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thermo-electro-magneto-elastic body occupying a bounded region Ω+ is embedded

in an inviscid fluid occupying an unbounded domain Ω− = ℝ3 ⧵ Ω+. In this case,

we have a six-dimensional thermo-electro-magneto-elastic field (the displacement

vector with three components, electric potential, magnetic potential, and temperature

distribution function) in the domain Ω+, while we have a scalar acoustic pressure

field in the unbounded domain Ω−. The physical kinematic and dynamic relations

are described mathematically by appropriate boundary and transmission conditions.

With the help of the potential method and theory of pseudodifferential equations,

we prove the uniqueness and existence theorems for the corresponding boundary-

transmission problems in appropriate Sobolev-Slobodetskii and Hölder continuous

function spaces.

MSC: 35J47, 74F15, 31B10, 34L25.

KEYWORDS: Boundary-transmission problems, fluid-multiferroic solid interac-

tion, potential method, pseudodifferential equations, Helmholtz equation, pseudo-

oscillations

1 INTRODUCTION

The surge of interest in multiferroic materials over the past 15 years has been driven by their fascinating physical properties and

huge potential for technological applications. Multiferroics belong to a newer class of thermo-electro-magneto-elastic materi-

als in which ferromagnetic and ferroelectric properties occur simultaneously. Consequently, mathematical modeling related to

multiferroic complex composite structures and the corresponding fluid-solid interaction problems became very important from

the theoretical and practical points of view. Mathematically this type of interaction problems are described by non-standard

boundary-transmission problems for different dimensional physical fields acting in adjacent domains. This type of interaction

problems involving different dimensional physical fields appear in mathematical models of electro-magneto transducers, sen-

sors, actuators, energy harvesters, servomechanisms, phased array microphones, ultrasound equipment, inkjet droplet actuators,

sonar transducers, bioimaging, immunochemistry, and acousto-biotherapeutics (see, e.g., Neugschwandtner et al1, Safari et al2,

Vopson3 and the references therein).

In this paper, we analyze a three-dimensional model of fluid-solid interaction, when a thermo-electro-magneto-elastic body

occupying a bounded region Ω+ is embedded in an inviscid fluid occupying an unbounded domain Ω− = ℝ3 ⧵Ω+. In the solid

region we consider Green–Lindsay’s generalized thermo-electro-magneto-elastic model. The essential feature of this model
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is that heat propagation has a finite speed in contrast to the classical model. In the case under consideration, we have a six-

dimensional thermo-electro-magneto-elastic field in the solid region (the displacement vector with three components, electric

potential, magnetic potential, and temperature distribution function), while in the fluid region we have a scalar acoustic pressure

field. The physical kinematic and dynamic relations are described mathematically by appropriate boundary and transmission

conditions. We consider the interaction problems for the so-called pseudo-oscillation equations, which are obtained form the cor-

responding dynamical equations by the Laplace transform. With the help of the potential method and theory of pseudodifferential

equations, we prove the uniqueness and existence theorems for the corresponding boundary-transmission problems in appropri-

ate Sobolev-Slobodetskii and Hölder continuous function spaces. We derive explicit representation formulas of solutions in the

form of single layer potentials.

Many papers are devoted to the similar interaction problems, when in the solid region simpler mathematical models are

considered. The Dirichlet type, Neumann type and mixed type steady state oscillation interaction problems of acoustic waves

and piezoelectric structures are studied in the papers Chkadua4, Chkadua et al5, Chkadua6.

Similar interaction problems with the classical model of elasticity have been investigated by a number of authors. An exhaus-

tive information concerning theoretical and numerical results, for the case when the both interacting media are isotropic, can

be found in the references Bielak et al7, Bielak et al8, Boström9,10, Goswami et al11, Hsiao et al12, Hsiao13, Hsiao et al14,

Junger et al15, Kagawa et al16, Luke et al17, Natroshvili et al18, Natroshvili et al19, Natroshvili et al20. Interaction problems of

steady state oscillations for homogeneous and anisotropic elastic solids are analysed in the references Jentsch et al21,22, where

the generalized Sommerfeld-Kupradze type radiation conditions for anisotropic solids are derived.

The present paper is organized as follows. In Section 2, we describe basic field equations in fluid and solid regions, intro-

duce the partial differential operators of the generalized thermo-electro-magneto-elasticity theory (GTEME theory) in the solid

region, formulate two type boundary-transmission problems, and prove the uniqueness theorems. It should be mentioned that

in contrast to the classical case, the second order partial differential 6 × 6 matrix operators of the GTEME theory is neither

positive definite nor formally self-adjoint. In Section 3, we introduce the scalar and vector layer potential operators associated

with the corresponding differential operators in fluid and solid domains. We describe the jump properties of the layer poten-

tials and introduce the corresponding boundary integral operators which play a crucial role in our further analysis. In Sections

4, we investigate the boundary-transmission problem (ID) formulated in Section 2 containing the Dirichlet type conditions on

the interface surface for the electric potential, magnetic potential, and temperature function. Using the potential method, this

problem is reduced to the equivalent system of pseudodifferential equations. It is shown that the corresponding pseudodiffer-

ential operator is strongly elliptic Fredholm operator with zero index and trivial null space. Therefore the pseudodifferential

operator is invertible and the corresponding interaction problem (ID) is unconditionally solvable. In section 5, we investigate the

boundary-transmission problem (IN) formulated in Section 2 containing the Neumann type conditions on the interface surface

for the electric displacement vector, magnetic induction vector, and heat flux vector. In this case, the corresponding strongly

elliptic pseudodifferential operator is again Fredholm operator with zero index and two dimensional null space. The explicit

solutions of the adjoint pseudodifferential equation is found and the necessary and sufficient conditions for the problem (IN) to

be solvable is written explicitly. Finally, in Appendix, for the readers convenience, we present some known results about the

jump and mapping properties of scalar and vector potential operators employed in the main text of the paper.

2 BASIC EQUATIONS AND OPERATORS, STATEMENT OF PROBLEMS, AND
UNIQUENESS THEOREMS

2.1 Generalized thermo-electro-magneto elastic field

The basic linear system of pseudo-oscillation equations for the thermo-electro-magneto-elasticity theory under Green–Lindsay’s

model is obtained from the corresponding dynamical equations by the Laplace transform and in matrix form reads as follows

(see Straughan23, Aouadi24, Green et al25 and the references therein)

A(), �)U (x, �) = Φ(x, �),

where U = (u, ',  , �)⊤ = (u1,⋯ , u6)
⊤, u = (u1, u2, u3)

⊤ is the displacement vector, ' = u4 is the electric potential,  = u5 is

the magnetic potential, � = u6 is the temperature distribution, Φ = (Φ1,⋯ ,Φ6)
⊤ is a given vector-function, and A(), �) is the
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matrix differential operator

A()x, �) =
[
Apq()x, �)

]
6×6

∶=

⎡⎢⎢⎢⎢⎣

[crjkl)j)l − �1�
2�rk]3×3 [elrj)j)l]3×1 [qlrj)j)l]3×1 [−(1 + �0�)�rj)j]3×1

[−ejkl)j)l]1×3 zjl)j)l ajl)j)l −(1 + �0�)pj)j
[−qjkl)j)l]1×3 ajl)j)l �jl)j)l −(1 + �0�)mj)j
[−��kl)l]1×3 �pl)l �ml)l �jl)j)l − �

2ℎ0 − �d0

⎤⎥⎥⎥⎥⎦ 6×6

. (1)

where � = � + i! is a complex parameter with � > �0 ≥ 0 and ! ∈ ℝ), �jk is the Kronecker symbol, and summation over

repeated indices is meant from 1 to 3, if not stated otherwise. Here and in what follows we employ the following notation for the

material parameters: �1 – the mass density, crjkl – the elastic constants, ejkl – the piezoelectric constants, qjkl – the piezomagnetic

constants, zjk – the dielectric (permittivity) constants, �jk – the magnetic permeability constants, ajk – the electromagnetic

coupling coefficients, pj ,mj , and �rj – coupling coefficients connecting dissimilar fields, �jk – the heat conductivity coefficients,

�0 and ℎ0 – two relaxation times, a0 and d0 – constitutive coefficients.

The constants involved in the above equations satisfy the symmetry conditions:

crjkl = cjrkl = cklrj , eklj = ekjl, qklj = qkjl,

zkj = zjk, �kj = �jk, �kj = �jk, akj = ajk, �kj = �jk, r, j, k, l = 1, 2, 3.
(2)

Some authors require more extended symmetry conditions for piezoelectric and piezomagnetic constants: eklj = ekjl = eljk,

qklj = qkjl = qljk (see, e.g., Li28,29, Aouadi30,24). However in our further analysis we will require only the symmetry properties

described in (2). From physical considerations it follows that (see, e.g., Nowacki31, Li28, Aouadi24, Straughan23, Green et al25):

crjkl�rj�kl ≥ �0�kl �kl, zkj�k�j ≥ �1|�|2, �kj�k�j ≥ �2|�|2, �kj�k�j ≥ �3|�|2,
for all �kj = �jk ∈ ℝ and for all � = (�1, �2, �3) ∈ ℝ3,

(3)

�0 > 0, ℎ0 > 0, d0�0 − ℎ0 > 0, (4)

where �0, �1, �2, and �3 are positive constants depending on material parameters.

Due to the symmetry conditions (2), with the help of (3) we easily derive

crjkl�rj�kl ≥ �0�kl�kl, zkj�k�j ≥ �1|�|2, �kj�k�j ≥ �2|�|2, �kj�k�j ≥ �3| �|2,
for all �kj = �jk ∈ ℂ and for all � = (�1, �2, �3) ∈ ℂ3.

(5)

More careful analysis related to the positive definiteness of the potential energy and the thermodynamical laws insure that the

following 8 × 8 matrix

M = [Mkj]8×8 ∶=

⎡
⎢⎢⎢⎢⎣

[zjl]3×3 [ajl]3×3 [pj]3×1 [�0pj]3×1
[ajl]3×3 [�jl]3×3 [mj]3×1 [�0mj]3×1
[pj]1×3 [mj]1×3 d0 ℎ0
[�0pj]1×3 [�0mj]1×3 ℎ0 �0ℎ0

⎤
⎥⎥⎥⎥⎦ 8×8

(6)

is positive definite. Note that the positive definiteness of M remains valid if the parameters pj and mj in (6) are replaced by the

opposite ones, −pj and −mj . Moreover, it follows that the matrices

Λ(1) ∶=

[
[zkj]3×3 [akj]3×3
[akj]3×3 [�kj]3×3

]

6×6

, Λ(2) ∶=

[
d0 ℎ0
ℎ0 �0ℎ0

]

2×2

(7)

are positive definite as well, i.e.,

zkj� ′k� ′j + akj(� ′k� ′′j + � ′
k
� ′′
j
) + �kj�

′′
k
� ′′
j
≥ �1

(|� ′|2 + |� ′′|2) ∀ � ′, � ′′ ∈ ℂ3, (8)

d0|z1|2 + ℎ0
(
z1z2 + z1z2

)
+ �0ℎ0|z2|2 ≥ �2

(|z1|2 + |z2|2
)

∀ z1, z2 ∈ ℂ, (9)

with some positive constants �1 and �2 depending on the material parameters involved in (7).

The principal homogeneous symbol matrix of the operator A()x, �) is

A(0)(−i�) = −A(0)(�) =

⎡
⎢⎢⎢⎢⎣

[−crjkl�j�l]3×3 [−elrj�j�l]3×1 [−qlrj�j�l]3×1 [0]3×1
[ejkl�j�l]1×3 −zjl�j�l −ajl�j�l 0

[qjkl�j�l]1×3 −ajl�j�l −�jl�j�l 0

[0]1×3 0 0 −�jl�j�l

⎤
⎥⎥⎥⎥⎦ 6×6

. (10)
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From the symmetry conditions (2), inequalities (3), and positive definiteness of the matrix Λ(1) defined in (7) it follows that there

is a positive constant C0 depending only on the material parameters, such that

Re
(
−A(0)(−i�)� ⋅ �

)
= Re

( 6∑
k,j=1

A
(0)

kj
(�)�j�k

) ≥ C0|�|2|�|2 (11)

for all � ∈ ℝ3 and for all � ∈ ℂ6.

Therefore, −A()x, �) is a non-selfadjoint strongly elliptic differential operator. The over bar denotes complex conjugation and

the central dot denotes the scalar product in the respective complex-valued vector space.

Further, let us introduce the generalized stress operator  ()x, n, �) associated with the pseudo-oscillation operator A()x, �)

 =  ()x, n, �) =
[ pq()x, n, �) ]6×6 ∶=

⎡
⎢⎢⎢⎢⎣

[crjklnj)l]3×3 [elrjnj)l]3×1 [qlrjnj)l]3×1 [−(1 + �0�)�rjnj]3×1
[−ejklnj)l]1×3 zjlnj)l ajlnj)l −(1 + �0�)pjnj
[−qjklnj)l]1×3 ajlnj)l �jlnj)l −(1 + �0�)mjnj

[0]1×3 0 0 �jlnj)l

⎤
⎥⎥⎥⎥⎦ 6×6

. (12)

Evidently, for a smooth six vector U ∶= (u, ',  , #)⊤ we have

 ()x, n, )t)U = (�1jnj , �2jnj , �3jnj ,−Djnj ,−Bjnj ,−T
−1
0
qjnj)

⊤. (13)

Recall that E = (E1, E2, E3)
⊤ = −grad' and H = (H1, H2, H3)

⊤ = −grad are electric and magnetic fields, respectively,

D = (D1, D2, D3)
⊤ is the electric displacement vector and B = (B1, B2, B3)

⊤ is the magnetic induction vector, ' and  stand

for the electric and magnetic potentials and # is the temperature change to a reference temperature T0, q = (q1, q2, q3)
⊤ is the

heat flux vector, and  is the entropy density, and the corresponding constitutive equations read as

�rj(x, �) = crjkl"kl(x, �) + elrj)l'(x, �) + qlrj)l (x, �) − (1 + �0�)�rj#(x, �),

Dj(x, �) = ejkl"kl(x, �) − zjl)l'(x, �) − ajl)l (x, �) + (1 + �0�)pj#(x, �),

Bj(x, �) = qjkl"kl(x, �) − ajl)l'(x, �) − �jl)l (x, �) + (1 + �0�)mj#(x, �),

qj(x, �) = −T0�jl)l#(x, �).

The components of the vector  U given by (13) have the following physical sense: the first three components correspond to

the mechanical stress vector in the theory of generalized thermo-electro-magneto-elasticity, the forth and the fifth components

correspond to the normal components of the electric displacement vector and the magnetic induction vector, respectively, with

opposite sign, and finally the sixth component is (−T −1
0

) times the normal component of the heat flux vector.

In Green’s formulas there appears also the boundary operator ()x, n, �) associated with the adjoint differential operator

A∗()x, �) ∶= [A(−)x, �)]
⊤ = A⊤(−)x, �),

 = ()x, n, �) =
[ pq()x, n, �) ]6×6 =

⎡
⎢⎢⎢⎢⎣

[crjklnj)l]3×3 [−elrjnj)l]3×1 [−qlrjnj)l]3×1 [��rjnj]3×1
[ejklnj)l]1×3 zjlnj)l ajlnj)l −�pjnj
[qjklnj)l]1×3 ajlnj)l �jlnj)l −�mjnj

[0]1×3 0 0 �jlnj)l

⎤
⎥⎥⎥⎥⎦ 6×6

. (14)

2.2 Scalar acoustic wave field

LetΩ+ be a bounded 3-dimensional domain inℝ3 withC∞-smooth boundaryS = )Ω+ if not otherwise stated,Ω+ = Ω+∪S, and

Ω− = ℝ3 ⧵Ω+. We assume that the unbounded exterior domain Ω− is filled by a homogeneous isotropic inviscid fluid medium

with the constant density �2. Further, let the propagation of acoustic pressure wave in Ω− be described by a complex-valued

scalar function (scalar field) w being a solution of the homogeneous Helmholtz equation (cf. Colton et al32)

Δw(x, �) − �2�
2w(x, �) = 0, (15)

satisfying the following asymptotic condition at infinity

w(x) = O(|x|m) as |x| → ∞ (16)

with some natural number m ∈ ℕ. Note that, if Re� = � > �0 ≥ 0, due to relation (16), it then follows that

D�w(x) = O(|x|−n) as |x| → ∞ (17)
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for all multi-indices � and n ∈ ℕ. Actually, w decays exponentially at infinity.

2.3 Formulation of interaction problems

By Ck(Ω±) we denote the subspace of functions from Ck(Ω±) whose derivatives up to the order k are continuously extendable

to S from Ω±. We denote by Hs(Ω±) and Hs(S) the well known L2-based Sobolev-Slobodetski and Bessel potential spaces.

The symbols { ⋅ }+
S

and { ⋅ }−
S

denote one-sided limits (traces) on S from Ω+ and Ω−, respectively. We drop the subscript S if it

does not lead to misunderstanding.

Assume that the domainΩ+ is occupied by an anisotropic homogeneous material with the above described generalized thermo-

electro-magneto-elastic properties and it is immersed in an inviscid fluid occupying the exterior domain Ω−.

The fluid-solid interaction in the case under consideration is described by the boundary-transmission problems for the

equations of the generalized thermo-electro-magneto-elasticity theory and the Helmholtz equation. Throughout the paper we

assume that

� = � + i!, � > �0 ⩾ 0, ! ∈ ℝ, (18)

if not otherwise stated.

Interaction Dirichlet Type Problem (ID): Find a vector-function U = (u, u4, u5, u6)
⊤ ∈ [H1(Ω+)]6 and scalar function

w ∈ H1(Ω−) satisfying the differential equations

A()x, �)U = 0 in Ω+, (19)

Δw − �2�
2w = 0 in Ω−, (20)

the transmission conditions

{u ⋅ n}+ = −(�2�
2)−1{)nw}

− + g0 on S, (21)

{[ U ]j}
+ = −{w}−nj + fj on S, j = 1, 2, 3, (22)

and the Dirichlet type boundary conditions

{ur}
+ = f (D)

r
on S, r = 4, 5, 6, (23)

where g0 ∈ H−1∕2(S) , fj ∈ H−1∕2(S), j = 1, 2, 3, f (D)
r

∈ H1∕2(S) r = 4, 5, 6.

Interaction Neumann Type Problem (IN): Find a vector-function U = (u, u4, u5, u6)
⊤ ∈ [H1(Ω+)]6 and scalar function

w ∈ H1(Ω−) satisfying the differential equations (19) and (20) respectively, transmission conditions (21), (22), and the Neumann

boundary condition

{[ U ]r}
+ = f (N)

r
on S with f (N)

r
∈ H−1∕2(S) r = 4, 5, 6. (24)

In both boundary-transmission problems we require that the scalar pressure function w satisfies the decay condition (17).

2.4 Uniqueness theorems

Theorem 1. Let � = � + i! with � > �0 ⩾ 0 and ! ∈ ℝ. The homogeneous problem (ID) has only the trivial solution, while

the general solution of the homogeneous problem (IN) is the vector U = (0, 0, 0, b1, b2, 0) and w = 0, where b1 and b2 are an

arbitrary complex constants.

Proof. Let a pair (U,w) be a solution to the homogeneous problem (ID).

Let us write Green’s second formula for the Helmholtz equation (20) in the domain Ω−,

∫
Ω−

[(Δ − �2�
2)ww − w(Δ − �2�

2)w]dx = −⟨{)nw}−, {w}−⟩S + ⟨{)nw}−, {w}−⟩S . (25)

Here and in what follows, the symbol ⟨ ⋅, ⋅ ⟩S denotes the duality between the mutually adjoint function spaces H−1∕2(S) and

H1∕2(S), which extends the usual L2 scalar product

⟨f, g⟩S = ∫
S

f g dS for f, g ∈ L2(S).
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Therefore from (20) nd (25) we obtain

Im ⟨{)nw}− , {w}−⟩S = 0. (26)

Now, let us write Green’s first formula for the Helmholtz equation (20) in the domain Ω−,

∫
Ω−

(Δ − �2�
2)wwdx + �2�

2 ∫
Ω−

|w|2dx + ∫
Ω−

|∇w|2dx = −⟨{)nw}−, {w}−⟩S . (27)

Take into account (20) and separate the real and imaginary parts of (27) to obtain

2�!∫
Ω−

|w|2dx = 0, (28)

(�2 − !2)∫
Ω−

|w|2dx + ∫
Ω−

|∇w|2dx = −⟨{)nw}−, {w}−⟩S . (29)

If ! ≠ 0, from (28) we conclude that w = 0 in Ω−.

Now, let us write Green’s formula for the operator A()x, �) in the domain Ω+ (see Subsection 2.7.3 in Buchukuri et al34),

∫
Ω+

[
[A()x, �)U ]j uj + [A()x, �)U]4 u4 + [A()x, �)U]5 u5 + (30)

+
1 + �0�

�
[A()x, �)U]6 u6 + (U,U)

]
dx = ⟨{ U}+

j
, {uj}

+⟩S +

+⟨{ U}+
4
, {u4}

+⟩S + ⟨{ U}+
5
, {u5}

+⟩S +
1 + �0�

�
⟨{ U}+

6
, {u6}

+⟩S ,
where

(U,U) ∶= crjkl)luk)jur + �1�
2|u|2+zjl)l')j' + ajl()l )j'+)j')l ) + �jl)l )j − 2Re

[
pl(1+�0�)#)l'

]

− 2Re
[
ml(1 + �0�)#)l 

]
+ (1 + �0�)(ℎ0� + d0)|#|2 +

1 + �0�

�
�jl)l#)j#.

Since (U,w) is a solution of the homogeneous problem (ID), from (30) and we obtain

∫
Ω+

(U,U)dx = ⟨{ U}+
j
, {uj}

+⟩S = −⟨{w}− nj , {uj}+⟩S = (�2 �
2
)−1⟨{w}−, {)nw}−⟩S ,

i.e.

⟨{w}−, {)nw}−⟩S = �2 �
2 ∫
Ω+

(U,U)dx. (31)

Substituting (31) into (29) for ! = 0 we get

�2 ∫
Ω−

|w|2dx + ∫
Ω−

|∇w|2dx + �2 �2 ∫
Ω+

(U,U)dx = 0. (32)

Keeping in mind that for ! = 0, the following inequality

∫
Ω+

(U,U)dx ≥ 0

holds (see the proof of Theorem 2.25 in Buchukuri et al34), from (32) we deduce that w = 0 in Ω−. Thus, w = 0 in Ω− for

arbitrary ! ∈ ℝ. Therefore from (31) we get

∫
Ω+

(U,U)dx = 0 (33)

for � > �0 ⩾ 0 and ! ∈ ℝ. Due to the relations (5) and the positive definiteness of the matrix Λ(1) defined in (7), we find that

cijlk)iuj)luk ≥ 0, �jl)l#)j# ≥ 0,[zjl)l')j' + ajl()l )j' + )j')l ) + �jl)l )j 
] ≥ �0

(|∇'|2 + |∇ |2), (34)
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where �0 is a positive constant.

Using inequalities (34), positive definiteness of the matrix M defined by (6), and the inequality �(d0�0 − ℎ0) > 0 (see (4)) we

obtain that (see proof of Theorem 2.25 in Buchukuri et al34)

u = 0, u4 = ' = b1, u5 =  = b2, u6 = # = 0 in Ω+, (35)

i.e.

U = (0, 0, 0, b1, b2, 0)
⊤, (36)

where b1 and b2 are arbitrary complex constants.

The homogeneous Dirichlet conditions on S then imply b1 = b2 = 0, i.e. U = 0 in Ω−.

It is evident that b1 and b2 in (36) remain arbitrary complex constants in the case of the homogeneous problem (IN), which

completes the proof.

Remark 1. Let a pair (V ,w) ∈ [H1(Ω+)]6 × H1(Ω−) be a solution of the homogeneous boundary-transmission problem

associated with the adjoint differential operators:

A∗()x, �)V = 0 in Ω+,

(Δ − �2�
2
)w = 0 in Ω−,

{v ⋅ n}+ + (�2�
2
)−1{)nw}

− = 0 on S,

{[V ]j}
+ + {w}−nj = 0 on S, j = 1, 2, 3,

{[V ]k}
+ = 0 on S, k = 4, 5, 6,

where V = (v, v4, v5, v6)
⊤ with v = (v1, v2, v3)

⊤ and  is defined in (14). By the similar arguments applied in the proof of

Theorem 1, one can prove thatw = 0 in Ω− and V = (0, 0, 0, b1, b2, 0)
⊤ inΩ+, where b1 and b2 are arbitrary complex constants.

3 LAYER POTENTIALS

3.1 Potentials associated with the Helmholtz equation

Let us introduce the single and double layer potentials

V�(g)(x) ∶ = ∫
S


(x − y, �)g(y)dyS, (37)

W�(f )(x) ∶ = ∫
S

)n(y)
(x − y, �)f (y)dyS, (38)

where


(x, �) ∶= −
exp

(
−
√
�2 �|x|

)

4�|x| , Re� > 0,

is the fundamental solution of the Helmholtz equation (15). These potentials satisfy the decay condition (17) at infinity.

For these potentials the following theorems are valid (see Colton et al32, McLean35).

Theorem 2. Let g ∈ H−1∕2(S), f ∈ H1∕2(S). Then the following jump relations hold on the manifold S{
V�(g)

}±
= �(g),

{
)nV�(g)

}±
= ∓2−1g +�(g),{

W�(f )
}±

= ±2−1f +�(f ),
{
)nW�(f )

}+
=
{
)nW�(f )

}−
=∶ �(f ), (39)

where � , � , and � are integral operators with weakly singular kernels

� (g)(z) ∶= ∫
S


(z − y, �)g(y)dyS, z ∈ S, (40)

�(f )(z) ∶= ∫
S

)n(y)
(z − y, �)f (y)dyS, z ∈ S, (41)

� (g)(z) ∶= ∫
S

)n(z)
(z − y, �)g(y)dyS, z ∈ S, (42)
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while � is a singular integro-differential operator (a pseudodifferential operator of order 1).

Mapping properties of the above potentials and the boundary integral operators are described in Appendix (see Theorems

8-9).

3.2 Fundamental solution and potentials associated with the pseudo-oscillation operator of
generalized thermo-electro-magneto-elasticity theory

The full symbol of the pseudo-oscillation operator A()x, �) is elliptic provided Re� ≠ 0, i.e. (see Ch.3 in Buchukuri et al34 ),

det A(−i�, �) ≠ 0, ∀� ∈ ℝ3∖{0},

where

A(−i�, �) = −

⎡
⎢⎢⎢⎢⎣

[crjkl�j�l + �1�
2�rk]3×3 [elrj�j�l]3×1 [qlrj�j�l]3×1 [−i(1 + �0�)�rj�j]3×1

[−ejkl�j�l]1×3 zjl�j�l ajl�j�l −i(1 + �0�)pj�j
[−qjkl�j�l]1×3 ajl�j�l �jl�j�l −i(1 + �0�)mj�j
[−i��kl�l]1×3 i�pl�l i�ml�l �jl�j�l + �

2ℎ0 + �d0

⎤
⎥⎥⎥⎥⎦ 6×6

.

Moreover, the entries of the inverse matrix A−1(−i�, �) are locally integrable functions decaying at infinity as O(|�|−2). There-

fore, one can construct the fundamental matrix Γ(x, �) = [Γrk(x, �)]6×6 of the operator A()x, �) by the distributional Fourier

transform technique,

Γ(x, �) = F−1
�→x

[A−1(−i�, �)]. (43)

The properties of the fundamental matrix Γ(x, �) in a neighbourhood of the pole and at infinity are studied in the reference

Buchukuri et al34 (Ch. 3).

Let us introduce the single and double layer vector potentials associated with the pseudo-oscillation operator A(), �):

V� (ℎ) = ∫
S

Γ(x − y, �)ℎ(y) dyS, (44)

W� (ℎ) = ∫
S

[()y, n(y), �)Γ
⊤(x − y, �)

]⊤
ℎ(y) dyS, (45)

where ℎ = (ℎ1, ℎ2, ℎ3, ℎ4, ℎ5, ℎ6)
⊤ is a density vector-function and  is defined in (14).

These pseudo-oscillation potentials have the following jump properties (see Theorem 4.4 in Buchukuri et al34).

Theorem 3. Let ℎ(1) ∈ [H−1+s(S)]6, ℎ(2) ∈ [Hs(S)]6, s > 0. Then the following jump relations hold on S

{V�(ℎ
(1))(z)}± = ∫

S

Γ(z − y, �)ℎ(1)(y) dyS, z ∈ S,

{W�(ℎ
(2))(z)}± = ±2−1ℎ(2)(z) + ∫

S

[()y, n(y), �)Γ
⊤(z − y, �)

]⊤
ℎ(2)(y) dyS, z ∈ S,

{ V�(ℎ
(1))(z)}± = ∓2−1ℎ(1)(z) + ∫

S

 ()z, n(z), �)Γ(z− y, �)ℎ
(1)(y) dyS, z ∈ S,

{ W�(ℎ
(2))(z)}+ = { W�(ℎ

(2))(z)}−, z ∈ S.

Further we introduce the boundary pseudodifferential operators

H�ℎ(z) = ∫
S

Γ(z − y, �)ℎ(y) dyS, z ∈ S,

K�ℎ(z) = ∫
S

 ()z, n(z), �)Γ(z− y, �)ℎ(y) dyS, z ∈ S,

N�ℎ(z) = ∫
S

[()y, n(y), �)Γ
⊤(z − y, �)

]⊤
ℎ(y) dyS, z ∈ S,

L�ℎ(z) = { W�ℎ(z)}
+ = { W�(ℎ)(z)}

−, z ∈ S.
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Note that H� is a weakly singular integral operator (pseudodifferential operator of order −1), K� and N� are singular integral

operators (pseudodifferential operator of order 0), and L� is a singular integro-differential operator (pseudodifferential operator

of order 1). Mapping properties of these potentials and the corresponding boundary operators are described in Appendix (see

Theorems 11-15).

4 EXISTENCE OF SOLUTIONS TO THE INTERACTION PROBLEM (ID)

By Theorems 12and 9 (see Appendix) the operators

H� ∶ [Hs(S)]6 → [Hs+1(S)]6, � ∶ Hs(S) → Hs+1(S),

are invertible for all s ∈ ℝ and we can look for a solution pair (U,w) of the problem (ID) in the form of single layer potentials:

U = V�

(
H−1
�
g
)

in Ω+, w = V�
(−1

�
ℎ
)

in Ω−, (46)

where g = (g̃, g4, g5, g6)
⊤ ∈ [H1∕2(S)]6, g̃ = (g1, g2, g3)

⊤, ℎ ∈ H1∕2(S) are unknown densities. Theorems 8, 11, and 12 imply

the inclusion U ∈ [H1(Ω+)]6 and w ∈ H1(Ω−).

Transmission conditions (21), (22), and the Dirichlet type conditions (23) lead to the following system of pseudodifferential

equations with respect to the unknowns g̃, g4, g5, g6, and ℎ:

g̃ ⋅ n + (�2�
2)−1

(
2−1I1 +�

)−1
�
ℎ = g0 on S, (47)[(

− 2−1I6 + K�

)
H−1
�
g
]
j
+ njℎ = fj on S, j = 1, 2, 3, (48)

gr = f (D)
r

on S, r = 4, 5, 6. (49)

Here and in what follows Im stands for the m × m unit matrix.

The matrix operator generated by the left hand side expressions in the system (47)-(49) reads as

Q�,D =
[
Qlm
�,D

]
7×7

∶=

⎡
⎢⎢⎣

[n]1×3 [0]1×3 (�2�
2)−1�

[A
jk
� ]3×3 [A

j,k+3
� ]3×3 [n]3×1

[0]3×3 I3 [0]3×1

⎤
⎥⎥⎦
7×7

, j, k = 1, 2, 3,

where

A� =
[
Ajk
�

]
6×6

∶=
(
− 2−1I6 + K�

)
H−1
�
, (50)

� ∶=
(
2−1I1 +�

)−1
�

(51)

are the Steklov-Poincaré type operators on S associated with the operators A()x, �) and the Helmholtz operator respectively.

These operators are strongly elliptic pseudodifferential operators of order 1 (for details see Buchukuri et al34,36).

System (47)-(49) can be rewritten in matrix form

Q�,DΦ = F , Φ =
(
g, ℎ

)⊤
, F =

(
g0, f1, f2, f3, f

(D)

4
, f

(D)

5
, f

(D)

6

)⊤
(52)

By Theorems 9 and 12 (see Appendix), the operator Q�,D possesses the following mapping property

Q�,D ∶ [H1∕2(S)]7 → [H−1∕2(S)]4 × [H1∕2(S)]3. (53)

In view of (49) equations (47) and (48) can be rewritten in the following equivalent form as a system with respect to g̃ =

(g1, g2, g3)
⊤ and ℎ:

g̃ ⋅ n + (�2�
2)−1�ℎ = g0 on S, (54)[

A�(g̃, 0, 0, 0)
⊤
]
j
+ njℎ = F̃j on S, j = 1, 2, 3, (55)

where F̃j ∶= fj − [A�(0, 0, 0, f
(D)

4
, f

(D)

5
, f

(D)

6
)⊤]j , j = 1, 2, 3.

Denote by R�,D the operator generated by the left hand side expression of system (54)-(55),

R�,D =
[
R
jk

�,D

]
4×4

∶=

[
[n]1×3 (�2�

2)−1�

Ã� [n]3×1

]

4×4

,
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where Ã� ∶= [A
jk
� ]3×3, j, k = 1, 2, 3.

Evidently the operator

R�,D ∶ [H1∕2(S)]4 → [H−1∕2(S)]4 (56)

is bounded. Let

R
(0)

�,D
∶=

[
[0]1×3 (�2�

2)−1�

Ã� [0]3×1

]

4×4

.

It can be easily verified that the operator

R�,D −R
(0)

�,D
∶ [H1∕2(S)]4 → [H−1∕2(S)]4

is compact.

The strong ellipticity property of the operators (50) and (51) implies that the operators

Ã� ∶ [H1∕2(S)]3 → [H−1∕2(S)]3, � ∶ H
1∕2(S) → H−1∕2(S)

are Fredholm operators with zero index (see Hörmander26, Hsiao et al27, McLean35, Buchukuri et al36).

Therefore operator (56) and consequently operator (53) are Fredholm with index zero.

Now, we show that the null space of the operator R�,D is trivial. Let (g̃, ℎ)⊤ with g̃ ∈ [H1∕2(S)]3 and ℎ ∈ H1∕2(S) be a solution

of the homogeneous system

R�,D(g̃, ℎ)
⊤ = 0, (57)

and set

Ũ = (ũ, ũ4, ũ5, ũ6)
⊤ = V�

(
H−1
�
(g̃, 0, 0, 0)

)
, w̃ = V�

(−1
�
ℎ
)
.

With the help of equation (57) it can be easily checked that Ũ and w̃ solve the homogeneous problem (ID). Therefore by the

uniqueness theorem for the problem (ID) (see Theorem 1), we deduce Ũ = 0 inΩ+ and w̃ = 0 inΩ−. Then {Ũ}+ = (g̃, 0, 0, 0)⊤ =

0 and {w̃}− = ℎ = 0 on S. Consequently, the operators

R�,D ∶ [H1∕2(S)]4 → [H−1∕2(S)]4,

Q�,D ∶ [H1∕2(S)]7 → [H−1∕2(S)]4 × [H1∕2(S)]3

are invertible.

Therefore system (47)-(49) is uniquely solvable and the following assertion holds.

Theorem 4. Let S ∈ C∞, � = � + i!, � > �0 ⩾ 0, ! ∈ ℝ, and

g0 ∈ H−1∕2(S), fj ∈ H−1∕2(S), j = 1, 2, 3, f (D)
r

∈ H1∕2(S), r = 4, 5, 6.

Then the interaction Dirichlet type problem (ID) has a unique solution (U,w) ∈ [H1(Ω+)]6×H1(Ω−), which can be represented

by the single layer potentials

U = V�

(
H−1
�
g
)

in Ω+, w = V�
(−1

�
ℎ
)

in Ω−, (58)

where the densities g ∈ [H1∕2(S)]6 and ℎ ∈ H1∕2(S) are defined from the uniquely solvable system (47)-(49).

If the boundary-transmission data of the problem are smooth functions, then the solution pair (U,w) is smooth as well and

the following regularity result holds.

Theorem 5. Let S ∈ Cm,� , 0 < � < � ≤ 1, m ≥ 2 m ∈ ℕ, and

g0 ∈ Ck−1,�(S), fj ∈ Ck−1,�(S), j = 1, 2, 3, f (D)
r

∈ Ck,�(S), r = 4, 5, 6, 1 ≤ k ≤ m − 1, k ∈ ℕ.

Then the problem (ID) has a unique solution (U,w) ∈ [Ck,�(Ω+)]6 × Ck,�(Ω−), which can be represented by the single layer

potentials (58), where the densities g ∈ [Ck,�(S)]6 and ℎ ∈ Ck,�(S) are defined from the uniquely solvable system (47)-(49).

Proof. From Theorem 15 it follows that the strongly elliptic pseudodifferential operators

� ∶ C
k,�(S) → Ck−1,�(S), A� ∶ [Ck,�(S)]6 → [Ck,�(S)]6
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are Fredholm with zero index. Using the same arguments as above, with the help of the uniqueness theorem for the problem

(ID) it can be shown that the operator

Q�,D ∶ [Ck,�(S)]7 → [Ck−1,�(S)]4 × [Ck,�(S)]3

has the trivial null space and consequently it is invertible. Therefore system (47)-(49) is uniquely solvable in the space [Ck,�(S)]7,

i.e. g ∈ [Ck,�(S)]6, ℎ ∈ Ck,�(S). The regularity result then follows from the representation (58) and from Theorems 14 and

15.

5 EXISTENCE OF SOLUTIONS TO THE INTERACTION PROBLEM (IN)

As in the previous section, we can look for a solution of the problem (IN) in the form of single layer potentials

U = V�

(
H−1
�
g
)

in Ω+, w = V�
(−1

�
ℎ
)

in Ω−, (59)

where g = (g̃, g4, g5, g6)
⊤ ∈ [H1∕2(S)]6 with g̃ = (g1, g2, g3)

⊤ and ℎ ∈ H1∕2(S) are unknown densities. From Theorems 8, 11,

and 12 it follows that U ∈ [H1(Ω+)]6 and w ∈ H1(Ω−).

Transmission conditions (21), (22), and the Neumann type condition (24) lead to the following system of pseudodifferential

equations with respect to the unknowns g and ℎ:

g̃ ⋅ n + (�2�
2)−1�ℎ = g0 on S, (60)

[A�g]j + njℎ = fj on S, j = 1, 2, 3, (61)

[A�g]r = f (N)
r

on S, r = 4, 5, 6, (62)

where A� and � are Steklov-Poincaré type operators defined in (50) and (51).

Denote by Q�,N the operator generated by the left hand side expressions of system (60)-(62):

Q�,N ∶=

[
[(n, 0, 0, 0)]1×6 (�2�

2)−1�

[A�]6×6 [n, 0, 0, 0]6×1

]

7×7

, j = 1, 2, 3, k = 1, 6.

We can rewrite system (60)-(62) in matrix form

Q�,NΦ = F , Φ = (g, ℎ)⊤, F =
(
g0, f1, f2, f3, f

(N)

4
, f

(N)

5
, f

(N)

6

)⊤
. (63)

The operator Q�,N possesses the following mapping property

Q�,N ∶ [H1∕2(S)]7 → [H−1∕2(S)]7.

Since the Steklov-Poincaré type operators � and A� are strongly elliptic pseudodifferential operators of order 1, it follows that

the operators� ∶ H
1∕2(S) → H−1∕2(S) andA� ∶ [H1∕2(S)]6 → [H−1∕2(S)]6 are Fredholm operators with index zero. Hence,

the operator

Q�,N ∶ [H1∕2(S)]7 → [H−1∕2(S)]7

is Fredholm with index zero.

Now, let us investigate the null spaces of the operator Q�,N and its adjoint one. Let g ∈ [H1∕2(S)]6 and ℎ ∈ H1∕2(S) be

solutions of the homogeneous system (60)-(62)

Q�,N (g, ℎ)
⊤ = 0, (64)

and construct the potentials

Ũ = (ũ, ũ4, ũ5, ũ6)
⊤ = V�

(
H−1
�
g
)
, w̃ = V�

(−1
�
ℎ
)
. (65)

Evidently, Ũ and w̃ solve the homogeneous problem (IN) in view of representation (65) and equation (64).

From the structure of a solution to the homogeneous problem (IN) presented in Theorem 1, we have

Ũ = (0, 0, 0, b1, b2, 0)
⊤ in Ω+, w̃ = 0 in Ω−,

where b1 and b2 are arbitrary complex constants. These relations imply {Ũ}+ = (0, 0, 0, b1, b2, 0)
⊤ = g on S, i.e. g1 = g2 =

g3 = g6 = 0, g4 = b1, g5 = b2 and {w̃}− = ℎ = 0 on S. Therefore the dimension of the null space of the operator Q�,N equals
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to 2, dimKerQ�,N = 2. Therefore dimKerQ∗
�,N

= 2, where Q∗
�,N

∶ [H1∕2(S)]7 → [H−1∕2(S)]7 is the operator adjoint to

Q�,N ∶ [H1∕2(S)]7 → [H−1∕2(S)]7. Further, we will describe the null space of the adjoint operator Q∗
�,N

to formulate explicitly

the necessary and sufficient conditions for the problem (IN) to be solvable.

One can easily find that the operator adjoint to Q�,N has the following form

Q∗
�,N

∶=

[
[n, 0, 0, 0]6×1 [A∗

�
]6×6

(�2�
2)−1∗

�
[n, 0, 0, 0]1×6

]

7×7

,

where

A∗
�
=
(
H∗
�

)−1(
− 2−1I6 + K∗

�

)
,

∗
�
∶=

(∗
�

)−1(
2−1I1 +∗

�

)
,

H∗
�
g(z) = ∫

S

Γ⊤(y − z, �) g(y) dyS, z ∈ S, (66)

K∗
�
g(z) = ∫

S

[  ()y, n(y), �) Γ(y − z, �)
]⊤
g(y) dyS, z ∈ S, (67)

∗
�
ℎ(z) = ∫

S


(z − y, �)ℎ(y) dyS, z ∈ S, (68)

 ∗
�
ℎ(z) = ∫

S

)n(y)
(z − y, �)ℎ(y) dyS, z ∈ S. (69)

It is evident that A∗
�
, H∗

�
, K∗

�
, ∗

�
, ∗

�
, and ∗

�
are the adjoint operators respectively to the operators A� , H� , K� , � , � , and

� with respect to the corresponding duality relations.

Note that the fundamental matrixΓ∗(x, �) of the adjoint operatorA∗(), �) reads asΓ∗(x, �) = Γ⊤(−x, �) = Γ⊤(−x, �), while the

fundamental solution 
∗(x, �) of the adjoint Helmholtz operator (Δ + %2 �
2
) reads as 
∗(x, �) = 
(−x, �) = 
(−x, �) = 
(x, �).

Therefore operators (66)-(69) can be rewritten as

H∗
�
g(z) = ∫

S

Γ∗(z − y, �) g(y) dyS, z ∈ S, (70)

K∗
�
g(z) = ∫

S

[  ()y, n(y), �) [Γ
∗(z − y, �)]⊤

]⊤
g(y) dyS, z ∈ S, (71)

∗
�
ℎ(z) = ∫

S


∗(z − y, �)ℎ(y) dyS, z ∈ S, (72)

 ∗
�
ℎ(z) = ∫

S

[)n(y)

∗(z − y, �)]ℎ(y) dyS, z ∈ S. (73)

It is evident that operators (70)-(73) are generated by the direct values on S of the single and double layer potentials constructed

by the fundamental matrix Γ∗(x, �) and fundamental solution 
∗(x, �) (cf. Buchukuri et al34):

V∗
�
(g)(x) ∶= ∫

S

[Γ∗(x − y, �)] g(y) dyS, (74)

W∗
�
(g)(x) ∶= ∫

S

[ ()y, n(y), �)[Γ
∗(x − y, �)]⊤

]⊤
g(y) dyS, (75)

V ∗
�
(ℎ)(x) ∶= ∫

S

[
∗(x − y, �)]ℎ(y) dyS = V�(ℎ)(x), (76)

W ∗
�
(ℎ)(x) ∶= ∫

S

[)n(y)

∗(x − y, �)]ℎ(y) dyS = W� (ℎ)(x). (77)

It is easy to see that the potentials (74)-(77) have the same mapping properties as the potentials (37), (38), (44), (45).
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To find the basis of the null space of the operator Q∗
�,N

we proceed as follows. Let Ψ ∶= ( 1, ⋯ ,  7)
⊤ ∈ [H1∕2(S)]7 be a

solution of the homogeneous adjoint system

Q∗
�,N

Ψ = 0. (78)

By applying the injective matrix operator [
H∗
�

[0]6×1
[0]1×6 −�2�

2∗
�

]

7×7

to equation (78), we obtain the following equivalent equation

Q̃�,NΨ = 0, (79)

where

Q̃�,N ∶=

[
H∗
�

[0]6×1
[0]1×6 −�2�

2∗
�

]

7×7

[
[n, 0, 0, 0]6×1 [A∗

�
]6×6

(�2�
2)−1∗

�
[n, 0, 0, 0]1×6

]

7×7

=

[
[(H∗

�
)klnl]6×1

(
− 2−1I6 + K∗

�

)
−
(
2−1I1 +∗

�

)
−�2�

2 ∗
�
[n, 0, 0, 0]1×6

]

7×7

.

Construct the following potentials

Ũ = V∗
�
(Ψ(1)) +W∗

�
(Ψ(2)) in Ω−, (80)

w̃ = −W ∗
�
( 1) − �2�

2
V ∗
�
(Ψ′

⋅ n) in Ω+, (81)

where

Ψ(1) ∶= (n 1, 0, 0, 0)
⊤, Ψ(2) ∶= (Ψ′,  5,  6,  7)

⊤, Ψ′ = ( 2,  3,  4)
⊤.

From (79)-(81) we easily deduce

{Ũ}− = [(H∗
�
)klnl]6×1 1 +

(
− 2−1I6 + K∗

�

)
Ψ(2) = 0 on S,

{w̃}+ = −
(
2−1I1 +∗

�

)
 1 − �2�

2∗
�
[Ψ′

⋅ n] = 0 on S.

Therefore the vector Ũ ∈ [H1(Ω−)]6 solves the exterior homogeneous Dirichlet problem

A∗(), �)Ũ = 0 in Ω−,

{Ũ}− = 0 on S,

and from the corresponding uniqueness result it follows that Ũ = 0 in Ω− (see Theorem 2.30 in Buchukuri et al34).

On the other hand, the function w̃ ∈ H1(Ω+) solves the interior homogeneous Dirichlet problem:
(
Δ − �2�

2)
w̃ = 0 in Ω+,

{w̃}+ = 0 on S.

It can easily be shown that this problem possesses only the trivial solution, i.e. w̃ = 0 in Ω+ (see Colton et al32).

Using the jump formulae for potentials (80) and (81) (see Theorems 2 and 13) we derive that on the surface S the following

relations hold:

{w̃}− =  1, (82)

{)nw̃}
− = −�2�

2
Ψ′

⋅ n, (83)

{[Ũ]j}
+ = −nj 1, j = 1, 2, 3, (84)

{[Ũ ]k}
+ = 0, k = 4, 5, 6, (85)

{Ũ}+ = Ψ(2), (86)
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Hence we deduce that Ũ = (Ũ1, Ũ2, Ũ3, Ũ4, Ũ5, Ũ6)
⊤ = (Ũ ′, Ũ4, Ũ5, Ũ6)

⊤ with Ũ ′ = (Ũ1, Ũ2, Ũ3, )
⊤ and w̃ solve the following

homogeneous transmission problem

A∗()x, �)Ũ = 0 in Ω+,(
Δ − �2�

2)
w̃ = 0 in Ω−,

{Ũ ′
⋅ n}+ +

(
�2�

2)−1
{)nw̃}

− = 0 on S,

{[Ũ ]j}
+ + {w̃}−nj = 0 on S, j = 1, 2, 3,

{[Ũ ]k}
+ = 0 on S, k = 4, 5, 6.

From the uniqueness result (see Remark 1) it follows that w̃ = 0 in Ω− and Ũ = (0, 0, 0, b1, b2, 0)
⊤ in Ω+ with arbitrary complex

constants b1 and b2. Then from (82)-(86) we obtain

 j = 0, j = 1, 4,  5 = b1,  6 = b2,  7 = 0, i.e., Ψ = (0, 0, 0, 0, b1, b2, 0)
⊤. (87)

Since the operator Q�,N ∶ [H1∕2(S)]7 → [H−1∕2(S)]7 is Fredholm with zero index, from (87) we obtain that the following

orthogonality condition

⟨F , Ψ⟩S = 0 (88)

is necessary and sufficient for matrix pseudodifferential equation (63) to be solvable. Therefore the boundary-transmission

problem(IN) is solvable if and only if

⟨f (N)

4
, 1⟩S = 0, ⟨f (N)

5
, 1⟩S = 0. (89)

Now we can formulate the following existence theorem.

Theorem 6. Let S ∈ C∞, � = � + i!, � > �0 ⩾ 0, ! ∈ ℝ, and

g0 ∈ H−1∕2(S), fj ∈ H−1∕2(S), j = 1, 2, 3, f (N)
r

∈ H−1∕2(S), r = 4, 5, 6.

Then the interaction Neumann type problem (IN) is solvable in the space (U,w) ∈ [H1(Ω+)]6 × H1(Ω−), if and only if the

condition (89) is fulfilled. The solutions of the problem (IN) are represented by potentials

U = V�

(
H−1
�
g
)

in Ω+, w = V�
(−1

�
ℎ
)

in Ω−,

where the densities g ∈ [H1∕2(S)]6 and ℎ ∈ H1∕2(S) are defined from system (60)-(62), and they are defined modulo the

addend vector (0, 0, 0, b1, b2, 0)
⊤ with arbitrary comlex constants b1 and b2.

The following regularity result holds.

Theorem 7. Let S ∈ Cm,� , 0 < � < � ≤ 1, m ≥ 2 m ∈ ℕ, and

g0 ∈ Ck−1,�(S), fj ∈ Ck−1,�(S), j = 1, 2, 3, f (N)
r

∈ Ck−1,�(S), r = 4, 5, 6, 1 ≤ k ≤ m − 1, k ∈ ℕ.

Then the problem (IN) is solvable in the space [Ck,�(Ω+)]6 × Ck,�(Ω−), if and only if the conditions

∫
S

f
(N)

4
dS = 0, ∫

S

f
(N)

5
dS = 0

are fulfilled. The solutions of the problem (IN) are represented by potentials (59) and they are defined modulo the complex

constant addend vector (0, 0, 0, b1, b2, 0)
⊤.

Proof of this Theorem is similar to the proof of Theorem 5.

6 APPENDIX: MAPPING PROPERTIES OF POTENTIALS

For the readers convenience here we collect some results describing properties of the layer potentials. Here we preserve the

notation from the main text of the paper.

For the potentials associated with the Helmholtz equation the following theorems hold (see McLean35, Colton et al32).
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Theorem 8. Let s ∈ ℝ, S ∈ C∞. Then the single and double layer scalar potentials can be extended to the following continuous

operators

V� ∶ H
s(S) → Hs+3∕2(Ω+), V� ∶ H

s(S) → Hs+3∕2(Ω−),

W� ∶ H
s(S) → Hs+1∕2(Ω+), W� ∶ H

s(S) → Hs+1∕2(Ω−).

Theorem 9. Let s ∈ ℝ, S ∈ C∞. Then the operators (see (39)-(42))

� ∶ H
s(S) → Hs+1(S), ±2−1I1 +� ∶ H

s(S) → Hs(S),

� ∶ Hs+1(S) → Hs(S), ±2−1I1 +� ∶ H
s(S) → Hs(S),

are continuous and invertible for Re� > 0.

Theorem 10. Let S ∈ Cm,� , 0 < � < � ≤ 1, and let k ≤ m − 1, m ≥ 2 be nonnegative integers. Then the scalar potential

operators

V� ∶ Ck,�(S) → Ck+1,�(Ω±), W� ∶ Ck,�(S) → Ck,�(Ω±),

are continuous, while the scalar boundary operators

� ∶ C
k,�(S) → Ck+1,�(S), ±2−1I1 +� , ∶ C

k,�(S) → Ck,�(S),

� ∶ Ck+1,�(S) → Ck,�(S), ±2−1I1 +� ∶ C
k,�(S) → Ck,�(S),

are invertible.

For the vector potentials associated with the pseudo-oscillation operators A(), �) and A∗(), �) the following theorems hold

(see Buchukuri et al34,36).

Theorem 11. Let s ∈ ℝ, S ∈ C∞. Then the vector potentials V� and W� are continuous in the following spaces

V� ∶ [Hs(S)]6 → [Hs+3∕2(Ω+)]6, V� ∶ [Hs(S)]6 → [H
s+3∕2

loc
(Ω−)]6,

W� ∶ [Hs(S)]6 → [Hs+1∕2(Ω+)]6, W� ∶ [Hs(S)]6 → [H
s+1∕2

loc
(Ω−)]6.

Theorem 12. Let s ∈ ℝ, S ∈ C∞. Then the operators

H� ∶ [Hs(S)]6 → [Hs+1(S)]6, K� ,N� ∶ [Hs(S)]6 → [Hs(S)]6, L� ∶ [Hs(S)]6 → [Hs−1(S)]6

are bounded. The operators H� and L� are strongly elliptic pseudodifferential operators of order −1 and 1 respectively, while

the operators ±2−1I6 + K� and ±2−1I6 + N� are elliptic pseudodifferential operators of order 0.

Moreover, the operators H� , 2
−1I6+K� , and 2−1I6+N� are invertible, whereas the operators L� , −2

−1I6+N� , and −2−1I6+K�

are Fredholm operators with zero index.

Theorem 13. Let ℎ(1) ∈ [H−1+s(S)]6, ℎ(2) ∈ [Hs(S)]6, s > 0. Then the following jump relations hold on S (see (74)-(75))

{V∗
�
(ℎ(1))(z)}± = ∫

S

Γ∗(z − y, �)ℎ(1)(y) dyS,

{W∗
�
(ℎ(2))(z)}± = ±2−1ℎ(2)(z) + ∫

S

[ ()y, n(y), �)[Γ
∗(z − y, �)]⊤

]⊤
ℎ(2)(y) dyS,

{V∗
�
(ℎ(1))(z)}± = ∓2−1ℎ(1)(z) + ∫

S

()z, n(z), �)[Γ
∗(z − y, �)]ℎ(1)(y) dyS,

{W∗
�
(ℎ(2))(z)}+ = { W∗

�
(ℎ(2))(z)}−.

Following theorems hold in the space of Hölder continuous functions (cf. Buchukuri et al34).

Theorem 14. Let S ∈ Cm,�, 0 < � < � ≤ 1, and let k ≤ m − 1, m ≥ 2 be nonnegative integers. Then the single and double

layer vector potential operators

V� ∶ [Ck,�(S)]6 → [Ck+1,�(Ω±)]6, W� ∶ [Ck,�(S)]6 → [Ck,�(Ω±)]6

are continuous.
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Theorem 15. Let S ∈ Cm,�, 0 < � < � ≤ 1, and let k ≤ m − 1, m ≥ 2 be nonnegative integers. Then the following boundary

integral operators

H� ∶ [Ck,�(S)]6 → [Ck+1,�(S)]6,

2−1I6 + N� ∶ [Ck,�(S)]6 → [Ck,�(S)]6,

2−1I6 + K� ∶ [Ck,�(S)]6 → [Ck,�(S)]6,

are invertible, while the operators

−2−1I6 + N� ∶ [Ck,�(S)]6 → [Ck,�(S)]6,

−2−1I6 + K� ∶ [Ck,�(S)]6 → [Ck,�(S)]6,

L� ∶ [Ck+1,�(S)]6 → [Ck,�(S)]6,

are Fredholm with zero index.
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