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Abstract15

Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet16

there are methodological challenges in taxonomic and phylogenetic placement of fungi from17

environmental sequences. To address such challenges we investigated spatio-temporal struc-18

ture of a fungal community using soil metabarcoding with four different sequencing strategies:19

short amplicon sequencing of the ITS2 region (300–400 bp) with Illumina MiSeq, Ion Torrent20

Ion S5, and PacBio RS II, all from the same PCR library, as well as long amplicon sequenc-21

ing of the full ITS and partial LSU regions (1200–1600 bp) with PacBio RS II. Resulting22

community structure and diversity depended more on statistical method than sequencing23

technology. The use of long-amplicon sequencing enables construction of a phylogenetic tree24

from metabarcoding reads, which facilitates taxonomic identification of sequences. However,25

long reads present issues for denoising algorithms in diverse communities. We present a26

solution that splits the reads into shorter homologous regions prior to denoising, and then27

reconstructs the full denoised reads. In the choice between short and long amplicons, we28

suggest a hybrid approach using short amplicons for sampling breadth and depth, and long29

amplicons to characterize the local species pool for improved identification and phylogenetic30

analyses.31

1 Introduction32

Fungi are key drivers of nutrient cycling in terrestrial ecosystems. One important guild of33

fungi form ectomycorrhizas (ECM), a symbiosis between fungi and plants in which fungal34

hyphae enclose the plant’s fine root tips. The fungi provide nutrients and protection from35

pathogens in exchange for carbon from the plant (Smith & Read, 2010). Approximately 8%36

of described fungal species are thought to take part in ECM symbiosis (Ainsworth, 2008;37
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Rinaldi et al., 2008). Although only about 2% of land plant species form ECM, these include38

ecologically and economically important stand-forming trees belonging to both temperate and39

boreal groups such as Pinaceae and Fagaceae, and tropical groups such as Dipterocarpaceae,40

Uapaca (Phyllanthaceae) and Fabaceae tr. Amherstieae (Brundrett, 2017), together repre-41

senting approximately 60% of tree stems globally (Steidinger et al., 2019).42

Although ECM fungi form many well-known mushrooms (e.g., Amanita, Cantharellus, Bole-43

tus), some instead produce inconspicuous (e.g., Tomentella) or no (e.g., Cenococcum) fruit44

bodies. Even when fruitbodies are large, they are ephemeral, so study of ECM communities45

is facilitated by sampling of vegetative structures (Horton & Bruns, 2001). Unlike many46

saprotrophic fungi which grow easily in axenic culture, ECM fungi are usually difficult to47

culture, so DNA barcoding is increasingly used to investigate vegetative structures in the48

field. The advent of high-throughput sequencing (HTS) has facilitated such studies by pro-49

viding enough sequencing depth for metabarcoding of bulk environmental samples such as50

soils (Lindahl et al., 2013).51

As additional techniques and methods are developed for HTS, there is an increasing array52

of choices for researchers investigating fungal communities. Fungal metabarcoding studies53

using short-read HTS technologies such as 454 Pyrosequencing, Illumina, and Ion Torrent54

have usually targeted the rDNA internal transcribed spacer regions ITS1 or ITS2, which55

are the standard molecular barcode for fungi, providing sufficient resolution to distinguish56

fungal species in many groups, and which are usually short enough for HTS (Lindahl et al.,57

2013; Schoch et al., 2012). In some groups such as arbuscular mycorrhizal fungi, variable58

regions of the rDNA small subunit (SSU) are the barcode of choice (Öpik et al., 2010), and59

variable regions of the rDNA large subunit (LSU) have also been used for barcoding (House60

et al., 2016; Tedersoo et al., 2015). The resulting sequencing reads are clustered by sequence61

similarity to form operational taxonomic units (OTUs), which are then used as the units for62

further community analysis (Lindahl et al., 2013). If taxonomic identification is desired in63
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order to put OTUs in a wider context and associate functional information, it has usually64

been performed by database searches using BLAST (Altschul et al., 1990; Lindahl et al.,65

2013) with public databases such as GenBank (Benson et al., 2013) and Unite (Nilsson et al.,66

2019). However, this approach comes with some potential weaknesses, discussed below.67

Different sequencing technologies have different capabilities in terms of sequencing depth and68

read length, as well as differing quality profiles and potential biases (Yang et al., 2013). The69

rapid development of new HTS technologies, as well as subsequent iterative improvements in70

sequencing chemistry and read capacity, means that the technologies used in metabarcoding71

studies, along with any associated biases, change frequently. As an example, the first study72

using HTS metabarcoding of soil fungi was published in 2009 (Buée et al., 2009) using 45473

Pyrosequencing; production of 454 sequencers was subsequently discontinued in 2015, and74

sales of reagents stopped in 2016 (Hollmer, 2013). This brings into question the comparability75

of studies conducted only a few years apart.76

ITS1 and ITS2 often have suitable variation to distinguish species, although closely related77

species may share identical ITS sequences in certain groups such as various Pezizomycotina78

(Schoch et al., 2012), but this variablity means that they cannot be reliably aligned over the79

fungal kingdom (Lindahl et al., 2013; Tedersoo, Tooming-Klunderud, et al., 2018). Addi-80

tionally, the wide range of length variation of these regions may introduce bias in recovery of81

different taxa (Ihrmark et al., 2012; Palmer et al., 2018; Tedersoo et al., 2015). Further bias82

is introduced by variation in the 5.8S region which separates the two ITS regions, as well as83

in the 5’ end of LSU, which makes it difficult to design primers that are suitable for all fungi84

(Tedersoo et al., 2015).85

Distance-based clustering conflates intra-species variation and sequencing error, and results86

are dataset-specific. In contrast, more recent denoising methods such as DADA2 (Callahan87

et al., 2017), Deblur (Amir et al., 2017), and UNOISE2 (Edgar, 2016b) utilize read quality88
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information to control for sequencing error while preserving intra-species variation. The89

resulting units are known as amplicon sequence variants (ASVs) or exact sequence variants90

(ESVs), as they should represent true amplicon sequences from the sample. Unlike cluster-91

based OTUs, ASVs can capture variation of as little as one base pair, although alpha and92

beta diversity estimates based on ASVs and OTUs at different clustering thresholds are highly93

correlated (Botnen et al., 2018; Glassman & Martiny, 2018). ASVs have been suggested to be94

less dataset specific that cluster-based OTUs (Callahan et al., 2017). Support for PacBio has95

recently been added to DADA2 (Callahan et al., 2019), but its application requires greater96

sequencing depth for longer reads, especially in high diversity samples.97

Because both OTU clustering and denoised ASVs may “clump” different species into a single98

unit and “split” a single species into multiple units (Ryberg, 2015), diversity measures based99

on counting species within a community or shared species between two communities may give100

different results depending on the clustering threshold. In contrast, phylogenetic community101

distance measures (Wong et al., 2016) are relatively insensitive to species/OTU delimitation,102

but require a phylogenetic tree. Phylogenetic placement algorithms have been developed to103

place short amplicon reads onto a reference tree (Berger et al., 2011; Matsen et al., 2010),104

but are not easy to apply to ITS sequences because they require that the query sequences be105

aligned to a reference alignment. Additionally, methods exist to place OTUs on a simplified106

tree based on taxonomic assignments (Tedersoo, Sánchez-Ramírez, et al., 2018), or to create107

hybrid trees using ITS and a more conserved marker such as SSU or LSU based on matching108

taxonomic annotations in reference databases (Fouquier et al., 2016), but these approaches109

are only applicable to sequences of known taxonomic affiliation.110

Assignment of taxonomic identities to environmental sequences is dependent on both the111

reference database and the algorithm used. Although the public INSDC databases (Karsch-112

Mizrachi et al., 2018) are often used for sequence identification, the open nature of submission113

to these databases results in a substantial fraction of incorrect taxonomic annotations (Nilsson114
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et al., 2006; Steinegger & Salzberg, 2020) as well as sequences of poor technical quality115

(Nilsson et al., 2012). Consequently taxonomic assignments based on these databases may116

be incorrect or inconsistent. Several curated databases also exist which attempt to address117

these issues and which cover the whole fungal kingdom. The Unite database is a more curated118

attempt to include all publically available ITS sequences (800 000 as of release 8.0), originally119

targetting fungi but now expanded to include all eukaryotes (Nilsson et al., 2019), where120

efforts have been made to correct incorrect annotations and exclude low-quality sequences121

(Abarenkov et al., 2018). The Ribosomal Data Project (RDP, Cole et al., 2014) hosts two122

manually curated fungal barcode sequence databases, which are specifically intended for use123

in taxonomic assignment of sequences: the Warcup ITS database, containing 18 000 manually124

curated fungal ITS sequences (Deshpande et al., 2016), and the RDP fungal LSU training set,125

containing 8000 manually curated LSU sequences from fungi and 3000 from other eukaryotic126

groups (Liu et al., 2012). Although the quality of sequences and taxonomic annotations is127

undoubtedly higher in these more curated databases, they are inherently limited in taxonomic128

coverage and do not include the most recently published sequences.129

Assigning taxonomy to unknown sequences using BLAST requires a priori choice of simi-130

larity thresholds for different taxonomic ranks. Several algorithms specifically designed for131

taxonomic assignment have been published which instead use information about variability132

within different taxa in the reference database to assign unknown sequences, along with con-133

fidence estimates for these assignments, including the RDP Classifier (RDPC, Wang et al.,134

2007), SINTAX (Edgar, 2016a) and IDTAXA (Murali et al., 2018) among others. In addi-135

tion, methods have been published which integrate predictions from multiple algorithms to136

increase the reliability of assignments (Gdanetz et al., 2017; Palmer et al., 2018; Somervuo137

et al., 2016). However, all sequence-similarity based approaches are dependent on high tax-138

onomic coverage in the reference database, making the placement of novel or undersampled139

groups problematic (Nilsson et al., 2016; Tedersoo, Tooming-Klunderud, et al., 2018).140
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Recent long-read HTS technologies such as Pacific Biosciences (PacBio) Single Molecule Real141

Time (SMRT) sequencing enable sequencing longer amplicons which include both the ITS142

regions and the flanking, more highly conserved SSU and/or LSU regions. This can improve143

taxonomic placement of sequences that lack close database matches and allow the alignment144

of metabarcoding reads for subsequent phylogenetic analysis (Tedersoo, Tooming-Klunderud,145

et al., 2018). Information from phylogenetic trees produced from long-amplicon metabarcod-146

ing has the potential to both improve taxonomic assignment and provide alternative measures147

of community alpha and beta diversity. However, long-read technologies are currently more148

expensive per read compared to short-read sequencing, and so their use entails a trade-off149

with sequencing depth and/or sample number (Kennedy et al., 2018).150

Because of the variety of sequencing platforms and analytical pipelines which have been used151

in metabarcoding studies, comparisons between studies may be difficult. Here we investigated152

the effects of different sequencing strategies and post-analysis on biological conclusions using153

measurement of the spatiotemporal turnover rate of the fungal community in an ECM-154

dominated woodland in Benin by metabarcoding of bulk soil, sampled at narrow intervals,155

over two years. Turnover scale is the distance at which two communities can be considered to156

be independent samples of the local species pool. Knowledge of turnover scale is important157

when planning studies of local diversity and its environmental correlates. Turnover scale158

varies between different ecosystems and taxonomic groups, and can be measured by the range159

at which a Mantel correlogram indicates significant autocorrelation, or by fitting a function160

to an empirical distance-decay curve of community dissimilarity vs. distance (Legendre &161

Legendre, 2012).162

We compare three different sequencing platforms (PacBio RS II, Illumina MiSeq, Ion Tor-163

rent Ion S5), long and short amplicons, three different taxonomic assignment algorithms164

(RDP classifier, SINTAX, IDTAXA) with three different reference databases (Unite, War-165

cup, RDP), and both non-phylogenetic and phylogenetic community distance measures. We166
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also present new algorithms for dividing the LSU into domains, combining denoising results167

from multiple domains as a strategy to capture more ASVs from long amplicons in diverse168

commmunities, and incorporating phylogenetic information into taxonomic assignments.169

2 Materials and Methods170

2.1 Sampling171

Sampling was conducted at two sites, near the villages of Angaradebou (Ang: N 9.75456°172

E 2.14064°) and Gando (Gan: N 9.75678° E 2.31058°) approximately 30 km apart in the173

Forêt Classée de l’Ouémé Supérieur (Upper Ouémé Forest Reserve) in central Benin. Both174

sites were located in West Sudanian savannah woodlands (Olson et al., 2001; Yorou et al.,175

2014) dominated by the ECM host tree Isoberlinia doka (Caesalpinioideae). At each site,176

25 soil samples were collected along a single 24 m linear transect at intervals of 1 m in May177

2015. One third of the sample locations (3 m spacing) were resampled one year later in June178

2016, for a total of 67 samples. For each sample, coarse organic debris was removed from179

the soil surface and a sample of approximately 5 cm × 5 cm × 5 cm was extracted with a180

sterilized knife blade and homogenized. A subsample of approximately 250 mg was preserved181

and returned to the laboratory for extraction (see Supplementary methods).182

2.2 DNA amplification and sequencing183

DNA extracts were sequenced using four distinct strategies, with two different amplicon184

lengths (long and short; Figure 1a) and three different technologies (PacBio, Ion Torrent,185

and Illumina) for the short amplicon. Due to length limitations of Ion Torrent and Illumina186

sequencing, long amplicons were only sequenced with PacBio. The short amplicon (approxi-187
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mately 300 bp) targeted the full ITS2 region as well as parts of the flanking 5.8S and large188

subunit (LSU) rDNA, using gITS7 (Ihrmark et al., 2012) as the forward primer and a mix189

of ITS4 (White et al., 1990) and ITS4a (Urbina et al., 2016) as the reverse primer. The long190

amplicon (approximately 1500 bp) targeted the full ITS region including the 5.8S rDNA and191

approximately 950 bp at the 5’ end of the LSU, including the first three variable regions192

(Figure 1a), using ITS1 (White et al., 1990) as the forward primer and LR5 (Vilgalys &193

Hester, 1990) as the reverse primer. Each PCR run also included a blank sample and a posi-194

tive control consisting of freshly extracted DNA from a commercially purchased fruitbody of195

Agaricus bisporus. See Supplementary methods for PCR and library preparation protocols.196

Each library was sequenced on a PacBio RS II sequencer at the Uppsala Genome Center197

(UGC; Uppsala Genome Center, Science for Life Laboratory, Dept. of Immunology, Ge-198

netics and Pathology, Uppsala University, BMC, Box 815, SE-752 37 UPPSALA, Sweden).199

Short amplicon libraries were sequenced on two SMRT cells each, while long amplicon li-200

braries were sequenced on four SMRT cells each. Additionally, the same short amplicon201

PCR libraries were combined and sequenced using an Ion S5 (Ion Torrent) sequencer using202

one 520 chip at UGC, and a MiSeq (Illumina Inc.) sequencer using v3 chemistry with a203

paired-end read length of 300 bp at the SNP&SEQ Technology Platform (Dept. of Medical204

Sciences, Uppsala University, BMC, Box 1432, SE-751 44 UPPSALA, Sweden) using one half205

of a lane. Platform-specific library preparation, including adapter ligation, was performed at206

the sequencing facilities according to their standard protocols.207

2.3 Bioinformatics208

Circular consensus sequence (CCS) basecalls for PacBio sequences were made using ccs209

version 3.4 (Pacific Biosciences, 2016, July 13/2019) using the default settings. The resulting210

sequences, as well as the paired-end Illumina sequences, were demultiplexed and sequencing211
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primers were removed using cutadapt version 2.8 (Martin, 2011). Sequencing primers were212

similarly removed from the Ion Torrent sequences, but interference between the tagged gITS7213

primers and the Ion XPress tags used in library prep made full demultiplexing of the Ion214

Torrent sequences impossible, resulting in two samples sharing each tag. These reads were215

thus either analyzed as a pool, or comparisons were made to equivalently combined samples216

in the other datasets. For Ion Torrent and PacBio, reads were discarded if they did not have217

the appropriate primers on both ends. Reads were searched in both directions, and reads218

where the primers were found in the reverse direction were reverse complemented before219

further analysis. For Illumina sequences, read pairs were only retained when PCR primers220

were detected at the 5’ ends of both the forward and reverse read. Primers were also searched221

for and removed on the 3’ ends of the reads, in case of readthrough with short amplicons.222

Read pairs where the primers were found in reverse orientation were kept in separate files,223

but were retained in their original orientation until after denoising.224

2.3.1 Denoising and clustering225

All amplicons were denoised using DADA2 version 1.12.1 according to the ITS pipeline226

workflow (Callahan, 2020a; Callahan et al., 2016), with technology-specific modifications227

for Ion Torrent (Callahan, 2020b) and PacBio (Callahan et al., 2019). Although this was228

successful for the short amplicons on all technologies, only 38 ASVs were obtained for the229

long amplicons, representing 12% of the trimmed reads.230

We conclude that this poor performance was due to a combination of long amplicon length231

and low sequencing depth relative to community diversity (see Supplementary Methods). We232

therefore developed a new workflow to assemble ASVs from the long amplicons by splitting233

the reads into homologous domains, including the two ITS regions, 5.8S, the variable D1–3234

regions of LSU (Michot et al., 1984), and the conserved LSU regions between the D regions,235
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here referred to as LSU1–4 (Figure 1a), followed by independently denoising reads from236

each domain, concatenating the denoised domains, and finally forming consensus sequences237

based on ITS2 identity. We used this method, implemented in the new R packages LSUx238

(https://github.com/brendanf/LSUx) and tzara (https://github.com/brendanf/tzara) and239

detailed in the Supplementary Methods, for all of the PacBio and Ion Torrent datasets.240

Because the LSUx plus tzara method as currently implemented is not applicable to Illumina241

paired-end reads, the ASVs generated from the Illumina dataset according to the standard242

DADA2 workflow were used. The ITS2 region was extracted from the ASVs using LSUx for243

comparison to the results from the other technologies.244

To account for intra-species variation and the possibility of different denoising performance245

between the different sequencing strategies, the pooled ITS2-ASVs from all sequencing strate-246

gies were also clustered into operational taxonomic units (OTUs) at 97% similarity using247

VSEARCH v2.9.1 (Rognes et al., 2016).248

2.3.2 Phylogenetic inference and taxonomy assignment249

Full length long amplicon ASVs were aligned using DECIPHER (Wright, 2015) with up to250

10 iterations of alternating progressive alignment and conserved RNA secondary structure251

calculation, followed by 10 refinement iterations. This alignment was truncated at a position252

after the D3 region corresponding to base 907 of the Saccharomyces cerevisiae S288C reference253

sequence for LSU, because several sequences had introns after this position, as also observed in254

several fungal species by Holst-Jensen et al. (1999). An ML tree was produced using RAxML255

version 8.2.12 (Stamatakis, 2014) using the GTR+GAMMA model and rapid bootstrapping256

with the MRE_IGN stopping criterion. The tree was rooted outside kingdom Fungi and257

non-Fungi were removed based on taxonomic assignments (see below and Supplementary258

methods).259
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Taxonomic annotations of the RDP LSU fungal training set version 11.5 (Cole et al., 2014)260

and Warcup ITS training set (Deshpande et al., 2016) were mapped to a uniform taxonomic261

classification system (see Supplementary Methods). Preliminary taxonomic assignment was262

performed to genus level separately on the ITS region using Unite and Warcup and on the263

LSU region using RDP, respectively, as taxonomic references. For each region/reference com-264

bination, taxonomy was assigned using three popular algorithms: the RDP Naïve Bayesian265

Classifier (RDPC, Wang et al., 2007) as implemented in DADA2; SINTAX (Edgar, 2016a) as266

implemented in VSEARCH v2.9.1 (Rognes et al., 2016); and IDTAXA (Murali et al., 2018).267

A relatively lax confidence threshhold of 50% was used for all three algorithms. Each full-268

length ASV was thus given up to nine preliminary taxonomic assignments (three references269

× three algorithms). ASVs from the short-amplicon datasets for which no matching long-270

amplicon ASV could be reconstructed were taxonomically assigned using Unite and Warcup271

on the full length of the short amplicon.272

For full-length long-amplicon ASVs, the preliminary taxonomic assignments were refined273

using the phylogenetic tree (Figure S4 and Supplementary Methods). This refinement274

algorithm is referred to as “PHYLOTAX”, available in the new R package phylotax at275

https://github.com/brendanf/phylotax.276

ASVs which were not present in the tree, either because they were not represented in the277

long-amplicon dataset, or because full-length ASV reconstruction failed, were given refined278

taxonomic assignments using a strict consensus of the different preliminary assignments at279

each rank, resulting in a consensus assignment equivalent to the “last common ancestor” of the280

preliminary assignments. This algorithm has been used to assign a consensus taxonomy based281

on a list of top BLAST hits (LCAClassifier, Lanzén et al., 2012) or k-mer similarity scores282

(mothur’s k-nearest neighbor method, Schloss et al., 2009), but here is used to resolve conflicts283

between assignments from different algorithms and databases. Strict consensus assignments284

were also generated for all ASVs, as a comparison to the PHYLOTAX assignments, and are285
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referred to as “Consensus”.286

2.4 Effect of sequencing strategy on recovered community287

We compared alpha diversity estimates by the different sequencing strategies by calculating288

ASV and OTU accumulation curves, as well as comparing richness estimates after rarefac-289

tion for each sample (Supplementary methods). We also compared the effect of sequencing290

technology and amplicon length on the recovered fungal community composition, as assessed291

by the Bray-Curtis dissimilarity, using PERMANOVA and heat tree visualizations (Supple-292

mentary methods).293

2.5 Spatiotemporal analysis294

To estimate turnover scale, ecological community dissimilarity matrices were calculated using295

the ASV/OTU based Bray-Curtis metric (Bray & Curtis, 1957, for both long and short296

amplicons) and the phylogenetically based weighted UniFrac metric (C. Lozupone & Knight,297

2005; C. A. Lozupone et al., 2007, for only long amplicons) in phyloseq version 1.26.0.298

Each of these distance matrices was used to calculate a Mantel correlogram with a 1 m299

bin size for distances in the range of 0–12 m, i.e., half the maximum separation present300

in the dataset. Separate correlograms were drawn for samples taken during the same year301

and samples separated in time by one year, in order to assess the degree to which the soil302

community changes over the course of one year.303

Additionally, empirical spatiotemporal distance-decay curves were generated by plotting304

mean community dissimilarity as a function of spatial distance and time lag, and fit to305

an exponential model of the form given by Legendre and Legendre (2012) using the nls306

function in R (Supplementary methods).307
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3 Results308

Samples from Ang in 2015 yielded low quantities of DNA, poor PCR performance, and309

ultimately very few sequencing reads, especially in the long amplicon library, where only one310

sample produced more than 100 reads (Figure S5). Consequently, Ang samples were excluded311

from spatial analysis, although they were retained for denoising, phylogenetic reconstruction,312

and taxonomic assignment.313

The number of sequencing reads and ASVs at each stage in the bioinformatics pipeline dif-314

fered between sequencing strategies (Table S2). Sequencing with PacBio yielded more than315

twice as many raw reads for long amplicons as for short amplicons, with approximately 125316

thousand and 50 thousand reads, respectively. Ion Torrent and Illumina yielded substantially317

more reads, with 20.7 million and 10.8 million, respectively. PacBio sequencing of the short318

amplicon library yielded the highest fraction of high-quality reads (≤ 1 expected error), fol-319

lowed by Illumina, with Ion Torrent yielding the lowest quality (Figure S6b). Although the320

per-base read quality of the long amplicon PacBio sequences was similar to that of Illumina321

(Figure S6a), this tranlated to a greater number of expected errors per read due to the ampli-322

con length (Figure S6b). Demultiplexing, primer trimming, and quality filtering reduced the323

read totals by 64% for PacBio long amplicons, but only by 21% for PacBio short amplicons,324

resulting in a similar number of filtered reads for the two strategies. Losses in demultiplexing,325

trimming, and quality filtering were intermediate for Ion Torrent and Illumina, with 41% and326

28% loss, respectively. Extraction of only the ITS2 region before quality filtering (Figure327

S6c) reduced the loss of long amplicon PacBio reads to only 29%, comparable to Illumina.328

Application of tzara resulted in 708 reconstructed long-amplicon ASVs, representing 97% of329

denoised ITS2 reads from the long-amplicon PacBio dataset. Mapping identical ITS2 ASVs330

from the short and long amplicon datasets allowed 58%, 71%, and 81% of denoised reads from331

the Ion Torrent, Illumina, and PacBio short amplicon datasets, respectively, to be assigned332
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to a long amplicon ASV (Table S2).333

Almost all of the short amplicon sequences from all three technologies were between 240 and334

375 bp long (Figure S7a). Although the length profile of the three sequencing runs were335

similar, Illumina had the largest fraction of reads near the top of the range, followed by336

Ion Torrent and PacBio (Figure S7b). The difference in length distributions was statistically337

significant due to the large sample size (Kruskal-Wallis statistic = 8.57e+04, 𝑝 < 2.2×10−16),338

but the difference between means was fairly small, with mean amplicon lengths of 276, 281,339

and 286 bp for PacBio, Ion Torrent, and Illumina, respectively. The length of the long340

amplicon reads varied widely, from 696 to 1638 bp, with a mean of 1431 bp (Figure S7c).341

Among the different regions extracted from the long amplicon (Figure S8, ITS1 showed the342

greatest length variability (mean ± standard deviation: 193 ± 55 bp), followed by ITS2 (184343

± 41 bp) and the variable regions in LSU (D2: 227 ± 36 bp; D3: 108 ± 10 bp; D1: 159 ±344

6 bp). Approximately 2% of reads included an intron of 40–60 bp in the LSU4 region, not345

visible in Figure S8 due to rarity. Except for these sequences, all conserved regions of LSU, as346

well as 5.8S, displayed very little size variation, as expected, with standard deviations < 2 bp.347

Around 12% of ITS2 sequences extracted from the long amplicon dataset were shorter than348

140 bp, a much greater fraction than the 0.26% to 0.44% from the short amplicon datasets349

(Figure S9). The taxonomic identity of these sequences is discussed below.350

Agaricus bisporus, the positive control, was represented by a single ASV in the positive control351

samples for both long- and short-amplicon PacBio datasets, and in the Ion Torrent dataset.352

A. bisporus was represented by two ASVs in the Illumina dataset, which differed at one base353

pair (99.5% similarity in ITS2). The abundance of the second ASV was 1.1% and 1.0% that354

of the primary A. bisporus ASV in the two Illumina positive controls. The consistency of this355

ratio across replicate positive controls suggests that it represents true inter-copy variation356

within the specimen, rather than sequencing or PCR error. Despite higher total sequencing357
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depth, this ASV was not identified from the Ion Torrent dataset.358

A. bisporus sequences represented 0.01%, 0.09%, 0.09%, and 0.09% of non-control reads, in359

the PacBio long, PacBio short, Illumina, and Ion Torrent datasets, respectively, giving similar360

estimates for the rate of tag-switching for all technologies. These reads were excluded from361

community analyses.362

3.1 Reproducibility of sequence capture using different technolo-363

gies364

We compared the unique ASVs and OTUs shared between datasets from different sequencing365

strategies, and the number of reads represented by these ASVs and OTUs in each strategy.366

The majority of abundant ASVs and OTUs were captured by all sequencing strategies used367

(Tables S3 and S4). The short amplicon ASVs shared between all sequencing technologies368

represented 95%, 76%, and 66%% of the reads for PacBio, Illumina, and Ion Torrent, respec-369

tively (Figure 2a). When differences at the intra-species scale were removed by clustering the370

ASVs into 97% OTUs, the number of OTUs shared between all three technologies increased371

to 524, representing 100%, 93% , and 89% % of reads, respectively (Figure 2b). In particu-372

lar, the majority of the 9418 unique Ion Torrent ASVs were found to be shared with other373

sequencing technologies upon OTU clustering. ASVs unique to the Ion Torrent dataset made374

up 14% of reads in that dataset, but only 1% belonged to a unique OTU after clustering. In375

contrast, 21% of reads in the long PacBio dataset belonged to ASVs whose ITS2 region was376

unique to that dataset (Figure 2c), and the fraction only reduced to 20% after clustering the377

ITS2 regions into OTUs (Figure 2d).378

Read counts for shared ASVs and OTUs were highly correlated between strategies, with a379

minimum 𝑅2 value of 0.47 (Figure S10). Correlations between read counts for the three380

technologies using the short amplicon library were increased by OTU clustering (0.69 to381
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0.72, 0.49 to 0.74, and 0.74 to 0.82, for PacBio vs. Illumina, PacBio vs. Ion Torrent, and382

Illumina vs. Ion Torrent, respectively), but not between the long amplicon library and short383

amplicon library (0.65 to 0.62, 0.58 to 0.57, and 0.47 to 0.49, for PacBio long amplicon reads384

vs. PacBio, Illumina, and Ion Torrent short amplicon reads, respectively; Figure S10).385

ASV richness estimates after rarefaction were strongly correlated between the three sequenc-386

ing technologies applied to the short amplicon library (𝑅2 = 0.91 to 0.94; Figure 4). The387

slope of the relationship between PacBio and Illumina richness estimates was only slightly388

different from 1, indicating that these two technologies give highly comparable rarefied rich-389

ness estimates, despite the approximately 200× difference in original sequencing depth. Ion390

Torrent resulted in rarefied richness estimates which were 24% to 31% greater than the other391

technologies, an effect which is also visible in ASV accumulation curves (Figure 3). ASV392

richness estimates were somewhat less strongly correlated between the PacBio long amplicon393

dataset and the three short amplicon datasets (𝑅2 = 0.65 to 0.72; Figure 4). Total least394

squares regression indicated that the long amplicon dataset resulted in richness estimates395

which were intermediate between the short amplicon results from Ion Torrent and the other396

two technologies. Despite the fact that experiment-wide OTU richness was lower than ASV397

richness (Figure 2), sample-wise OTU accumulation curves (Figure S11) and rarefied OTU398

richness relationships between sequencing strategies (Figure S12) were highly similar to those399

for ASVs.400

3.2 Taxonomic assignment401

For all sequencing datasets and taxonomic assignment protocols, a higher proportion of402

reads were assigned than of ASVs, indicating that common ASVs were more likely to be403

taxonomically identified than rare ASVs (Figure 5). A greater fraction of ITS reads and404

ASVs were assigned using the Unite database than the Warcup database across sequencing405
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technologies, amplicons, algorithms, and taxonomic ranks. At most taxonomic ranks, the406

RDPC algorithm assigned the greatest fraction of reads and ASVs, followed by SINTAX,407

and then IDTAXA.408

Taxonomic composition of the sequenced soil fungal community at the class level is summa-409

rized in Figure 6 and as a heat tree (Foster et al., 2017) in Figure S13. The ML tree for410

fungal ASVs, along with taxonomic assignments, is shown in Supplementary File 3. Accord-411

ing to the PHYLOTAX assignments, Fungi represented 88% of the ASVs and 81% of the412

reads in the long amplicon library, compared to 92.4%–96.5% of the ASVs and 97.9%–98.5%413

of the reads in the short amplicon library. Many of the ASVs which were unique to the414

long-amplicon library thus fall outside kingdom Fungi (Figure S14). In particular a large415

fraction of ITS2 sequences with length less than 140 (Figure S9) were identified as Alveolates416

(Figure S15).417

Measured fungal community composition at the class level varied significantly between long418

and short amplicons (PERMANOVA with 9999 permutations, 𝑝 < 0.0001, 𝑅2 = 0.046), but419

only marginally between sequencing technologies (𝑝 = 0.0669, 𝑅2 = 0.002). The majority of420

variation was spatiotemporal (i.e., between samples; 𝑝 < 0.0001, 𝑅2 = 0.90), but once this421

variation was removed, the remaining effect consisted of a clear bias against Sordariomycetes422

in the long amplicon dataset (Figures 6, S14, and S18). Additionally, several lower-rank423

taxonomic groups showed increased detection in either the long or short datasets, such as424

Tulasnellaceae (Agaricomycetes) and Pyronemataceae (Pezizomycetes) in the long amplicon425

dataset, and Myerozyma (Saccharomycetes) in the short amplicon datasets (Figures S14 and426

S17).427

Fungi categorized as ECM made up 8.9% of ASVs and 39.2% of reads in the long amplicon428

library, and 5.4%–13.4% of the ASVs and 36.4%–46.4% of the reads in the short amplicon429

library (Figure S16). Although amplicon length had a significant effect on ECM community430
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composition at the family level (Figure S17), the explained variation was very low (PER-431

MANOVA with 9999 permutations, 𝑝 = 0.0040, 𝑅2 = 0.002), and the majority of variation432

was again spatiotemporal (𝑝 < 0.0001, 𝑅2 = 0.98). Variation between sequencing technolo-433

gies was not significant (𝑝 = 0.76, 𝑅2 = 0.0002).434

3.3 Spatial analysis435

Results of spatial analysis based on the Bray-Curtis dissimilarity were qualitatively similar436

between the two amplicon libraries and between PacBio and Illumina sequencing, with sig-437

nificant autocorrelation at 𝑝 < 0.05 for ranges of up to 2–3 m for the total fungal community,438

and 1–2 m for the ECM fungal community (Figure S19). In both cases, the greatest corre-439

lation magnitudes were found with Illumina, followed by long amplicon PacBio. The least440

spatial structure was detected with PacBio short amplicon sequencing.441

The Bray-Curtis metric showed positive correlation when resampling at the same locations442

one year later (i.e., spatial distance of 0 m, time lag of 1 year), for both the total fungal and443

ECM fungal communities, although this result did not reach statistical significance for all444

sequencing strategies. This spatiotemporal correlation did not extend to a range of 1 m, and445

in fact correlation was negative at a time lag of 1 year and distance of 1 m, indicating that446

samples collected 1 m apart in different years were more different than randomly selected447

pairs of samples. This negative correlation, which reached marginal statistical significance in448

the PacBio short amplicon dataset, was probably a statistical artifact.449

In contrast to the Bray-Curtis distance, the weighted UniFrac distance showed very little450

spatial structure, with only the total fungal community in the 1 m distance class showing451

a significant correlation at 𝑝 < 0.05. No temporal correlation was found for the weighted452

UniFrac distance.453

The best fit spatial turnover ranges based on Bray-Curtis distance-decay curves calculated454
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from different sequencing strategies range widely from 13–31 m for the total fungal community455

and 12–42 m for the ECM fungal community (Figure 7, Table S5). However, there was overlap456

of the 95% confidence intervals for all of the Bray-Curtis spatial ranges in both the total fungal457

and ECM fungal communities, across amplicon libraries and sequencing technologies, so no458

strong conclusion of variability between methods can be drawn. Although a distance-decay459

model was fit for the weighted UniFrac distance applied to the total fungal community, the460

result was very poorly constrained, and a range of 0 m, indicating no spatial structure, was461

included in the 95% confidence interval.462

4 Discussion463

4.1 Reconstruction of long amplicons from denoised subregions464

Sequencing depth in the long amplicon PacBio dataset was not sufficient to successfully465

denoise using standard protocols, given the amplicon length and diversity of the samples.466

ASV recovery for long amplicons using DADA2 was dramatically improved from 12% to467

76% of reads by denoising homologous subregions independently using our new LSUx and468

tzara packages. Although newer sequencing platforms from PacBio (Sequel and Sequel II)469

feature increased sequencing depth and lower error rate compared to the RS II, long se-470

quences inherently require much more sampling depth to identify ASVs. Thus, tzara should471

increase recovery of rare ASVs from these platforms as well. It may also be adaptable to472

Oxford Nanopore sequencing, which has hitherto posed difficulties for application to complex473

community metabarcoding (Loit et al., 2019).474
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4.2 Comparison of sequencing strategies475

The three sequencing technologies gave similar results for the short amplicon library, the476

major difference being in sequencing depth. Although a greater fraction of PacBio raw477

reads were ultimately mapped to ASVs (75%) compared to Illumina (63%) or Ion Torrent478

(65%), the latter two technologies provided much greater sequencing depth for a similar cost,479

allowing a greater diversity of rare ASVs to be recovered, and were much closer to saturation480

of their respective species accumulation curves (Figure 3). OTU read counts were strongly481

correlated between technologies (R2 = 0.72–0.82), and even between primer pairs (R2 = 0.49–482

0.62, Figure S10b), which we interpret as supporting the validity of abundance-based beta483

diversity measures in metabarcoding (but see Castaño et al., 2020, and references therein).484

DADA2 denoising may perform differently on different technologies (or perhaps sequencing485

runs), indicated by the fact that clustering ASVs at 97% led to substantially higher cor-486

respondence between both the set of OTUs recovered from the same library by different487

technologies and the read counts for each OTU (Figure S10). ASV diversity appears to be488

artificially inflated in the Ion Torrent dataset relative to the Illumina and PacBio datasets,489

which gave remarkably similar ASV richness after rarefaction, despite a difference of around490

200x in unrarefied sequencing depth (Figures 2 and 4). This may be a result of the lower491

fraction of very high quality reads in the Ion Torrent dataset (Figure S6). We used options for492

DADA2 intended to improve performance on technologies, like Ion Torrent, with higher rates493

of homopolymer indel errors (Callahan, 2020b), but our results suggest that this still does494

not result in performance comparable to that which DADA2 achieves on Illumina sequences,495

for which it was developed (Callahan et al., 2016).496

Although the longer read length capabilities of PacBio allow recovery of longer ITS2 sequences497

than the other two technologies, as has recently been demonstrated in mock communities498

(Castaño et al., 2020), in our dataset from a natural community PacBio did not recover any499
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reads from the short amplicon library which were longer than those recovered by Illumina and500

Ion Torrent. Notably, neither long nor short amplicon sequencing recovered any sequences501

identifiable to Cantharellus, an ECM genus which is commonly observed at the study sites502

as fruitbodies (personal observations by BF and NSY), but which is also known to have503

accelerated evolution in the rDNA (Moncalvo et al., 2006) and longer ITS regions than other504

fungi (Feibelman et al., 1994), making it an especially difficult target for metabarcoding.505

Contrary to expectations, Illumina showed a slightly higher fraction of longer ITS2 sequences506

than Ion Torrent, which in turn showed slightly longer sequences than PacBio (Figures S7507

and S9).508

The long amplicon dataset included 20% unique taxa, even after clustering at 97% ITS2509

similarity, indicating that the differences in the communities recovered are not due to small510

sequencing errors, but rather that the different primers capture different parts of the com-511

munity. The ITS4 primer used in the short amplicon dataset has known mismatches to512

Tulasnellaceae and Alveolata, while gITS7 also has mismatches for Tulasnellaceae (Tedersoo513

et al., 2015). ITS1 and LR5 match a much broader range of fungal and other eukaryote514

groups (Tedersoo et al., 2015). The alternate LR5-F primer (Tedersoo et al., 2008) would515

select against the non-target Alveolata, at the expense of also having mismatches for the516

Tulasnellaceae. We assert that, for studies targeting ECM fungi in particular, more com-517

plete capture of groups with high rDNA variability such as Tulasnella (and ideally other518

Cantharellales) is worth the read-depth spent on non-target groups.519

4.3 Taxonomic identification520

Assignment of ecological function to environmental fungal sequences is dependent on accu-521

rate taxonomic identification, especially at the genus level or below (Nguyen et al., 2016).522

However, different combinations of algortihms and reference datasets vary in their perfor-523
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mance at confidently assigning taxonomy to sequences. Although the RDP fungal training524

set and Unite performed comparably at taxonomic placement of long amplicon sequences,525

the Warcup database placed notably fewer sequences at all taxonomic levels for all datasets526

(Figure 5). This is probably due to two factors. First, the Warcup database does not include527

any non-fungi, so it cannot place any non-fungal sequences. Second, due to its low-density528

coverage of the fungal kingdom (18 000 sequences vs. 800 000 for Unite), it is likely that529

many ITS sequences, especially from uncultured tropical soil fungi, have no close match in530

the Warcup database, and so cannot be placed. The RDP fungal training set, which has even531

fewer sequences (8000 fungi plus 3000 other eukaryotes), is probably more successful due to532

higher sequence conservation in LSU. Heeger et al. (2019) also found that a more conserved533

region, in their case 5.8S, outperformed ITS at placing sequences without close database534

matches. Of the three algorithms tested, IDTAXA placed fewer sequences than RDPC or535

SINTAX with all databases, as expected given its more well-calibrated and conservative con-536

fidence scores (Murali et al., 2018), but this was particularly dramatic when paired with the537

Warcup database, where IDTAXA placed <25% of ASVs even to phylum.538

Gdanetz et al. (2017) showed that a majority-rule consensus of three assignment algorithms539

can improve the fraction of sequences assigned as well as decrease the false assignment rate.540

Strict consensus rejects assignments whenever there is conflict between methods and should541

therefore provide more conservative taxonomic assignments than majority-rule consensus.542

AMPtk (Palmer et al., 2018) uses a strict consensus taxonomy between UTAX and SINTAX543

as an alternative when an initial BLAST search failed to give a hit with at least 97% sequence544

identity, but did not present results assessing the results of this approach. Here, we found that545

strict consensus also usually increases the number of assigned sequences relative to any single546

method, except at family and genus level identifications (Figure 5). Inconsistent family and547

genus level assignments are particularly problematic because accurate assignment at these548

ranks is generally required for ecological guild assignment using FUNGuild.549
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For ASVs where a long amplicon sequence is available, our novel PHYLOTAX algorithm550

uses phylogenetic relationships to resolve these disagreements in a principled manner. The551

effect was most pronounced for the PacBio long amplicon dataset, where 46% and 62% of552

reads were assigned to genus and family, respectively, by the strict consensus of methods, but553

PHYLOTAX increased this fraction to 73% and 81%. This led to a corresponding increase554

in the fraction of reads assigned to a functional guild (Figure S16). For short amplicon555

sequencing strategies, the improvement was more modest, because PHYLOTAX could only556

be applied for ITS2 ASVs with a match to one of the long amplicon ASVs (last row of557

Table S2). Deeper long-amplicon sequencing would improve the coverage of long amplicons,558

allowing a greater fraction of short amplicon ASVs to also be placed phylogenetically.559

4.4 Turnover rate560

Mantel correlograms based on the Bray-Curtis dissimilarity (Figure S19) revealed spatial561

autocorrelation in the soil fungal community at distance classes ≤ 3 m for both Illumina and562

PacBio using long and short amplicons, and in the ECM fungal community at distance classes563

≤ 2 m for Illumina and PacBio long amplicons, and ≤ 1 m for the PacBio short amplicons.564

These results are similar to autocorrelation ranges found in previous work based on ECM565

root tips in temperate forests (Lilleskov et al., 2004; Pickles et al., 2012). Lilleskov et al.566

(2004) found autocorrelation only at ranges <2.6 m at most sites using Sanger sequencing.567

Similarly, Pickles et al. (2012) found autocorrelation at distances <3.4 m based on T-RFLP568

analysis. Previous work in Miombo woodland, a similar ecosystem to the Sudanian woodland569

in this study, found autocorrelation at ranges <10 m using Sanger sequencing of ECM root570

tips (Tedersoo et al., 2011), which was their smallest distance class.571

Distance-decay plots (Figure 7, Table S5) gave substantially longer autocorrelation distances.572

There was little variation in the results between the Illumina and long-amplicon PacBio573
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datasets for both the total fungal community and the ECM community, with best fit esti-574

mates ranging from 12–18 m. The 95% confidence interval was substantially wider than this575

variation, generally covering a range of 5–41 m. All of these values are smaller than the 65 m576

reported by Bahram et al. (2013), also based on distance-decay curves from a similar ECM577

woodland habitat in Benin, but based on Sanger sequencing of ECM root tips rather than578

HTS metabarcoding of bulk soil. We speculate that this discrepancy is due to an increased579

ability to capture spatially variable rare species using HTS.580

For the short amplicon dataset, PacBio showed a spatial turnover range more than twice581

as long as showed by Illumina (Table S5) for both the total fungi and ECM communities,582

with wide confidence intervals. It is possible that the weaker fit for this dataset, which also583

showed weaker autocorrelation in the Mantel correlogram, is due to low sequencing depth584

in the PacBio short amplicon dataset. The long amplicon PacBio dataset, with more than585

twice the read depth of the short amplicon PacBio dataset, gave spatial turnover distance586

results much closer to those from Illumina. This is consistent with our speculation that the587

longer spatial turnover range found by Bahram et al. (2013) is related to sequence sampling588

depth.589

Year-to-year correlation was found for both the total fungal and ECM communities in the590

long amplicon dataset (Figure S19). The spatiotemporal distance-decay fit estimated the591

temporal turnover range as 3.3 years for the total fungal community and 4.2 years for the592

ECM community, but with overlapping confidence intervals. This corresponds to a space-593

for-time substitution rate of 5.4 and 3.3 m/year for the total fungal community and ECM594

community, respecitvely. In a recent study, Kivlin and Hawkes (2020) reported a space-for-595

time substitution rate of 81 m/year (reported as 6.8 d / 1.5 m) in the soil fungal community596

of a nonseasonal tropical forest in Costa Rica. However, comparison is obscured by different597

spatial and temporal sampling scales between the two studies. Year-to-year variation in ECM598

fungal communities, which we sampled, has been shown to be less than intra-annual variation599
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(Bahram et al., 2015), as sampled by Kivlin and Hawkes (2020). Neither dataset from the600

short amplicon library showed significant temporal autocorrelatio.601

Weighted UniFrac did not reliably detect spatial structure within this relatively ecologically602

homogeneous community. Although the Mantel test did show a small but significant positive603

autocorrelation in the fungal community at the smallest size category (1 m; Figure S19),604

the distance-decay plot in Figure 7 does not show any clear relationship. The functional605

fit showed poor convergence, with a 95% confidence interval for spatial range of 0–5470 m,606

indicating little evidence of spatial structure. This is probably because the majority of607

community turnover in this system, especially among ECM fungi, is between closely related608

species or individuals of the same species, while the presence of major clades (e.g., ECM609

lineages sensu Tedersoo et al. (2010)) are more spatially constant. This is also reflected610

in the generally smaller sample-to-sample dissimilarities measured by UniFrac (0.4–0.6) as611

compared to Bray-Curtis (0.8–1.0) in Figure 7. UniFrac analysis would be more suited at612

larger spatial scales and/or larger ecological gradients.613

4.5 Conclusion614

The choice of amplicon and sequencing technology did not affect the results of the spa-615

tial analysis, provided sufficient sequencing depth. Alpha diversity estimates were strongly616

correlated between methods, but somewhat inflated for Ion Torrent relative to the other617

technologies. However, the addition of long amplicon reads did allow the construction of a618

phylogenetic tree directly from the metabarcoding reads, which allowed refinement of taxo-619

nomic assignments using our new tool PHYLOTAX. DADA2 ASV yield was initially poor620

for long amplicons, but this was improved by developing a workflow for extraction of subre-621

gions, separate denoising, and then reconstruction of full-length unique sequences. Together622

these approaches provide a hybrid approach using long-read sequencing to acquire long am-623

26



plicon sequences for the local species pool in order to improve taxonomic assignments, and624

cost-effective short-read sequencing to provide high sampling depth and sample number.625
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Figure 1: rDNA regions. (a) Partial map of rDNA showing the 5.8S rDNA, partial
SSU and LSU rDNA, and internally transcribed spacer (ITS) regions. D1–3 repre-
sent the first three variable regions in LSU, while LSU1–4 represent the conserved
regions. Primer sites used in this study are indicated in red (forward primers) and
blue (reverse primers), and the resulting amplicons are shown with green braces.
(b) Total number of DADA2 ASVs vs. fraction of demultiplexed reads successfully
mapped to ASVs for different rDNA regions extracted from a set of long PacBio
amplicon sequences using LSUx. Shorter and more conserved regions yield a greater
fraction of successfully mapped reads. At a given fraction of mapped reads, more
variable regions yield a greater number of unique ASVs.

37



a

14
0.01

896
0.03

9418
0.14

46
0.05/0.03

10
0.00/0.00

3042
0.18/0.20

494
0.94/0.77/0.66

b

1
0.00

137
0.00

4099
0.01

2
0.00/0.00

4
0.00/0.00

2108
0.07/0.09

524
1.00/0.93/0.89

PacBio Short Illumina Ion Torrent
c

378
0.21

13320
0.28

600
0.79/0.72

d

326
0.20

6281
0.15

594
0.80/0.85

Long amplicon Short amplicon

Figure 2: Shared richness and abundance of ITS2-based ASVs (a, c) and 97% OTUs
(b, d) between different sequencing technologies from the same short amplicon li-
brary (a, b), and between long and short amplicon libraries (c, d). In each region,
the ASV/OTU richness is given above, while the relative abundance of reads rep-
resented by these ASVs/OTUs in each sequencing strategy are shown below in the
order PacBio/Illumina/Ion Torrent (a, b), or long/short (c, d). For short amplicons
in c and d, ASV/OTU counts reflect detection by any of the three technologies, and
read counts represent the mean fraction of reads across the three technologies.
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Figure 4: Comparison of ASV richness between sequencing technologies Each point
represents the richness of one or two pooled samples, as determined by two different
sequencing strategies. All values represent the average of 100 replicate rarefactions
with a sample depth of 100 reads. Because samples in the same well on different
plates could not be demultiplexed in the Ion Torent dataset, these samples were
also bioinformatically pooled in the other datasets prior to rarefaction. Blue lines
are total least squares fit with 95% confidence interval, with the given slope (and
95% confidence interval) and R2 value. Dashed diagonal line indicates ideal slope
of 1.
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Figure 5: Fraction of ASVs (left) and reads (right) assigned to each taxonomic
rank, for different sequencing technologies (PacBio RS II, Illumina MiSeq, Ion Tor-
rent Ion S5), amplicons (Long, Short), reference databases (Unite, Warcup, RDP),
and assignment algorithms (PHYLOTAX, Consensus, RDPC, SINTAX, IDTAXA).
Consensus and PHYLOTAX assignments are based on the consensus of RDPC, SIN-
TAX, and IDTAXA, using all available databases and, in the case of PHYLOTAX,
phylogenetic information.
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Figure 7: Distance-decay plot for community dissimilarities and spatio-temporal
distance. Circles represent community data from short (top two rows) and long
(bottom two rows) amplicon libraries, sequenced by Illumina MiSeq (top row) or
PacBio RS II (bottom three rows). Community dissimilarities are calculated us-
ing the Bray-Curtis dissimilarity for all datasets (top three rows) and using the
weighted UniFrac dissimilarity for the long amplicon library, for which a phyloge-
netic tree could be constructed (bottom row). The left column represents the full
fungal community, and the right column only sequences identified as ECM. The
color of each circle represents the time lag between samples being compared (0 or
1 year), and the size represents the number of comparisons for that spatial distance
and time lag. Lines are the best-fit lines for an exponential decay to max model.
The model was only fit for datasets where the Mantel test indicated a significant
relationship between community dissimilarity and spatial (for the 0 year timelag)
or spatiotemporal (for the 1 year time lag) distance.
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