codes with age of sample in years (ya) (Leonard et al. 2005). Unique
and identical haplotypes are grouped in parentheses []: [AY812730.1 lu37, KU696411.1 Alal];
[AY812732.1 [u47]; [AY812733.1 1u48]; [AY812734.1 1u49]; [AY812735.1 lu50]; [AY812736.1
lu51]; [AY812737.1 1u52]; [AY812738.1 1u53]; [AY812739.1 lu54]; [AY812740.1 1u60];
[AY812741.1 lu61]; [FM201608.1 1u28, KU696400.1 Canl, KU696406.1 Can7]; [FM201609.1 [u68];
[FM201631.1 [u36, KF661066.1 Alaska2]; [FM201633.1 1u29, KF661059.1 Canada4, KF661071.1
Alaska4, KF661073.1 Alaska6, KU696404.1 Can5]; [FM201641.1 lu31, KF661064.1 USAI,
KF661068.1 USA2, KF661069.1 USA3, KF661072.1 Alaska5SK, U696403.1 Can4]; [FM201672.1
lu67]; [FM201774.1 1u30, KF661074.1 Canada8, KU696402.1 Can3]; [FM209365.1 1a06];
[FM209366.1 1a08]; [FM209367.1 lal1]; [FM209368.1 1a27]; [FM209369.1 1a35]; [FM209370.1
la54]; [FM209371.1 1a86]; [FM209372.1 1a87]; [FM209373.1 lal11]; [FM209374.1 1a131];
[FM209375.1 1a132]; [FM209376.1 la133]; [FM209377.1 la134]; [FM209378.1 la135]; [FM209379.1
la136]; [FM209380.1 1a137]; [FM209381.1 1a138]; [FM209382.1 1a139]; [FM209383.1 1a140];
[FM209384.1 lal41]; [FM209385.1 la142]; [FM209386.1 la143]; [FM209387.1 la144]; [FM209388.1
la145]; [FM209389.1 1a146]; [FM209390.1 1a147]; [FM209391.1 lal12]; [FM209392.1 lal7];
[FM209393.1 1a21]; [FM209394.1 1a23]; [FM209395.1 1a25, FM209419.1 1a74]; [FM209396.1 1a26];
[FM209397.1 1a28]; [FM209398.1 1a30]; [FM209399.1 1a31]; [FM209400.1 1a32]; [FM209401.1
1a33]; [FM209402.1 1a34]; [FM209403.1 1a36]; [FM209404.1 1a37]; [FM209405.1 1a38];
[FM209406.1 1a39]; [FM209407.1 1a40]; [FM209408.1 la41, FM209417.1 1a51, IN982568.1 la41];
[FM209409.1 1a42]; [FM209410.1 1a44]; [FM209411.1 1a45]; [FM209412.1 1a46]; [FM209413.1
1a47]; [FM209414.1 1a48]; [FM209415.1 1a49]; [FM209416.1 1a50]; [FM209418.1 1a52];
[FM209420.1 1a75]; [FM209421.1 1a76]; [FM209422.1 1a123]; [FM209423.1 1a125]; [FM209424.1
1a127]; [FM209425.1 1a128]; [GQ849342.1 GL1, GQ863717.1 GL20]; [GQ849351.1 GL2];
[GQ849352.1 GL3]; [GQ849353.1 GL4]; [GQ849354.1 GL5]; [GQ849355.1 GL6]; [GQ849357.1
GLS8]; [GQ849359.1 GL10, GQ849366.1 GL17, GQ849369.1 Cly voucher GL10]; [GQ849360.1
GL11]; [GQ849361.1 GL12]; [GQ849362.1 GL13]; [GQ849363.1 GL14, IN982590.1 1a79];
[GQ849364.1 GL15]; [GQ849365.1 GL16, GQ849372.1 1al8]; [GQ849367.1 GL18]; [GQ849368.1
GL19]; [GQ849370.1 1u32, KU696407.1 Can9, KU696401.1 Can2]; [GQ849371.1 1al5];
[GQ849373.1 1a19]; [GQ849374.1 1a20]; [GQ849375.1 1a29]; [GQ849376.1 1a64]; [GQ849377.1 1a65];
[GQ849378.1 1a91]; [GQ849380.1 1a97]; [GQ849381.1 1a98]; [GQ849382.1 1a99]; [GQ849383.1
1a107]; [GQ849384.1 1a108]; [GQ849385.1 1al121]; [GQ849386.1 1al124]; [GQ849387.1 1a148];
[GQ849388.1 1a149]; [GQ849389.1 1a150]; [GQ849390.1 la151]; [GQ849391.1 1a152]; [GQ863726.1
cla35]; [GQ863728.1 cla37]; [GQ863732.1 cla41]; [IN982562.1 1a7]; [IN982563.1 1a9]; [JN982564.1
1a10]; [JN982565.1 1al4]; [JN982566.1 1al16]; [JN982567.1 1a22]; [JN982569.1 1a43]; [JN982570.1
1a53]; [JN982571.1 1a55]; [JN982572.1 1a56]; [JN982573.1 1a57]; [JN982574.1 1a58]; [JN982575.1
1a59]; [JN982576.1 1a60]; [JN982577.1 1a61]; [JN982578.1 1a62]; [JN982580.1 1a66]; [JN982581.1
1a67]; [JN982582.1 1a68]; [JN982583.1 1a69]; [JN982584.1 1a70]; [JN982585.1 1a71]; [JN982586.1
1a72]; [JN982587.1 1a73]; [JN982588.1 1a77]; [JN982589.1 1a78]; [JN982591.1 1a80]; [JN982592.1
1a81]; [JN982593.1 1a82]; [JN982594.1 1a83]; [JN982595.1 1a84]; [IN982596.1 1a85]; [IN982597.1
1a88]; [JN982598.1 1a89]; [JN982599.1 1a90]; [JN982600.1 1a92]; [JN982601.1 1a93]; [JN982602.1
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1a94]; [JN982603.1 1a96]; [IN982604.1 1a100]; [IN982605.1 1a101]; [IN982606.1 1a102]; [JN982607.1
1a103]; [JN982608.1 la104]; [JN982609.1 1a105]; [JN982610.1 1a106]; [JN982611.1 1a09];
[JN982612.1 1a110]; [JN982613.1 la112]; [IN982614.1 la113]; [IN982615.1 lal14]; [IN982616.1
lal115]; [JN982617.1 lal16]; [JN982618.1 la117]; [JN982619.1 la118]; [IN982620.1 1a119];
[JN982621.1 1a120]; [JN982622.1 1a122]; [IN982623.1 1a126]; [IN982624.1 1a129]; [IN982625.1
1a130]; [JN982626.1 la153]; [JN982627.1 la154]; [IN982628.1 1a155]; [IN982629.1 1a156];
[IN982630.1 1a157]; [JN982631.1 1a158]; [IN982632.1 1a159]; [IN982633.1 1a160]; [IN982635.1
1a162]; [JN982636.1 1a163]; [JN982637.1 la164]; [JN982638.1 1a165]; [IN982640.1 1a167];
[JNO82641.1 1a168]; [JN982642.1 1a169]; [IN982643.1 1a170]; [IN982644.1 1a171]; [IN982645.1
1a172]; [JN982646.1 la173]; [JN982647.1 la174]; [IN982648.1 1a175]; [IN982649.1 1a176];
[IN982652.1 1a179]; [JN982653.1 1a180]; [IN982654.1 1a181]; [IN982655.1 1a182]; [IN982656.1
1a183]; [JN982657.1 la184]; [JN982658.1 1a185]; [IN982659.1 1a186]; [IN982660.1 1a187];
[JN982661.1 1a188]; [JN982662.1 1a189]; [IN982663.1 1a190]; [IN982664.1 1a191]; [IN982665.1
1a192]; [JN982666.1 1a193]; [JN982667.1 1a194]; [IN982668.1 1a195]; [IN982669.1 1a196];
[IN982670.1 1a197]; [JN982671.1 1a198]; [IN982672.1 1a199]; [IN982673.1 1a200]; [IN982674.1
1a201]; [KF661057.1 Canada2]; [KF661058.1 Alaskal, KF661067.1 Alaska3, KF661075.1 Canada9];
[KF661060.1 Mexicol, KF661065.1 Mexico2]; [KF661076.1 Canadal0, KF661056.1 Canadal
KF661061.1 CanadasS, KF661063.1 Canada7, KF661070.1 USA4]; [KF661062.1 Canada6,
KF661077.1 Canadal1]; [KF661088.1 Alaska 28000]; [KF661090.1 Alaska 20800]; [KU696405.1
Can6, AY812731.1 1u38, KU696410.1 Can11]; [KU696408.1 Can8]; [KU696409.1 Can10]; [PW1
20,305 yal; [PW10 12,600 ya]; [PW11 21,490 ya]; [PW12 16,800 ya]; [PW13 28,610 ya]; [PW14
32,100 ya]; [PW15 39,200 ya]; [PW16 37,733 ya]; [PW2 47,170 ya]; [PW3 38,570 ya]; [PW4 17,640
ya]; [PW5 17,330 yal; [PW6 23,380 ya]; [PW7 20,920 ya]; [PWS 18,380 ya]; and [PW9 15,870 ya].

Figure S2. Bayesian maximum clade credibility tree of 550 bp region of the mitochondrial DNA
control region showing nodal support (=60%) and node bars (blue) indicating the 95% confidence
intervals for the age of nodes. Time is presented in thousands of years ago (kya). Sample codes from
published sources with the following GenBank Accession codes: EU codes (Rashleigh et al. 2005); FJ
codes (Fain et al. 2010); KX codes (Ersmark et al. 2016); KF codes with age of sample in years (ya)
(Thalmann et al 2013); KU codes (Koblmiiller et al. 2016); Unique and identical haplotypes are
grouped in parentheses []: [EU400554.1 Clal1]; [EU400561.1 Clal8]; [EU400570.1 Cla27];
[EU400559.1 Clal6]; [FJ213925.2 ClaJ10167]; [KX898310.1 Cly2, FJ213914.2 CluE409207];
[KX898309.1 Clyl, FJ213916.2 CluD21046]; [FJ213930.2 ClaJ20275]; [FJ213928.2 ClaJ20278];
[FJ213920.2 ClaJ20250, EU400576.1 Cla33]; [EU400568.1 Cla25]; [EU400557.1 Clal4];
[EU400549.1 Cla6]; [EU400566.1 Cla23]; [EU400575.1 Cla32]; [FJ213918.2 ClaJ20406, EU400544.1
Clal]; [EU400560.1 Clal7]; [EU400562.1 Clal9]; [EU400564.1 Cla21]; [EU400565.1 Cla22];
[EU400567.1 Cla24]; [EU400547.1 Cla4]; [EU400552.1 Cla9]; [EU400571.1 Cla28]; [FJ213929.2
ClaJ10172]; [EU400572.1 Cla29]; [EU400558.1 Clal5]; [EU400551.1 Cla8]; [EU400546.1 Cla3];
[EU400555.1 Clal2]; [EU400556.1 Clal3]; [EU400563.1 Cla20]; [EU400545.1 Cla2]; [KF661096.1
Cla coyotel]; [EU400573.1 Cla30]; [EU400574.1 Cla31]; [FJ213923.2 ClaJ10226, EU400550.1 Cla7];
[EU400553.1 Clal0]; [EU400569.1 Cla26]; [EU400548.1 Cla5S]; [FJ213922.2 ClaJ10162];
[FJ213926.2 ClaJ20274]; [FJ213917.2 ClaJ10211]; [FJ213927.2 ClaJ20266]; [FJ213919.2 ClaJ10147];
[KX898311.1 Cla3, FJ213915.2 CluH11321]; [FJ213921.2 ClaJ20236]; [FJ213924.2 ClaJ20246];
[KF661079.1 Canis sp.Belgium 36,000 ya]; [KF661085.1 Clu Russia 22,000 ya]; [KF661065.1 Clu
Mexico2]; [KX898338.1 Clu60]; [KF661060.1 Clu Mexicol]; [KX898332.1 Clu54]; [KF661075.1 Clu
Canada9]; [KU696406.1 Clu Can7, KU696400.1 Clu Canl, FJ213913.2 CluE11254, KX898337.1
Clu59]; [KF661058.1 Clu Alaskal, KF661067.1 Clu Alaska3]; [KX898327.1 Clu48]; [KU696405.1
Clu Can6, KX898329.1 Clu50]; [KU696410.1 Clu Canl1]; [KU696409.1 Clu Can10]; [KU696408.1
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Clu Can8]; [KU696407.1 Clu Can9, KU696401.1 Clu Can2, FJ213912.2 CluFA1K27, KX898322.1
Clu27, KX898331.1 Clu53 1480]; [KF661076.1 Clu Canadal0, KF661056.1 Clu Canadal,
KF661061.1 Clu Canada5, KF661062.1 Clu Canada6, KF661063.1 Clu Canada7, KF661070.1 Clu
USA4]; [KF661090.1 Clu Alaska 20800]; [KX898307.1 Clul06 35,000 ya]; [KF661057.1 Clu
Canada2]; [KU696402.1 Clu Can3, KF661074.1 Clu Canada8, KX898335.1 Clu57]; [KF661066.1 Clu
Alaska2, KX898328.1 Clu49]; [KU696403.1 Clu Can4, KF661072.1 Clu Alaska5, KF661068.1 Clu
USA2, KF661069.1 Clu USA3, KF661064.1 Clu USA1, KX898334.1 Clu56]; [KU696411.1 Clu Alal,
KX898330.1 Clu51]; [KU696404.1 Clu Can5, KF661073.1 Clu Alaska6, KF661071.1 Clu Alaska4,
KF661059.1 Clu Canada4, KX898340.1 Clu62]; [KF661080.1 Clu Belgium 30,000 ya]; [KX898308.1
Clul12 42000]; [KF661081.1 Clu Russia 18000]; [KF661088.1 Clu Alaska 28,000 ya]; [EU400577.1
Cla34]; [KX898326.1 Clu47]; [EU400578.1 Cla35]; [KF661087.1 Clu Switzerland1 14500];
[KF661092.1 Canis sp.Russia 33,500 ya];

Figure S3. Minimum spanning tree haplotype network showing mitochondrial control region
haplotypes (405 bp) using the randomized minimum spanning tree method (Paradis 2018).
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