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Abstract

In this paper, we would like to consider the Cauchy problem for semi-linear 𝜎-
evolution equations with time-dependent damping for any 𝜎 ≥ 1. Motivated strongly
by the classification of damping terms in the paper34, the first main goal of the present
work is to make some generalizations from 𝜎 = 1 to 𝜎 > 1 and simultaneously to
investigate decay estimates for solutions to the corresponding linear equations in the
so-called effective damping cases. For the next main goals, we are going not only to
prove the global well-posedness property of small data solutions but also to indicate
blow-up results for solutions to the semi-linear problem. In this concern, the novelty
which should be recognized is that the application of a modified test function com-
bined with a judicious choice of test functions gives blow-up phenomena and upper
bound estimates for lifespan in both the subcritical case and the critical case, where
𝜎 is assumed to be any fractional number. Finally, lower bound estimates for lifespan
in some spatial dimensions are also established to find out their sharp results.
KEYWORDS:
𝜎-evolution equation; WKB-analysis; Global existence of small data solution; Critical exponent; Lifespan
estimates

1 INTRODUCTION

1.1 Background of the damped wave equations
Let us sketch out some historical background of the damped wave equations with constant and time-dependent coefficients. We
start with the following Cauchy problem for the semi-linear classical damped wave equation:

{

𝑢𝑡𝑡 − Δ𝑢 + 𝑢𝑡 = |𝑢|𝑝, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛,

(1)

with 𝑝 > 1. At first, recalling the two pioneering papers27,28 since 1976, which devotes to the study of decay estimates for
solutions to the corresponding linear equation of (1), one recognizes that the author also established the asymptotic behavior of
solutions to (1) thanks to the presence of the damping term 𝑢𝑡. By denoting the so-called Fujita exponent

𝑝Fuj(𝑛) ∶= 1 + 2
𝑛
,

which is the critical exponent of the corresponding semi-linear heat equations (see12 and references therein), the authors in31
proved a global (in time) existence result for energy solutions to (1) by assuming compactly supported small, data when 𝑝 >
𝑝Fuj(𝑛) and 𝑝 ≤ 𝑛

𝑛−2
if 𝑛 ≥ 3. Moreover, the authors also established a blow-up result for 1 < 𝑝 < 𝑝Fuj(𝑛) by assuming that the
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small initial data satisfy some integral sign conditions. Later in35, the author showed that the critical case 𝑝 = 𝑝Fuj(𝑛) belongs
to the blow-up region by applying the so-called test function method, which was originally developed in1. This method bases
on a contradiction argument and yields sharp exponents for models with a parabolic like decay for solutions. When the blow-up
phenomenon in finite time occurs, the sharp lifespan estimates, i.e. the maximal existence time of solutions, for (1) in all spatial
dimensions have been investigated in numerous papers15,19,22,26, namely,

LifeSpan(𝑢) ∼

{

𝐶𝜀−
2(𝑝−1)

2−𝑛(𝑝−1) if 1 < 𝑝 < 𝑝Fuj(𝑛),
exp

(

𝐶𝜀−(𝑝−1)
) if 𝑝 = 𝑝Fuj(𝑛).

Here the positive constant 𝜀 presents the size of initial data and 𝐶 = 𝐶(𝑛, 𝑝, 𝑢0, 𝑢1) is a positive constant independent of 𝜀. For
this reason, we can say that in some sense the study of (1) seems to be completed in 2019.

A further problem of interest is the Cauchy problem for the linear wave equation with time-dependent dissipation
{

𝑢𝑡𝑡 − Δ𝑢 + 𝑏(𝑡)𝑢𝑡 = 0, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛.

(2)

The term 𝑏(𝑡)𝑢𝑡 is called the damping term, which prevents the motion of the wave and reduces its energy, in addition, the
coefficient 𝑏 = 𝑏(𝑡) represents the strength of the damping. Asymptotic behavior of solutions and their wave energy change
according to the positive coefficient 𝑏 = 𝑏(𝑡) in the damping term. In33,34, the author proposed a classification of the time-
dependent dissipation terms in the following ways:

• Scattering producing to the free wave equation,
• Non-effective dissipation,
• Effective dissipation,
• Over-damping producing.

If the solution behaves asymptotically like that of the wave equation, then the solution scatters to that of the free wave equation
as 𝑡 → ∞. This case is called a scattering producing case. If the 𝐿𝑝 − 𝐿𝑞 estimates, with 1 ≤ 𝑝 ≤ 𝑞 ≤ ∞, for the solution to
(2) are closely related to those for the solution to the free wave equation, then the damping term is called non-effective. If the
solution to (2) has the same decay behavior as that to the corresponding parabolic Cauchy problem

⎧

⎪

⎨

⎪

⎩

𝑣𝑡 =
1
𝑏(𝑡)

Δ𝑣, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,

𝑣(0, 𝑥) = 𝑣0(𝑥), 𝑥 ∈ ℝ𝑛,

where 𝑣0 = 𝑣0(𝑥) depending on 𝑢0, 𝑢1 is suitably chosen, then the damping term is called effective. Finally, if the energy of
solutions has no any decay estimate, then the damping term is called over-damping producing.

Next, we consider the following Cauchy problem for semi-linear time-dependent damped wave equation:
{

𝑢𝑡𝑡 − Δ𝑢 + 𝑏(𝑡)𝑢𝑡 = |𝑢|𝑝, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛.

(3)

In24, the authors proved that the critical exponent for solutions to (3) with the special effective damping term
𝑏(𝑡)𝑢𝑡 = 𝜇(1 + 𝑡)−𝛽𝑢𝑡

for a constant 𝜇 > 0 and 𝛽 ∈ (−1, 1) remains the same as that to (1), provided that the small initial data have compact support.
This means that the authors have obtained a blow-up result if 1 < 𝑝 ≤ 𝑝Fuj(𝑛) and a global (in time) existence one if 𝑝 > 𝑝Fuj(𝑛).
Later, a global (in time) existence result for (3) was extended in6 to more general cases of 𝑏(𝑡) satisfying a monotonicity condition
and a polynomial-like behavior. Moreover, the authors relaxed the assumption of compactly supported data by considering
exponentially weighted energy spaces. In particular, the global (in time) existence holds for 𝑝 > 𝑝Fuj(𝑛) and 𝑝 ≤ 𝑛

𝑛−2
with

𝑛 ≥ 3, where the initial data are assumed to be small in exponentially weighted energy spaces. The authors in5 treated both the
subcritical case 1 < 𝑝 < 𝑝Fuj(𝑛) and the critical case 𝑝 = 𝑝Fuj(𝑛) by developing a modified test function method. They showed
that there is no global (in time) existence of small data solutions under a suitable sign assumption of the initial data Regarding
the so-called scale-invariant damping, i.e. 𝛽 = 1, on the one hand we want to underline that a blow-up result was given in20
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when 1 < 𝑝 < 𝑝𝑆(𝑛+𝜇) and 𝜇 ∈
(

0, 𝑛
2+𝑛+2
𝑛+2

). Here 𝑝𝑆(𝑛) stands for the well-known Strauss exponent, which is the positive root
of the quadratic equation (𝑛 − 1)𝑝2 − (𝑛 + 1)𝑝 − 2 = 0. On the other hand, the authors in2,7 succeeded in both proving global
existence of solutions and determining the critical exponent in the very special situation of 𝜇 = 2. For the so-called scattering
damping 𝛽 > 1, we refer the interested readers to25 for a blow-up result, provided that the condition 1 < 𝑝 < 𝑝𝑆(𝑛) holds.
Speaking more about the critical exponent when 𝛽 < −1, one should recognize that this situation is completely different from
these previous ones. More precisely, the authors in23 indicated that the small data solution always exists globally for any 𝑝 > 1,
i.e., the critical exponent really disappears in the mentioned case. Among other things, sharp lifespan estimates for solutions to
(3) in the critical case 𝑝 = 𝑝Fuj(𝑛) were reported in18, where 𝑏(𝑡) = (1 + 𝑡)−𝛽 with 𝛽 ∈ [−1, 1). Quite recently, the authors in21
investigated blow-up results together with sharp lifespan estimates for (3) in both the subcritical case and the critical case when
more general damping coefficients are considered including

𝑏(𝑡) = 1 + 𝑡, 𝑏(𝑡) = (1 + 𝑡)
(

1 + log(1 + 𝑡)
) and so on.

1.2 Main purpose of this paper
This paper is concerned with studying the following semi-linear 𝜎-evolution equations with general time-dependent damping
in the whole space:

{

𝑢𝑡𝑡(𝑡, 𝑥) + (−Δ)𝜎𝑢(𝑡, 𝑥) + 𝑏(𝑡)𝑢𝑡(𝑡, 𝑥) = |𝑢(𝑡, 𝑥)|𝑝, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛,

(4)
where 𝜎 > 1 is assumed to be any fractional number and 𝑝 > 1. In the present manuscript, we suppose that the dissipation term
𝑏(𝑡)𝑢𝑡 satisfies the so-called effective assumptions in the following definition according to the classification given in34.
Definition 1 (Effective dissipation). If the strictly positive function 𝑏 = 𝑏(𝑡) satisfies

(B1) 𝑏 ∈ 3([0,∞)), (B4) 1
𝑏(𝑡)

∉ 𝐿1([0,∞)
)

,

(B2) 𝑏′(𝑡) does not change its sign and 𝑡𝑏(𝑡) → ∞ as 𝑡→ ∞, (B5)
(

(1 + 𝑡)2𝑏(𝑡)
)−1 ∈ 𝐿1([0,∞)

)

.

(B3) |𝑏(𝑘)(𝑡)|
𝑏(𝑡)

≲ 1
(1 + 𝑡)𝑘

for 𝑘 = 1, 2,

then the damping term 𝑏(𝑡)𝑢𝑡 is called effective. These assumptions will be helpful in Sections 2-4. Additionally, we would like
to propose one more assumption for 𝑏 = 𝑏(𝑡), which plays a significant role in the blow-up result and the estimates for lifespan
in Sections 5 and 6 later, as follows:

(B-L) 𝔹∞ ∶= lim sup
𝑡→∞

|

|

|

|

𝑏′(𝑡)
𝑏2(𝑡)

|

|

|

|

< 1.

Example 1.1. Let us give several typical examples of 𝑏 = 𝑏(𝑡) enjoying the conditions (B1)-(B5) of Definition 1:
∙ 𝑏(𝑡) = (1 + 𝑡)−𝛽 with 𝛽 ∈ [−1, 1),
∙ 𝑏(𝑡) = 𝜇(1 + 𝑡)−𝛽

(

log(𝑒 + 𝑡)
)𝛾 with 𝜇 > 0, 𝛽 ∈ (−1, 1) and 𝛾 ≠ 0.

Moreover, the following functions fulfill the assumption (B-L):
∙ 𝑏(𝑡) = 𝜇(1 + 𝑡)−𝛽 with 𝜇 > 0 and 𝛽 ∈ [−1, 1).
∙ 𝑏(𝑡) = 𝜇(1 + 𝑡)−1 with 𝜇 > 1.

∙ 𝑏(𝑡) =
𝑚
∏

𝑘=1
𝓁𝑘(𝑡) with 𝑚 ≥ 2, 𝓁1(𝑡) = 1 + 𝑡 and 𝓁𝑘+1 = 1 + log

(

𝓁𝑘(𝑡)
) for 𝑘 = 1, 2,⋯ , 𝑚 − 1.

To the best of authors’ knowledge, it seems that there are not so many papers in terms of the study of (4) for any fractional
number 𝜎 ≥ 1 at present. Let us mention briefly several recent contributions related to (4), namely, the following linear model
is of our attention:

{

𝑢𝑡𝑡(𝑡, 𝑥) + (−Δ)𝜎𝑢(𝑡, 𝑥) + 𝑏(𝑡)(−Δ)𝛿𝑢𝑡(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛,

(5)
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with 𝜎 ≥ 1 and 𝛿 ∈ (0, 𝜎). The authors in14,16,17 succeeded in deriving some𝐿𝑝−𝐿𝑞 estimates for the energies of higher order by
applying WKB analysis associated with the theory of modified Bessel functions and Faà di Bruno’s formula when the dissipation
coefficient 𝑏 = 𝑏(𝑡) is considered to be monotonous functions. Coming back the special case of 𝑏(𝑡) = 𝜇(1+ 𝑡)−𝛽 with a constant
𝜇 > 0 and 𝛽 ∈ (−1, 1), one can see that a classification between effective damping and noneffective damping, which strongly
depends on parameters 𝜎, 𝛿 and 𝛽, is introduced in3. Their main work is to study the asymptotic profile of solutions to (5) and
simultaneously to clarify that a diffusion phenomenon occurs in the situation of effective one. For this purpose, the point worth
noticing is that the case of 𝛿 = 0 is not treated completely because the presence of the structural damping (−Δ)𝛿𝑢𝑡 with 𝛿 > 0
generates a smoothing effect, which disappears for the classical damping 𝑢𝑡 (see more4 when 𝑏(𝑡) = 1). Among other things, we
recognize that the information about lifespan of solutions to (4) has not ever been appeared in these papers even if 𝛿 > 0.

Our main goal in this paper is on the one hand to prove global (in time) existence of small data Sobolev solutions to the Cauchy
problem (4) by using some achieved estimates for solutions from the corresponding linear equation. The crux of getting such
estimates with the fractional power operator comes from WKB analysis associated with diagonalization procedures effectively.
On the other hand, we would like to indicate blow-up phenomenon and sharp lifespan estimates for solutions to (4) as well, where
𝜎 > 1 in (4) is assumed to be any fractional number. More precisely, to deal with the fractional Laplacian (−Δ)𝜎 , well-known as
a non-local operator, a modified test function method with a judicious choice of test functions will be applied to give blow-up
results in both the subcritical exponent and the critical exponent. Speaking about sharp estimates for lifespan of solutions, one
of new contributions in this paper, we not only catch upper bound ones by utilizing a suitable test function method linked to
nonlinear differential inequalities but also establish lower bound ones by constructing polynomial type time-weighted Sobolev
spaces. Throughout this work, we can understand clearly how the dissipation coefficient 𝑏(𝑡) and the fractional power 𝜎 influence
on the above-mentioned results.

Notations

• We write 𝑓 ≲ 𝑔 when there exists a constant 𝐶 > 0 such that 𝑓 ≤ 𝐶𝑔, and 𝑓 ≈ 𝑔 when 𝑔 ≲ 𝑓 ≲ 𝑔.

• As usual, the spaces 𝐻𝑎 and 𝐻̇𝑎 with 𝑎 ≥ 0 stand for Bessel and Riesz potential spaces based on the 𝐿2 spaces. Here
⟨

𝐷
⟩𝑎 and |𝐷|

𝑎 denote the pseudo-differential operator with symbol ⟨𝜉⟩𝑎 and the fractional Laplace operator with symbol
|𝜉|𝑎, respectively.

• For a given number 𝑠 ∈ ℝ, we denote [𝑠]+ ∶= max{𝑠, 0} and [𝑠] ∶= max
{

𝑘 ∈ ℤ ∶ 𝑘 ≤ 𝑠
}.

• For later convenience, with 𝑠 ∈ [0, 𝑡] we denote by ℬ(𝑠, 𝑡) the primitive of 1
𝑏(𝜏)

which vanishes at 𝑡 = 𝑠, namely,

ℬ(𝑠, 𝑡) ∶=

𝑡

∫
𝑠

1
𝑏(𝜏)

𝑑𝜏.

Main results
Let us now state the main results which will be proved in the present paper. To get started, we obtain the global existence of

small data solutions to (4) from the Sobolev space.
Theorem 1 (Global existence). Let us assume that the conditions (B1)-(B5) are satisfied. Let 𝜎 > 1 and (𝑢0, 𝑢1) ∈ 𝛼

𝑚 ∶=
(

𝐻𝛼 ∩ 𝐿𝑚
)

×
(

𝐿2 ∩ 𝐿𝑚
) with 𝑚 ∈ [1, 2) and 𝛼 ∈ (0, 𝜎]. Moreover, we suppose that the exponent 𝑝 satisfies

𝑝 > 1 + 2𝑚𝜎
𝑛

and
{

2
𝑚
≤ 𝑝 if 𝑛 ≤ 2𝛼,

2
𝑚
≤ 𝑝 ≤ 𝑛

𝑛−2𝛼
if 2𝛼 < 𝑛 ≤ 4𝛼

2−𝑚
.

Then, there exists a sufficiently small constant 𝜀 > 0 such that for any data (𝑢0, 𝑢1) ∈ 𝛼
𝑚 satisfying the assumption

‖(𝑢0, 𝑢1)‖𝛼
𝑚
∶= ‖𝑢0‖𝐻𝛼 + ‖𝑢0‖𝐿𝑚 + ‖𝑢1‖𝐿2 + ‖𝑢1‖𝐿𝑚 ≤ 𝜀,

there is a uniquely determined global (in time) Sobolev solution
𝑢 ∈ 

(

[0,∞),𝐻𝛼)
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to (4). Furthermore, the solution satisfies the following decay estimates:
‖𝑢(𝑡, ⋅)‖𝐿2 ≲

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

‖(𝑢0, 𝑢1)‖𝛼
𝑚
,

‖ |𝐷|

𝛼𝑢(𝑡, ⋅)‖𝐿2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖(𝑢0, 𝑢1)‖𝛼

𝑚
.

The next main result is concerned with indicating the sharpness of the exponent 𝑝 to (4).
Theorem 2 (Blow-up). Let 𝜎 > 1 and 𝑛 ≥ 1. Assume that we choose the initial data 𝑢0 ∈ 𝐿1 and 𝑢1 ∈ 𝐿1 satisfying the
following relations:

∫
ℝ𝑛

(

𝑢0(𝑥) + 𝔹0𝑢1(𝑥)
)

𝑑𝑥 > 0, (6)

where 𝔹0 ∶=

∞

∫
0

exp
(

−

𝑡

∫
0

𝑏(𝜏)𝑑𝜏
)

𝑑𝑡. Moreover, we suppose that the following conditions hold:

⎧

⎪

⎨

⎪

⎩

𝑝 ≤ 1 + 2𝜎
𝑛

if 𝜎 is an integer number,
𝑝 < 1 + 2𝜎

𝑛
if 𝜎 is a fractional number.

(7)

Then, there is no global (in time) Sobolev solution 𝑢 ∈ 
(

[0,∞), 𝐿2) to (4).
Remark 1. Obviously, it follows from Theorems 1 and 2 that the critical exponent 𝑝crit , which classifies between global (in time)
existence of small data solutions and finite time blow-up of (even) small data solutions, is

𝑝crit = 1 + 2𝜎
𝑛
.

The final main result involves the lifespan estimates for solutions to (4). To demonstrate this, let us consider the initial data
(

𝜀𝑢0(𝑥), 𝜀𝑢1(𝑥)
) in place of (𝑢0(𝑥), 𝑢1(𝑥)

) for (4), where 𝜀 is a small positive constant which presents the size of initial data.
Theorem 3 (Upper bound of lifespan). Under the same assumptions as in Theorem 2 together with the condition (7) for the
exponent 𝑝, there exists a positive constant 𝜀0 > 0 such that for any 𝜀 ∈ (0, 𝜀0] the following upper bound estimates for the
lifespan of solutions to (4) hold:

ℬ
(

0,LifeSpan(𝑢)
)

≤
⎧

⎪

⎨

⎪

⎩

𝐶𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1) if 𝑝 < 1 + 2𝜎
𝑛
,

exp
(

𝐶𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
,

(8)

where 𝐶 is a positive constant independent of 𝜀.
Theorem 4 (Lower bound of lifespan). Let 𝜎 > 1, 𝑛 ≤ 4𝛼 and (𝑢0, 𝑢1) ∈

(

𝐻𝛼 ∩ 𝐿1) ×
(

𝐿2 ∩ 𝐿1) with 𝛼 ∈ (0, 𝜎]. Assume
that the exponent 𝑝 ≥ 2 fulfills (7) together with the condition 𝑝 ≤ 𝑛∕(𝑛 − 2𝛼) if 𝑛 > 2𝛼. Then, there exists a positive constant
𝜀0 such that for any 𝜀 ∈ (0, 𝜀0] the following lower bound estimates for the lifespan of solutions to (4) hold:

ℬ
(

0,LifeSpan(𝑢)
)

≥
⎧

⎪

⎨

⎪

⎩

𝑐𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1) if 𝑝 < 1 + 2𝜎
𝑛
,

exp
(

𝑐𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
,

(9)

where 𝑐 = 𝑐(𝑛, 𝑢0, 𝑢1) is a positive constant independent of 𝜀.
Remark 2. Summarizing the derived results (8) and (9) in Theorems 3 and 4 we claim that the sharp lifespan estimates for
solutions to the Cauchy problem (4) in both the subcritical case and the critical case are given by the following (implicit) relation:

ℬ
(

0,LifeSpan(𝑢)
)

∼

⎧

⎪

⎨

⎪

⎩

𝐶𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1) if 𝑝 < 1 + 2𝜎
𝑛
,

exp
(

𝐶𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
,

with a positive constant 𝐶 independent of 𝜀.
Example 1.2. Let us give several typical examples of 𝑏 = 𝑏(𝑡) to find out the (explicit) sharp estimates for lifespan as follows:
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∙ If 𝑏(𝑡) = 𝜇(1 + 𝑡)−𝛽 with 𝜇 > 0 and 𝛽 ∈ (−1, 1), then

LifeSpan(𝑢) ∼

⎧

⎪

⎨

⎪

⎩

𝐶𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1)
. 1
1+𝛽 if 𝑝 < 1 + 2𝜎

𝑛
,

exp
(

𝐶𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
.

∙ If 𝑏(𝑡) = 𝜇(1 + 𝑡) with 𝜇 > 0, then

LifeSpan(𝑢) ∼

⎧

⎪

⎨

⎪

⎩

exp
(

𝐶𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1)

)

if 𝑝 < 1 + 2𝜎
𝑛
,

exp
(

exp
(

𝐶𝜀−(𝑝−1)
)

)

if 𝑝 = 1 + 2𝜎
𝑛
.

∙ If 𝑏(𝑡) =
𝑚
∏

𝑘=1
𝓁𝑘(𝑡) with 𝑚 ≥ 2, 𝓁1(𝑡) = 1 + 𝑡 and 𝓁𝑘+1 = 1 + log

(

𝓁𝑘(𝑡)
) for 𝑘 = 1, 2,⋯ , 𝑚 − 1, then

LifeSpan(𝑢) ∼

⎧

⎪

⎨

⎪

⎩

exp[𝑚]
(

𝐶𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1)

)

if 𝑝 < 1 + 2𝜎
𝑛
,

exp[𝑚+1]
(

𝐶𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
,

where exp[1](𝑡) = exp(𝑡) and exp[𝑘+1](𝑡) = exp
(

exp[𝑘](𝑡)
) for 𝑘 = 1, 2,⋯ , 𝑚.

The structure of this paper is organized as follows: In Sections 2 and 3, we devote the study of the corresponding linear
equation of (4) to conclude some decay estimates for solutions. Next, we give the proofs of the global (in time) existence of
small data Sobolev solutions and the blow-up results for (4) in Sections 4 and 5, respectively. Finally, Section 6 is to present the
estimates for upper bound and lower bound of lifespan when the finite time blow-up phenomena of solutions to (4) occur.

2 THE STUDY OF THE CORRESPONDING LINEAR EQUATION

Our starting point in this paper is to the study the corresponding linear Cauchy problem for (4), namely,
{

𝑢𝑡𝑡(𝑡, 𝑥) + (−Δ)𝜎𝑢(𝑡, 𝑥) + 𝑏(𝑡)𝑢𝑡(𝑡, 𝑥) = 0, (𝑡, 𝑥) ∈ (0,∞) ×ℝ𝑛,
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛,

(10)

where 𝜎 > 1 and 𝑛 ≥ 1.
We apply the partial Fourier transformation with respect to spatial variables to (10) with 𝑢̂ = 𝑢̂(𝑡, 𝜉) = 𝑥→𝜉 (𝑢(𝑡, 𝑥)) (𝑡, 𝜉) to

get
{

𝑢̂𝑡𝑡 + |𝜉|2𝜎 𝑢̂ + 𝑏(𝑡)𝑢̂𝑡 = 0, (𝑡, 𝜉) ∈ (0,+∞) ×ℝ𝑛,
𝑢̂(0, 𝜉) = 𝜀𝑢̂0(𝜉), 𝑢̂𝑡(0, 𝜉) = 𝜀𝑢̂1(𝜉), 𝜉 ∈ ℝ𝑛.

(11)
By applying the transformation

𝑢̂(𝑡, 𝜉) = exp
(

− 1
2

𝑡

∫
0

𝑏(𝜏)𝑑𝜏
)

𝑣(𝑡, 𝜉),

one transfers the Cauchy problem (11) into
{

𝑣𝑡𝑡 + 𝑚(𝑡, 𝜉)𝑣 = 0, (𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛,
𝑣(0, 𝜉) = 𝑣0(𝜉), 𝑣𝑡(0, 𝜉) = 𝑣1(𝜉), 𝜉 ∈ ℝ𝑛,

(12)

where 𝑣0(𝜉) = 𝑢̂0(𝜉) and 𝑣1(𝜉) = 𝑏(0)
2
𝑢̂0(𝜉) + 𝑢̂1(𝜉) and the coefficient 𝑚 = 𝑚(𝑡, 𝜉) of the mass term is defined by

𝑚(𝑡, 𝜉) ∶= |𝜉|2𝜎 − 1
4
𝑏2(𝑡) − 1

2
𝑏′(𝑡). (13)

We see that 𝑏′(𝑡) is a negligible term in (13), that is, it holds |𝑏′(𝑡)| = 𝑜(𝑏2(𝑡)) as 𝑡 → ∞. Then, the term |𝜉|2𝜎 − 𝑏2(𝑡)∕4 can be
considered as the principal part of the term 𝑚(𝑡, 𝜉). Hence, we introduce

Γ ∶=
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ |𝜉|𝜎 = 1
2
𝑏(𝑡)

}
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which divides the extended phase space into two regions as follows:
Πhyp =

{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ |𝜉|𝜎 > 1
2
𝑏(𝑡)

}

and Πell =
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ |𝜉|𝜎 < 1
2
𝑏(𝑡)

}

.

Let us define the auxiliary weight function

⟨𝜉⟩𝑏(𝑡) ∶=

√

|

|

|

|𝜉|2𝜎 −
𝑏2(𝑡)
4

|

|

|

. (14)
Remark 3. It holds

𝜕𝑡⟨𝜉⟩𝑏(𝑡) = ∓
𝑏(𝑡)𝑏′(𝑡)
4⟨𝜉⟩𝑏(𝑡)

,

where the upper sign is taken in the hyperbolic region.
Now we will divide both regions of the extended phase space into some zones. The zones are defined as follows:

𝑍hyp(𝑁) =
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≥ 𝑁
𝑏(𝑡)
2

}

∩ Πhyp,

𝑍pd(𝑁, 𝜀) =
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ 𝜀
𝑏(𝑡)
2

≤ ⟨𝜉⟩𝑏(𝑡) ≤ 𝑁
𝑏(𝑡)
2

}

∩ Πhyp,

𝑍red(𝜀) =
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≤ 𝜀
𝑏(𝑡)
2

}

,

𝑍ell(𝜀, 𝑡0) =
{

(𝑡, 𝜉) ∈ [0,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≥ 𝜀
𝑏(𝑡)
2

}

∩ Πell ∩ {𝑡 ≥ 𝑡0}.

Here in general, 𝑁 and 𝑡0 are large positive constants and 𝜀 is a small positive constant, which will be chosen later. Let us
introduce separating lines between these zones as follows (see Fig.1):

• by 𝑡ell = 𝑡ell(|𝜉|), we denote the separating line between the zones 𝑍ell(𝜀, 𝑡0) and 𝑍red(𝜀);

• by 𝑡red = 𝑡red(|𝜉|), we denote the separating line between the zones 𝑍red(𝜀) and 𝑍pd(𝑁, 𝜀);

• by 𝑡pd = 𝑡pd(|𝜉|), we denote the separating line between the zones 𝑍pd(𝑁, 𝜀) and 𝑍hyp(𝑁).

|𝜉|

𝑡

0

𝑡ell

𝑡red

𝑡pd

Γ

𝑍hyp

𝑍pd

𝑍red

𝑍ell

a. The case that 𝑏(𝑡) is decreasing
|𝜉|

𝑡

0

Γ

𝑍hyp

𝑍pd𝑍red
𝑍ell

b. The case that 𝑏(𝑡) is increasing

Figure 1 Division of extended phase space into zones

In the consideration of the zones, we will omit the details and sketch only the main steps of the estimates for the corresponding
fundamental solutions since the desired estimates can be proved in the same way as those in6,32,34.
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2.1 Considerations in the hyperbolic zone 𝑍hyp(𝑁)

In the hyperbolic zone 𝑍hyp(𝑁) it holds ⟨𝜉⟩𝑏(𝑡) ∼ |𝜉|𝜎 . We consider the micro-energy 𝑉 =
(

⟨𝜉⟩𝑏(𝑡)𝑣,𝐷𝑡𝑣
)T. Then, it holds

𝐷𝑡𝑉 =

(

0 ⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑡) 0

)

𝑉 +

⎛

⎜

⎜

⎜

⎝

𝐷𝑡⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑡)

0

−
𝑏′(𝑡)

2⟨𝜉⟩𝑏(𝑡)
0

⎞

⎟

⎟

⎟

⎠

𝑉 . (15)

We are interested in the fundamental solution 𝐸𝑉
hyp = 𝐸𝑉

hyp(𝑡, 𝑠, 𝜉) to the system (15). At first, we consider the first matrix as
principal part and the second one as remainder. Then, we carry out two steps of diagonalization procedure to make the remainder
integrable over the hyperbolic zone𝑍hyp(𝑁). Summarizing, asymptotic behavior of the fundamental solution𝐸𝑉

hyp = 𝐸𝑉
hyp(𝑡, 𝑠, 𝜉)is given by the following statement.

Lemma 1. The following estimate holds for the fundamental solution 𝐸𝑉
hyp = 𝐸𝑉

hyp(𝑡, 𝑠, 𝜉) with (𝑠, 𝜉), (𝑡, 𝜉) ∈ 𝑍hyp and 𝑡 ≥ 𝑠:

(|𝐸𝑉
hyp(𝑡, 𝑠, 𝜉)|) ≲

(

1 1
1 1

)

.

For the proof of Lemma 1, we may follow the approach of Section 7.1 in6

2.2 Considerations in the elliptic zone 𝑍ell(𝜀, 𝑡0)
In the elliptic zone we introduce the micro-energy 𝑉 =

(

⟨𝜉⟩𝑏(𝑡)𝑣,𝐷𝑡𝑣
)T for all 𝑡 ≥ 𝑠 and (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0). Then, the

corresponding first-order system of the Cauchy problem (12) is stated as

𝐷𝑡𝑉 =

(

0 ⟨𝜉⟩𝑏(𝑡)
−⟨𝜉⟩𝑏(𝑡) 0

)

𝑉 +

⎛

⎜

⎜

⎜

⎝

𝐷𝑡⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑡)

0

−
𝑏′(𝑡)

2⟨𝜉⟩𝑏(𝑡)
0

⎞

⎟

⎟

⎟

⎠

𝑉 .

Step 1. Diagonalization procedure: Our aim is to prove estimates and structural properties for the fundamental solution 𝐸𝑉
ell =

𝐸𝑉
ell(𝑡, 𝑠, 𝜉) corresponding to the micro-energy 𝑉 . Performing the diagonalization procedure, we get after the second step of the

diagonalization that the entries of the remainder matrix are uniformly integrable over the elliptic zone.
Lemma 2. The fundamental solution 𝐸𝑉

ell = 𝐸𝑉
ell(𝑡, 𝑠, 𝜉) can be estimated by

(

|𝐸𝑉
ell(𝑡, 𝑠, 𝜉)|

)

≲
⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑠)

exp
(

𝑡

∫
𝑠

⟨𝜉⟩𝑏(𝜏)𝑑𝜏
)(

1 1
1 1

)

,

with (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0) ∩ {𝑡 ≥ 𝑡0(𝜀)} and 0 ≤ 𝑠 ≤ 𝑡.
For the proof on Lemma 2 we may follow Section 4.2.2 in32.

Step 2. Transforming back to the original Cauchy problem: After obtaining estimates for 𝐸𝑉
ell = 𝐸𝑉

ell(𝑡, 𝑠, 𝜉) it is sufficient
to apply the backward transformation to the original Cauchy problem. This means that we transform back 𝐸𝑉

ell = 𝐸𝑉
ell(𝑡, 𝑠, 𝜉) to

estimate the fundamental solution 𝐸ell = 𝐸ell(𝑡, 𝑠, 𝜉) which is related to a first-order system for the micro-energy (

|𝜉|𝜎 𝑢̂, 𝐷𝑡𝑢̂
)T

and gives the representation
𝐸ell(𝑡, 𝑠, 𝜉) = 𝑇 (𝑡, 𝜉)𝐸𝑉

ell(𝑡, 𝑠, 𝜉)𝑇
−1(𝑠, 𝜉), (16)

where the matrix 𝑇 (𝑡, 𝜉) and its inverse matrix 𝑇 −1(𝑡, 𝜉) are given in the following way:
(

|𝜉|𝜎 𝑢̂
𝐷𝑡𝑢̂

)

=

⎛

⎜

⎜

⎜

⎝

|𝜉|𝜎

𝜆(𝑡)ℎ(𝑡, 𝜉)
0

𝑖
𝑏(𝑡)

2𝜆(𝑡)ℎ(𝑡, 𝜉)
1
𝜆(𝑡)

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝑇 (𝑡,𝜉)

(

ℎ(𝑡, 𝜉)𝑣
𝐷𝑡𝑣

)

, 𝑇 −1(𝑡, 𝜉) =

⎛

⎜

⎜

⎜

⎝

𝜆(𝑡)ℎ(𝑡, 𝜉)
|𝜉|𝜎

0

−𝑖
𝑏(𝑡)𝜆(𝑡)
2|𝜉|𝜎

𝜆(𝑡)

⎞

⎟

⎟

⎟

⎠

,
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where the auxiliary function 𝜆 = 𝜆(𝑡) is given by

𝜆(𝑡) ∶= exp
(

1
2

𝑡

∫
0

𝑏(𝜏)𝑑𝜏
)

. (17)

Lemma 3. The following inequalities hold:
1. in the elliptic zone it holds ⟨𝜉⟩𝑏(𝑡) − 𝑏(𝑡)

2
≤ −

|𝜉|2𝜎

𝑏(𝑡)
,

2. 𝜆(𝑠)
𝜆(𝑡)

exp
(

𝑡

∫
𝑠

⟨𝜉⟩𝑏(𝜏)𝑑𝜏
)

≤ exp
(

− |𝜉|2𝜎
𝑡

∫
𝑠

1
𝑏(𝜏)

𝑑𝜏
)

,

where 𝜆 = 𝜆(𝑡) is defined in (17).
Proof. Using the elementary inequality

√

𝑥 + 𝑦 ≤
√

𝑥 +
𝑦

2
√

𝑥
for any 𝑥 ≥ 0 and 𝑦 ≥ −𝑥, the first statement is valid by plugging 𝑥 = 𝑏2(𝑡)

4
and 𝑦 = −|𝜉|2𝜎 . The second statement follows

directly from the first one together with the definition of 𝜆 = 𝜆(𝑡).
Step 3. A refined estimate for the fundamental solution in the elliptic zone: From Lemma 2 we get for (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0)
the estimate

(

|𝐸𝑉
ell(𝑡, 𝑠, 𝜉)|

)

≲
𝑏(𝑡)
𝑏(𝑠)

exp
(

𝑡

∫
𝑠

⟨𝜉⟩𝑏(𝜏)𝑑𝜏
)(

1 1
1 1

)

.

This yields in combination with (16) the estimate

(

|𝐸ell(𝑡, 𝑠, 𝜉)|
)

≲

(

|𝜉|𝜎 0

𝑏(𝑡) 𝑏(𝑡)

)

exp
(

𝑡

∫
𝑠

(

⟨𝜉⟩𝑏(𝜏) −
𝑏(𝜏)
2

)

𝑑𝜏
)(

1 1
1 1

)

⎛

⎜

⎜

⎜

⎝

1
|𝜉|𝜎

0
1

|𝜉|𝜎
1
𝑏(𝑠)

⎞

⎟

⎟

⎟

⎠

≲ exp
(

− |𝜉|2𝜎
𝑡

∫
𝑠

1
𝑏(𝜏)

𝑑𝜏
)

⎛

⎜

⎜

⎜

⎝

1
|𝜉|𝜎

𝑏(𝑠)
𝑏(𝑡)
|𝜉|𝜎

𝑏(𝑡)
𝑏(𝑠)

⎞

⎟

⎟

⎟

⎠

,

where we used Lemma 3.
Lemma 4. The fundamental solution 𝐸ell = 𝐸ell(𝑡, 𝑠, 𝜉) satisfies the following estimate:

(

|𝐸ell(𝑡, 𝑠, 𝜉)|
)

≲ exp
(

− |𝜉|2𝜎
𝑡

∫
𝑠

1
𝑏(𝜏)

𝑑𝜏
)

⎛

⎜

⎜

⎜

⎝

1
|𝜉|𝜎

𝑏(𝑠)
|𝜉|𝜎

𝑏(𝑡)
|𝜉|2𝜎

𝑏(𝑠)𝑏(𝑡)

⎞

⎟

⎟

⎟

⎠

+
𝜆2(𝑠)
𝜆2(𝑡)

(

0 0
0 1

)

for all 𝑡 ≥ 𝑠 and (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0).
For the proof of Lemma 4 we can follow the idea of the proof of Lemma 4.19 in32.

2.3 Considerations in the reduced zone 𝑍red(𝜀) and pseudo-differential zone 𝑍pd(𝑁, 𝜀)

In the reduced zone 𝑍red(𝜀) we introduce the micro-energy 𝑉 =
(

𝜀 𝑏(𝑡)
2
𝑣,𝐷𝑡𝑣

)T. Then, by (12) the function 𝑉 satisfies the
following system:

𝐷𝑡𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝐷𝑡𝑏(𝑡)
𝑏(𝑡)

𝜀
𝑏(𝑡)
2

|𝜉|2𝜎 − 1
4
𝑏2(𝑡) − 1

2
𝑏′(𝑡)

𝜀 𝑏(𝑡)
2

0

⎞

⎟

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴𝑉 (𝑡,𝜉)

𝑉 . (18)
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We want to estimate the fundamental solution 𝐸𝑉
red = 𝐸𝑉

red(𝑡, 𝑠, 𝜉) to (18), that is, the solution to
{

𝐷𝑡𝐸𝑉
red(𝑡, 𝑠, 𝜉) = 𝐴𝑉 (𝑡, 𝜉)𝐸𝑉

red(𝑡, 𝑠, 𝜉),
𝐸𝑉

red(𝑠, 𝑠, 𝜉) = 𝐼.

The norm of the coefficient matrix of (18) can be estimated by 𝜀𝑏(𝑡) for sufficiently large 𝑡.
Lemma 5. The fundamental solution 𝐸𝑉

red = 𝐸𝑉
red(𝑡, 𝑠, 𝜉) to (18) satisfies the following estimate:

(

|𝐸𝑉
red(𝑡, 𝑠, 𝜉)|

)

≲ exp
(

𝜀

𝑡

∫
𝑠

𝑏(𝜏)𝑑𝜏
)(

1 1
1 1

)

for all 𝑡 ≥ 𝑠 ≥ 𝑡0 with sufficiently large 𝑡0 = 𝑡0(𝜀) and (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍red(𝜀).
For the proof of Lemma 5, we see Section 2.3 in34.

On the other hand, in 𝑍pd(𝑁, 𝜀) we introduce the micro-energy 𝑉 =
(

⟨𝜉⟩𝑏(𝑡)𝑣,𝐷𝑡𝑣
)T. Then, by (12) it holds

𝐷𝑡𝑉 =

(

0 ⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑡) 0

)

𝑉 +

⎛

⎜

⎜

⎜

⎝

𝐷𝑡⟨𝜉⟩𝑏(𝑡)
⟨𝜉⟩𝑏(𝑡)

0

− 𝑏′(𝑡)
2⟨𝜉⟩𝑏(𝑡)

0

⎞

⎟

⎟

⎟

⎠

𝑉 . (19)

Lemma 6. The fundamental solution 𝐸𝑉
pd = 𝐸𝑉

pd(𝑡, 𝑠, 𝜉) to (19) satisfies the following estimate:
(

|𝐸𝑉
pd(𝑡, 𝑠, 𝜉)|

)

≲
( 1 + 𝑡
1 + 𝑠

)𝐶 (

1 1
1 1

)

for all 𝑡 ≥ 𝑠 ≥ 𝑡0 with sufficiently large 𝑡0 = 𝑡0(𝜀) and (𝑡, 𝜉), (𝑠, 𝜉) ∈ 𝑍pd(𝑁, 𝜀).
For the proof of Lemma 6 we see Section 2.4 in34.

3 ENERGY ESTIMATES OF HIGHER ORDER

The main goal of this section is to prove on the one hand higher order energy estimates to solutions to (10). On the other hand, we
want to derive higher order energy estimates for solutions to the corresponding family of (10) for parameter-dependent Cauchy
problems with suitable initial data (

0, 𝑔(𝑠, 𝑥)
). The representation of the fundamental solutions obtained so far allows us to

conclude estimates for solutions and their derivatives to these Cauchy problems.

3.1 A family of parameter-dependent linear Cauchy problems
Let us consider the following family of parameter-dependent Cauchy problem:

{

𝑢𝑡𝑡 + (−Δ)𝜎𝑢 + 𝑏(𝑡)𝑢𝑡 = 0, (𝑡, 𝑥) ∈ [𝑠,∞) ×ℝ𝑛, 𝑠 ≥ 0,
𝑢(𝑠, 𝑥) = 𝑓 (𝑠, 𝑥), 𝑢𝑡(𝑠, 𝑥) = 𝑔(𝑠, 𝑥), 𝑥 ∈ ℝ𝑛.

(20)

We apply the partial Fourier transformation to (20) with respect to the spatial variables. Denoting by 𝑢̂ = 𝑢̂(𝑡, 𝜉) the partial
Fourier transformation 𝑥→𝜉

(

𝑢(𝑡, 𝑥)
)

(𝑡, 𝜉) we obtain
{

𝑢̂𝑡𝑡 + |𝜉|2𝜎 𝑢̂ + 𝑏(𝑡)𝑢̂𝑡 = 0, (𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛, 𝑠 ≥ 0,
𝑢̂(𝑠, 𝜉) = 𝑓 (𝑠, 𝜉), 𝑢̂𝑡(𝑠, 𝜉) = 𝑔(𝑠, 𝜉), 𝜉 ∈ ℝ𝑛.

(21)

Now we make the change of variables

𝑦(𝑡, 𝜉) =
𝜆(𝑡)
𝜆(𝑠)

𝑢̂(𝑡, 𝜉) with 𝜆(𝑡) ∶= exp
(

1
2

𝑡

∫
0

𝑏(𝜏)𝑑𝜏
)

.
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Then, we obtain the Cauchy problem
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑡𝑡 + 𝑚(𝑡, 𝜉)𝑦 = 0, (𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛, 𝑠 ≥ 0,
𝑦(𝑠, 𝜉) = 𝑓 (𝑠, 𝜉, 𝜉 ∈ ℝ𝑛,

𝑦𝑡(𝑠, 𝜉) =
𝑏(𝑠)
2
𝑓 (𝑠, 𝜉) + 𝑔(𝑠, 𝜉), 𝜉 ∈ ℝ𝑛,

(22)

where 𝑚(𝑡, 𝜉) is defined as in (13). Furthermore, we introduce the function ⟨𝜉⟩𝑏(𝑡) as in (14). In the same manner as in Section
2, we divide the extended phase space [𝑠,∞) ×ℝ𝑛 into the following zones:

𝑍hyp(𝑁) =
{

(𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≥ 𝑁
𝑏(𝑡)
2

}

∩ Πhyp,

𝑍pd(𝑁, 𝜀) =
{

(𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛 ∶ 𝜀
𝑏(𝑡)
2

≤ ⟨𝜉⟩𝑏(𝑡) ≤ 𝑁
𝑏(𝑡)
2

}

∩ Πhyp,

𝑍red(𝜀) =
{

(𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≤ 𝜀
𝑏(𝑡)
2

}

,

𝑍ell(𝜀, 𝑡0) =
{

(𝑡, 𝜉) ∈ [𝑠,∞) ×ℝ𝑛 ∶ ⟨𝜉⟩𝑏(𝑡) ≥ 𝜀
𝑏(𝑡)
2

}

∩ Πell ∩ {𝑡 ≥ 𝑡0}.

Let 𝑠 ≥ 0 and 𝜉 ≠ 0. Let us distinguish between two cases with 𝑏∞ ∶= lim
𝑡→∞

𝑏(𝑡):

• 𝑏(𝑡) is decreasing with 𝑏∞ ∈ [0,∞) and (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0),

• 𝑏(𝑡) is increasing with 𝑏∞ ∈ (0,∞] and (𝑠, 𝜉) ∈ 𝑍hyp(𝑁).

Let us introduce the function

ℎ = ℎ(𝑡, 𝜉) = 𝜒
(

⟨𝜉⟩𝑏(𝑡)
𝜀 𝑏(𝑡)

2

)

𝜀
𝑏(𝑡)
2

+
(

1 − 𝜒
(

⟨𝜉⟩𝑏(𝑡)
𝜀 𝑏(𝑡)

2

))

⟨𝜉⟩𝑏(𝑡), (23)

for our model (22). Here 𝜒 ∈ ∞([0,∞)
) is a localizing function with 𝜒(𝜁 ) = 1 for 0 ≤ 𝜁 ≤ 1

2
and 𝜒(𝜁 ) = 0 for 𝜁 ≥ 1. We

define 𝑌 (𝑡, 𝜉) = (

ℎ(𝑡, 𝜉)𝑦(𝑡, 𝜉), 𝐷𝑡𝑦(𝑡, 𝜉)
)T. Then, from (22) we have

𝐷𝑡𝑌 (𝑡, 𝜉) =

⎛

⎜

⎜

⎜

⎝

𝐷𝑡ℎ(𝑡, 𝜉)
ℎ(𝑡, 𝜉)

ℎ(𝑡, 𝜉)
𝑚(𝑡, 𝜉)
ℎ(𝑡, 𝜉)

0

⎞

⎟

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐴𝑌 (𝑡,𝜉)

𝑌 (𝑡, 𝜉). (24)

We denote by 𝐸𝑌 = 𝐸𝑌 (𝑡, 𝑡1, 𝜉) the fundamental solution to (24) for any 𝑡 ≥ 𝑡1 ≥ 𝑠, i.e., the solution to
{

𝐷𝑡𝐸𝑌 (𝑡, 𝑡1, 𝜉) = 𝐴𝑌 (𝑡, 𝜉)𝐸𝑌 (𝑡, 𝑡1, 𝜉),
𝐸𝑌 (𝑡1, 𝑡1, 𝜉) = 𝐼.

3.1.1 Representation of the solutions
Let us turn now to the Cauchy problem (20). We introduce 𝐾1 = 𝐾1(𝑡, 𝑠, 𝜉) as the solution to (21) with initial conditions
𝑓 (𝑠, 𝜉) = 0 and 𝑔(𝑠, 𝜉) = 1. Following the approach of6 in Section 7.4, we have

𝐾1(𝑡, 𝑠, 𝜉) =
𝜆(𝑠)
𝜆(𝑡)

𝐸𝑌
12(𝑡, 𝑠, 𝜉)
ℎ(𝑡, 𝜉)

, (25)

𝐷𝑡𝐾1(𝑡, 𝑠, 𝜉) =
𝜆(𝑠)
𝜆(𝑡)

(

𝐸𝑌
22(𝑡, 𝑠, 𝜉) −

𝑏(𝑡)
2ℎ(𝑡, 𝜉)

𝐸𝑌
12(𝑡, 𝑠, 𝜉)

)

. (26)
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In the same way we consider𝐾0 = 𝐾0(𝑡, 0, 𝜉) as the solution to (21) with 𝑠 = 0 and initial conditions 𝑓 (0, 𝜉) = 1 and 𝑔(0, 𝜉) = 0.
Then, it holds

𝐾0(𝑡, 0, 𝜉) =
1
𝜆(𝑡)

ℎ(0, 𝜉)
ℎ(𝑡, 𝜉)

𝐸𝑌
11(𝑡, 0, 𝜉),

𝐷𝑡𝐾0(𝑡, 0, 𝜉) =
ℎ(0, 𝜉)
𝜆(𝑡)

(

𝐸𝑌
21(𝑡, 0, 𝜉) −

𝑏(𝑡)
2ℎ(𝑡, 𝜉)

𝐸𝑌
11(𝑡, 0, 𝜉)

)

,

where ℎ = ℎ(𝑡, 𝜉) is defined in (23) and 𝐸𝑌 ∶= 𝐸𝑌 (𝑡, 𝑠, 𝜉) is the fundamental solution to the system (24). These above relations
allow us to transfer properties of 𝐸𝑌 = 𝐸𝑌 (𝑡, 𝑠, 𝜉) to 𝐾1 = 𝐾1(𝑡, 𝑠, 𝜉) and 𝐸𝑌 = 𝐸𝑌 (𝑡, 0, 𝜉) to 𝐾0 = 𝐾0(𝑡, 0, 𝜉).

3.1.2 Estimates for the multipliers and their time derivatives
In order to estimate the norm of the solution to our original Cauchy problem, we need to estimate our multipliers |𝐾1(𝑡, 𝑠, 𝜉)|
and |𝐾0(𝑡, 0, 𝜉)| in each zone of the extended phase space. Similarly, we can derive estimates for |𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| and |𝜕𝑡𝐾0(𝑡, 0, 𝜉)|
as well.

Let us consider the following estimate for |𝐾1(𝑡, 𝑠, 𝜉)| in 𝑍red(𝜀):
|𝐾 red

1 (𝑡, 𝑠, 𝜉)| ≲ 1
|𝜉|𝜎

(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
, (27)

where we choose 𝜀 > 0 such that 𝛽 ∶= 𝐶𝜀 < 1
2
. Then, we can see easily that we can estimate |𝐾1(𝑡, 𝑠, 𝜉)| in 𝑍hyp(𝑁) and

𝑍pd(𝑁, 𝜀) by (27). Thus, we can glue 𝑍red(𝜀) to the hyperbolic region and we define new region by
Πhyp(𝑁, 𝜀) = 𝑍red(𝜀) ∪𝑍pd(𝑁, 𝜀) ∪𝑍hyp(𝑁).

We denote by 𝑡ell = 𝑡ell(|𝜉|) the separating line between 𝑍ell(𝜀, 𝑡0) and Πhyp(𝑁, 𝜀). This curve is given by
𝑏2(𝑡ell)

4
− |𝜉|2𝜎 = 𝜀2

𝑏2(𝑡ell)
4

, i.e. 𝑡ell = 𝑏−1
(

2|𝜉|𝜎
√

1 − 𝜀2

)

.

3.2 Estimates for the multiplier 𝐾1

Now we distinguish between two cases related to the setting of the zones in the extended phase space for a general 𝑠 ≥ 0.
Small frequencies |𝜉|𝜎 ≤ 𝑏(𝑠)

2

√

1 − 𝜀2. We have the following two cases:
• Case 1: 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑡ell. In this case (𝑡, 𝜉) and (𝑠, 𝜉) belong to 𝑍ell(𝜀, 𝑡0). It holds ℎ(𝑡, 𝜉) ∼ 𝑏(𝑡). Then, we have the

following estimates from Lemma 4 for all 𝑡 ∈ [𝑠, 𝑡ell]:
|𝐾1(𝑡, 𝑠, 𝜉)| ≲

1
𝑏(𝑠)

exp
(

− 𝐶|𝜉|2𝜎ℬ(𝑠, 𝑡)
)

,

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
|𝜉|2𝜎

𝑏(𝑠)𝑏(𝑡)
exp

(

− 𝐶|𝜉|2𝜎ℬ(𝑠, 𝑡)
)

.

• Case 2: 0 ≤ 𝑠 ≤ 𝑡ell ≤ 𝑡. In this case we glue the estimates in 𝑍ell(𝜀, 𝑡0) from Lemma 4 and in Πhyp(𝑁, 𝜀) from (27).
Hence, we arrive at the following estimates for all (𝑠, 𝜉) ∈ 𝑍ell(𝜀, 𝑡0) and 𝑡 ≥ 𝑡ell:

|𝐾1(𝑡, 𝑠, 𝜉)| ≲
1
𝑏(𝑠)

exp
(

− 𝐶|𝜉|2𝜎ℬ(𝑠, 𝑡)
)

,

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
|𝜉|2𝜎

𝑏(𝑠)𝑏(𝑡)
exp

(

− 𝐶|𝜉|2𝜎ℬ(𝑠, 𝑡)
)

.

Large frequencies |𝜉|𝜎 ≥ 𝑏(𝑠)
2

√

1 − 𝜀2. We have the following two cases:
• Case 1: 0 ≤ 𝑠 ≤ 𝑡 ≤ 𝑡ell. If 𝑏 = 𝑏(𝑡) is increasing, then (𝑡, 𝜉) and (𝑠, 𝜉) belong to Πhyp(𝑁, 𝜀). Taking ℎ(𝑡, 𝜉) ∼ |𝜉|𝜎 we have

|𝐾1(𝑡, 𝑠, 𝜉)| ≲
1

|𝜉|𝜎
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
, (28)

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
, (29)
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where these estimates are derived by using the representations (25) and (26) and the estimate in Πhyp(𝑁, 𝜀). Indeed, the
representation (26) implies the estimate

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≤
𝜆(𝑠)
𝜆(𝑡)

|𝐸𝑌
22(𝑡, 𝑠, 𝜉)| +

𝑏(𝑡)
2ℎ(𝑡, 𝜉)

|𝐸𝑌
12(𝑡, 𝑠, 𝜉)|

≲
𝜆(𝑠)
𝜆(𝑡)

( 𝜆(𝑡)
𝜆(𝑠)

)2𝛽
≲
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
,

where we used the estimates of 𝐸𝑌
12(𝑡, 𝑠, 𝜉) and 𝐸𝑌

22(𝑡, 𝑠, 𝜉) from Lemma 6.
We remark that the estimates (28) and (29) remain true for large frequencies in the case that 𝑏 = 𝑏(𝑡) is decreasing. If
𝑏 = 𝑏(𝑡) is decreasing, then we have only 𝑍hyp(𝑁) for large frequencies.

• Case 2: 0 ≤ 𝑠 ≤ 𝑡ell ≤ 𝑡. We remark that this case comes into play only if 𝑏 = 𝑏(𝑡) is increasing and there is no separating
line if |𝜉| ≥ 𝑏∞

√

1 − 𝜀2. Then, we have the following estimates for all 𝑡ell ≤ 𝑡:
|𝐾1(𝑡, 𝑠, 𝜉)| ≲

1
𝑏(𝑠)

exp
(

− 𝐶 ′
|𝜉|2𝜎ℬ(𝑠, 𝑡)

)

,

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
|𝜉|2𝜎

𝑏(𝑠)𝑏(𝑡)
exp

(

− 𝐶 ′
|𝜉|2𝜎ℬ(𝑠, 𝑡)

)

.

3.3 Final estimates
For any 𝑡 ≥ 𝑠 and 𝑠 ∈ [0,∞) let us define

Ω(𝑠, 𝑡) ∶=
(

max
{

𝑏(𝑠), 𝑏(𝑡)
}

√

1 − 𝜀2
2

)
1
𝜎

.

Remark 4. We distinguish between small and large frequencies as follows: Small frequencies satisfy the condition |𝜉| ≤ Ω(𝑠, 𝑡),
while, large frequencies satisfy the condition |𝜉| ≥ Ω(𝑠, 𝑡).

Summarizing we arrived at the following statements for the estimates of |𝐾1(𝑡, 𝑠, 𝜉)| and |𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| with 𝑡 ≥ 𝑠 ≥ 0.
Corollary 1. If |𝜉| ≥ Ω(𝑠, 𝑡), then we have the following estimates:

|𝐾1(𝑡, 𝑠, 𝜉)| ≲
1

|𝜉|𝜎
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
, (30)

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
. (31)

If |𝜉| ≤ Ω(𝑠, 𝑡), then we have the following estimates:
|𝐾1(𝑡, 𝑠, 𝜉)| ≲

1
𝑏(𝑠)

exp
(

− 𝐶 ′
|𝜉|2𝜎ℬ(𝑠, 𝑡)

)

, (32)

|𝜕𝑡𝐾1(𝑡, 𝑠, 𝜉)| ≲
|𝜉|2𝜎

𝑏(𝑠)𝑏(𝑡)
exp

(

− 𝐶 ′
|𝜉|2𝜎ℬ(𝑠, 𝑡)

)

. (33)
We have similar results for the estimates of |𝐾0(𝑡, 0, 𝜉)| and |𝜕𝑡𝐾0(𝑡, 0, 𝜉)|.

Corollary 2. If |𝜉| ≥ Ω(0, 𝑡), then we have the following estimates:
|𝐾0(𝑡, 0, 𝜉)| ≲

( 1
𝜆(𝑡)

)1−2𝛽
,

|𝜕𝑡𝐾0(𝑡, 0, 𝜉)| ≲ |𝜉|𝜎
( 1
𝜆(𝑡)

)1−2𝛽
.

If |𝜉| ≤ Ω(0, 𝑡), then we have the following estimates:
|𝐾0(𝑡, 0, 𝜉)| ≲ exp

(

− 𝐶 ′
|𝜉|2𝜎ℬ(0, 𝑡)

)

,

|𝜕𝑡𝐾0(𝑡, 0, 𝜉)| ≲
|𝜉|2𝜎

𝑏(𝑡)
exp

(

− 𝐶 ′
|𝜉|2𝜎ℬ(0, 𝑡)

)

.
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3.4 Matsumura-type estimates with additional regularity of the data
In this section, let us consider the following two linear Cauchy problems:

{

𝑣𝑡𝑡 + (−Δ)𝜎𝑣 + 𝑏(𝑡)𝑣𝑡 = 0, (𝑡, 𝑥) ∈ [𝑠,∞) ×ℝ𝑛, 𝑠 ≥ 0,
𝑣(𝑠, 𝑥) = 0, 𝑣𝑡(𝑠, 𝑥) = 𝑔(𝑠, 𝑥), 𝑥 ∈ ℝ𝑛,

(34)

and
{

𝑤𝑡𝑡 + (−Δ)𝜎𝑤 + 𝑏(𝑡)𝑤𝑡 = 0, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,
𝑤(0, 𝑥) = 𝑓 (𝑥), 𝑤𝑡(0, 𝑥) = 0, 𝑥 ∈ ℝ𝑛.

(35)

We denoted the solutions to (34) and (35) by 𝐾1 = 𝐾1(𝑡, 𝑠, 𝑥) and 𝐾0 = 𝐾0(𝑡, 0, 𝑥) with initial data 𝑔 = 𝛿0 and 𝑓 = 𝛿0,
respectively, where 𝛿0 is the Dirac distribution with respect to spatial variables in 𝑥 = 0. Thus, we may conclude the following
estimates for the solutions 𝑣 = 𝑣(𝑡, 𝑥) and 𝑤 = 𝑤(𝑡, 𝑥):

‖𝑣(𝑡, ⋅)‖𝐿2 = ‖𝑣(𝑡, ⋅)‖𝐿2 ≤ ‖𝐾1(𝑡, 𝑠, 𝜉)𝑔(𝑠, 𝜉)‖𝐿2 ,

‖𝑤(𝑡, ⋅)‖𝐿2 = ‖𝑤̂(𝑡, ⋅)‖𝐿2 ≤ ‖𝐾0(𝑡, 0, 𝜉)𝑓 (𝜉)‖𝐿2 .

In order to estimate the 𝐿2 norm of 𝜕𝓁𝑡 𝜕𝛼𝑥𝐾1(𝑡, 𝑠, 𝑥) ∗(𝑥) 𝑔(𝑠, 𝑥) and 𝜕𝓁𝑡 𝜕𝛼𝑥𝐾0(𝑡, 0, 𝑥) ∗(𝑥) 𝑓 (𝑥) for 𝓁 = 0, 1 and for any 𝛼 ≥ 0, we
can follow the techniques used in6 and27. More precisely, we assume additional 𝐿𝑚 regularity for the data, with 𝑚 ∈ [1, 2) to
prove Matsumura-type estimates for solutions and their first partial derivatives to (34) and (35).
Lemma 7. We have the following estimates for large frequencies |𝜉| ≥ Ω(𝑠, 𝑡):

‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖𝐿2{|𝜉|≥Ω(𝑠,𝑡)}
≲
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
‖𝑔(𝑠, ⋅)‖𝐻𝛼+(𝓁−1)𝜎 ,

with 𝛼 ≥ 0 and 𝓁 ∈ {0, 1} provided that 𝛼 + (𝓁 − 1)𝜎 ≥ 0, and 𝛽 = 𝐶𝜀 < 1
2

was given in (27). Moreover, when 𝛼 ∈ [0, 𝜎), the
following estimate holds:

‖

‖

‖

|𝜉|𝛼𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖𝐿2{|𝜉|≥Ω(𝑠,𝑡)}
≲
( 1
max{𝑏(𝑠), 𝑏(𝑡)}

)𝜎−𝛼(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
‖𝑔(𝑠, ⋅)‖𝐿2 .

Proof. At first, one derives the following estimate for 𝛼 + (𝓁 − 1)𝜎 ≥ 0:
‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖𝐿2{|𝜉|≥Ω(𝑠,𝑡)}
≤ ‖

‖

‖

|𝜉|(1−𝓁)𝜎𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, 𝜉)
‖

‖

‖𝐿∞{|𝜉|≥Ω(𝑠,𝑡)}
‖

‖

‖

|𝜉|𝛼+(𝓁−1)𝜎𝑔(𝑠, ⋅)‖‖
‖𝐿2{|𝜉|≥Ω(𝑠,𝑡)}

.

The second term on the right-hand side can be estimated by ‖𝑔(𝑠, ⋅)‖𝐻𝛼+(𝓁−1)𝜎 . Now let us control the 𝐿∞ norm of 𝐾1(𝑡, 𝑠, 𝜉) and
its derivatives with respect to 𝑡. Indeed, by using the estimates from (30) and (31) we get

|𝜉|(1−𝓁)𝜎|𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, 𝜉)| ≲
(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
.

In the case of 𝛼 ∈ [0, 𝜎), we want to utilize the relation 1
|𝜉|

≤ 1
Ω(𝑠,𝑡)

to obtain

|𝜉|𝛼|𝐾1(𝑡, 𝑠, 𝜉)| ≲
( 1
Ω(𝑠, 𝑡)

)𝜎−𝛼(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
.

Finally, we arrive at
‖

‖

‖

|𝜉|𝛼𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖{𝐿2
|𝜉|≥Ω(𝑠,𝑡)}

≲
( 1
Ω(𝑠, 𝑡)

)𝜎−𝛼(𝜆(𝑠)
𝜆(𝑡)

)1−2𝛽
‖𝑔(𝑠, ⋅)‖𝐿2 .

This completes the proof.
Lemma 8. The following estimates hold for small frequencies |𝜉| ≤ Ω(𝑠, 𝑡):

‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖𝐿2{|𝜉|≤Ω(𝑠,𝑡)}
≲ 1
𝑏(𝑠)𝑏𝓁(𝑡)

(

ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
−𝓁
‖𝑔(𝑠, ⋅)‖𝐿𝑚

with 𝛼 ≥ 0, 𝑡 ≥ 𝑠 ≥ 0 and 𝓁 = 0, 1, where 𝑚 ∈ [1, 2).
Proof. With the assumption 𝑚 ∈ [1, 2), let us choose 𝑚1 and 𝑚2 such that 1

𝑚
+ 1

𝑚1
= 1 and 1

𝑚1
+ 1

𝑚2
= 1

2
. Therefore, it holds

1
𝑚2

= 1
𝑚
− 1

2
. Then, applying Hölder’s inequality with 2

𝑚1
+ 2

𝑚2
= 1 we obtain the following estimate:

‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)𝑔(𝑠, ⋅)
‖

‖

‖𝐿2{|𝜉|≤Ω(𝑠,𝑡)}
≤ ‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)
‖

‖

‖𝐿𝑚2{|𝜉|≤Ω(𝑠,𝑡)}
‖𝑔(𝑠, ⋅)‖𝐿𝑚1{|𝜉|≤Ω(𝑠,𝑡)}.
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We can estimate ‖𝑔(𝑠, ⋅)‖𝐿𝑚1 by ‖𝑔(𝑠, ⋅)‖𝐿𝑚 due to the Hausdorff-Young inequality. For this reason, we have only to control the
𝐿𝑚2 norm of the multiplier. Thanks to (32) and (33) one achieves the following estimate:

‖

‖

‖

|𝜉|𝛼𝜕𝓁𝑡 𝐾1(𝑡, 𝑠, ⋅)
‖

‖

‖𝐿𝑚2{|𝜉|≤Ω(𝑠,𝑡)}
≲ 1
𝑏(𝑠)𝑏𝓁(𝑡)

(

∫
{|𝜉|≤Ω(𝑠,𝑡)}

|𝜉|𝑚2(𝛼+2𝓁𝜎) exp
(

− 𝐶𝑝|𝜉|2𝜎ℬ(𝑠, 𝑡)
)

𝑑𝜉
)

1
𝑚2
.

The application of the change of variables
𝑟 = 𝐶𝑚2|𝜉|

2𝜎ℬ(𝑠, 𝑡), 𝑑𝑟 = 2𝐶𝑚2𝜎|𝜉|
2𝜎−1𝑑|𝜉|ℬ(𝑠, 𝑡).

leads to

∫
{|𝜉|≤Ω(𝑠,𝑡)}

|𝜉|𝑚2(𝛼+2𝓁𝜎) exp
(

− 𝐶𝑚2|𝜉|
2𝜎ℬ(𝑠, 𝑡)

)

𝑑𝜉 ≲
(

ℬ(𝑠, 𝑡)
)− 𝑚2(𝛼+2𝓁𝜎)+𝑛

2𝜎

∞

∫
0

𝑟
𝑚2(𝛼+2𝓁𝜎)+𝑛

2𝜎
−1𝑒−𝑟𝑑𝑟.

The integral on the right-hand side is bounded and we get the function
1

𝑏(𝑠)𝑏𝓁(𝑡)
(

ℬ(𝑠, 𝑡)
)− 𝑛

2𝑚2𝜎
− 𝛼

2𝜎
−𝓁 = 1

𝑏(𝑠)𝑏𝓁(𝑡)
(

ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
−𝓁 .

This completes the proof.

The main result for the family of one-parameter dependent Cauchy problems (34), which follows from the statements of the
Lemmas 7 and 8, reads as follows:
Proposition 1. The Sobolev solution 𝑣 = 𝑣(𝑡, 𝑥) to (34) satisfies the following Matsumura-type estimates for 𝑡 ≥ 𝑠 ≥ 0,
𝑚 ∈ [1, 2) and 𝛼 ≥ 0:

‖𝑣(𝑡, ⋅)‖𝐻̇𝛼 ≲ 1
𝑏(𝑠)

(

1 +ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖𝑔(𝑠, ⋅)‖𝐿𝑚∩𝐻 [𝛼−𝜎]+ ,

‖𝑣𝑡(𝑡, ⋅)‖𝐻̇𝛼 ≲ 1
𝑏(𝑠)𝑏(𝑡)

(

1 +ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
−1
‖𝑔(𝑠, ⋅)‖𝐿𝑚∩𝐻𝛼 .

We know that the solution 𝑢 = 𝑢(𝑡, 𝑥) to the linear Cauchy problem (10) can be represented as
𝑢(𝑡, 𝑥) = 𝐾0(𝑡, 0, 𝑥) ∗(𝑥) 𝑢0(𝑥) +𝐾1(𝑡, 0, 𝑥) ∗(𝑥) 𝑢1(𝑥),

so we obtain the following statement.
Corollary 3. The Sobolev solution to (10) satisfies the following estimates with 𝑚 ∈ [1, 2) and 𝛼 ≥ 0:

‖𝑢(𝑡, ⋅)‖𝐻̇𝛼 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
(

‖𝑢0‖𝐿𝑚∩𝐻𝛼 + ‖𝑢1‖𝐿𝑚∩𝐻 [𝛼−𝜎]+

)

,

‖𝑢𝑡(𝑡, ⋅)‖𝐻̇𝛼 ≲ 1
𝑏(𝑡)

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
−1(

‖𝑢0‖𝐿𝑚∩𝐻𝛼+𝜎 + ‖𝑢1‖𝐿𝑚∩𝐻𝛼

)

.

4 GLOBAL (IN TIME) EXISTENCE OF SOLUTIONS

We denote by 𝐾0(𝑡, 0, 𝑥) and 𝐾1(𝑡, 0, 𝑥) the fundamental solutions to the corresponding linear equation of (4), namely,
𝑢lin ∶= 𝐾0(𝑡, 0, 𝑥) ∗(𝑥) 𝑢0(𝑥) +𝐾1(𝑡, 0, 𝑥) ∗(𝑥) 𝑢1(𝑥).

is the solution to the linear Cauchy problem (10). For 𝑇 > 0, we define the operator 𝑁 such that
𝑁 ∶ 𝑢 ∈ 𝑋(𝑇 ) → 𝑁𝑢 = 𝑁𝑢(𝑡, 𝑥) ∶= 𝑢lin(𝑡, 𝑥) + 𝑢non(𝑡, 𝑥),

where 𝑋(𝑇 ) is an evolution space to be determined later and 𝑢non(𝑡, 𝑥) is written by the following integral operator:

𝑢non(𝑡, 𝑥) ∶=
𝑡

∫
0

𝐾1(𝑡, 𝑠, 𝑥) ∗(𝑥) |𝑢(𝑠, 𝑥)|𝑝 𝑑𝑠
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thanks to Duhamel’s principle. Then, we will prove global (in time) Sobolev solution to the semi-linear Cauchy problem (4) as
a fixed point of the operator 𝑁 . To demonstrate this, we will show that the mapping 𝑁 satisfies the following two estimates:

‖𝑁𝑢‖𝑋(𝑇 ) ≲ ‖(𝑢0, 𝑢1)‖𝛼
𝑚
+ ‖𝑢‖𝑝𝑋(𝑇 ), (36)

‖𝑁𝑢 −𝑁𝑣‖𝑋(𝑇 ) ≲ ‖𝑢 − 𝑣‖𝑋(𝑇 )
(

‖𝑢‖𝑝−1𝑋(𝑇 ) + ‖𝑣‖𝑝−1𝑋(𝑇 )

)

, (37)
where the data space 𝛼

𝑚 is fixed in the statement of Theorem 1. Providing that ‖(𝑢0, 𝑢1)‖𝛼
𝑚
= 𝜀 is sufficiently small, then the

estimates (36) and (37) result the existence of a unique local (in time) large data solution and a unique global (in time) small
data solution in 𝑋(𝑇 ) by using Banach’s fixed point theorem.

To show the proof of Theorem 1, the following ingredients are useful.
Proposition 2 (Fractional Gagliardo-Nirenberg inequality13). Let 𝑞, 𝑞0, 𝑞1 ∈ (1,∞) and 𝜅 ∈ [0, 𝑟) with 𝑟 > 0. Then, the
following inequality holds for all 𝑓 ∈ 𝐿𝑞0(ℝ𝑛) ∩ 𝐻̇ 𝑟

𝑞1
(ℝ𝑛):

‖𝑓‖𝐻̇𝜅
𝑞
≲ ‖𝑓‖1−𝜃𝐿𝑞0 ‖𝑓‖𝜃

𝐻̇ 𝑟
𝑞1

,

where 𝜃 = 𝜃𝜅,𝑟(𝑞, 𝑞0, 𝑞1, 𝑛) =
( 1
𝑞0
− 1

𝑞
+ 𝜅

𝑛

)/( 1
𝑞0
− 1

𝑞1
+ 𝑟

𝑛

) and 𝜃 ∈ [𝜅∕𝑟, 1].
Lemma 9 (see6). From the conditions in Definition 1, we may conclude thatℬ(0, 𝑡) is positive, strictly increasing andℬ(0, 𝑡) →
∞ as 𝑡→ ∞. In addition, the primitive ℬ(𝑠, 𝑡) satisfies the following properties:

ℬ(𝑠, 𝑡) ≈ 𝑡
𝑏(𝑡)

− 𝑠
𝑏(𝑠)

for all 𝑠 ∈ [0, 𝑡],

ℬ(𝑠, 𝑡) ≈ ℬ(0, 𝑡) for all 𝑠 ∈
[

0, 𝑡∕2
]

,
ℬ(0, 𝑠) ≈ ℬ(0, 𝑡) for all 𝑠 ∈

[

𝑡∕2, 𝑡
]

.

Proof of Theorem 1. We define the evolution space of solutions 𝑋(𝑇 ) by
𝑋(𝑇 ) ∶= ([0, 𝑇 ],𝐻𝛼)

with its corresponding norm

‖𝑢‖𝑋(𝑇 ) ∶= sup
0≤𝑡≤𝑇

[

(

1 +ℬ(0, 𝑡)
)

𝑛
2𝜎

(

1
𝑚
− 1

2

)

‖𝑢(𝑡, ⋅)‖𝐿2 +
(

1 +ℬ(0, 𝑡)
)

𝑛
2𝜎

(

1
𝑚
− 1

2

)

+ 𝛼
2𝜎
‖ |𝐷|

𝛼𝑢(𝑡, ⋅)‖𝐿2

]

.

The application of the fractional Gagliardo-Nirenberg inequality from Proposition 2 and the definition of the evolution space
leads to

‖ |𝑢(𝜏, ⋅)|𝑝‖𝐿2 = ‖𝑢(𝜏, ⋅)‖𝑝𝐿2𝑝 ≲
(

1 +ℬ(0, 𝜏)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

4𝜎
‖𝑢‖𝑝𝑋(𝑇 ), (38)

‖ |𝑢(𝜏, ⋅)|𝑝‖𝐿𝑚∩𝐿2 = ‖𝑢(𝜏, ⋅)‖𝑝𝐿𝑚𝑝 + ‖𝑢(𝜏, ⋅)‖𝑝𝐿2𝑝 ≲
(

1 +ℬ(0, 𝜏)
)− 𝑛

2𝜎𝑚
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ), (39)
provided that

𝑝 ∈
[ 2
𝑚
,∞

)

if 𝑛 ≤ 2𝛼, or 𝑝 ∈
[ 2
𝑚
, 𝑛
𝑛 − 2𝛼

]

if 2𝛼 < 𝑛 ≤ 4𝛼
2 − 𝑚

.

First let us prove the inequality (36). From the estimates for solutions to (10), which are shown in Corollary 3, one may derive

‖𝑢lin(𝑡, ⋅)‖𝐿2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

‖(𝑢0, 𝑢1)‖𝛼
𝑚
,

‖ |𝐷|

𝛼𝑢lin(𝑡, ⋅)‖𝐿2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖(𝑢0, 𝑢1)‖𝛼

𝑚
.

This means that the linear part fulfills
(

1 +ℬ(0, 𝑡)
)

𝑛
2𝜎

(

1
𝑚
− 1

2

)

‖𝑢lin(𝑡, ⋅)‖𝐿2 +
(

1 +ℬ(0, 𝑡)
)

𝑛
2𝜎

(

1
𝑚
− 1

2

)

+ 𝛼
2𝜎
‖ |𝐷|

𝛼𝑢lin(𝑡, ⋅)‖𝐿2 ≲ ‖(𝑢0, 𝑢1)‖𝛼
𝑚
.

For this reason, we immediately claim 𝑢lin ∈ 𝑋(𝑇 ). Therefore, it remains to prove
‖𝑢non

‖𝑋(𝑇 ) ≲ ‖𝑢‖𝑝𝑋(𝑇 ).
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We may proceed |𝐷|

𝛼𝑢non(𝑡, ⋅) in the 𝐿2 norm by applying (𝐿2 ∩𝐿𝑚) −𝐿2 estimates in [0, 𝑡∕2] and 𝐿2 −𝐿2 estimates in [𝑡∕2, 𝑡]
from Proposition 1 as follows:

‖ |𝐷|

𝛼𝑢non(𝑡, ⋅)‖𝐿2 ≲

𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖|𝑢(𝑠, ⋅)|𝑝‖𝐿𝑚∩𝐿2 𝑑𝑠 +

𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝛼

2𝜎
‖|𝑢(𝑠, ⋅)|𝑝‖𝐿2 𝑑𝑠.

On the one hand, we have the following estimates for the first integral:
𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖|𝑢(𝑠, ⋅)|𝑝‖𝐿𝑚∩𝐿2 𝑑𝑠

≲ ‖𝑢‖𝑝𝑋(𝑇 )

𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

2𝜎𝑚 𝑑𝑠

≲ ‖𝑢‖𝑝𝑋(𝑇 )

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎

𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

2𝜎𝑚 𝑑𝑠

≲ ‖𝑢‖𝑝𝑋(𝑇 )

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎 ,

where we used inequality (39), Lemma 9 and ‖ ⋅ ‖𝑋(𝜏) ≲ ‖ ⋅ ‖𝑋(𝑇 ) for any 0 ≤ 𝜏 ≤ 𝑇 . Since 𝑝 > 1 + 2𝑚𝜎
𝑛

it follows immediately
− 𝑛

2𝜎𝑚
𝑝 + 𝑛

2𝜎𝑚
< −1. On the other hand, for the second integral using (38) and Lemma 9 we have
𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝛼

2𝜎
‖|𝑢(𝑠, ⋅)|𝑝‖𝐿2𝑑𝑠 ≲ ‖𝑢‖𝑝𝑋(𝑇 )

𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝛼

2𝜎
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

4𝜎 𝑑𝑠

≲ ‖𝑢‖𝑝𝑋(𝑇 )

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

4𝜎

𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝛼

2𝜎 𝑑𝑠

≲ ‖𝑢‖𝑝𝑋(𝑇 )

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎𝑚
𝑝+ 𝑛

4𝜎
(

1 +ℬ(0, 𝑡)
)1− 𝛼

2𝜎

≲ ‖𝑢‖𝑝𝑋(𝑇 )

(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎

for 𝑝 > 1 + 2𝑚𝜎
𝑛

. Summarizing, we arrive at the estimate

‖ |𝐷|

𝛼𝑢non(𝑡, ⋅)‖𝐿2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎
‖𝑢‖𝑝𝑋(𝑇 ).

In the same way one can derive
‖𝑢non(𝑡, ⋅)‖𝐿2 ≲

(

1 +ℬ(0, 𝑡)
)

𝑛
2𝜎

(

1
𝑚
− 1

2

)

‖𝑢‖𝑝𝑋(𝑇 ).

From the definition of the norm 𝑋(𝑇 ) we obtain immediately inequality (36).
Next let us prove inequality (37). We have that

‖𝑁𝑢 −𝑁𝑣‖𝑋(𝑇 ) =
‖

‖

‖

‖

‖

‖

‖

𝑡

∫
0

𝐾1(𝑡, 𝑠, 𝑥) ∗(𝑥)
(

|𝑢(𝑠, 𝑥)|𝑝 − |𝑣(𝑠, 𝑥)|𝑝
)

𝑑𝑠

‖

‖

‖

‖

‖

‖

‖𝑋(𝑇 )

.

Thanks to the estimates for the solutions from Proposition 1 we can estimate
‖

‖

‖

|𝐷|

𝛼𝐾1(𝑡, 𝑠, 𝑥) ∗(𝑥)
(

|𝑢(𝑠, 𝑥)|𝑝 − |𝑣(𝑠, 𝑥)|𝑝
)

‖

‖

‖𝐿2

≲

⎧

⎪

⎨

⎪

⎩

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝑛

2𝜎

(

1
𝑚
− 1

2

)

− 𝛼
2𝜎 ‖
‖

‖

|𝑢(𝑠, 𝑥)|𝑝 − |𝑣(𝑠, 𝑥)|𝑝‖‖
‖𝐿𝑚∩𝐿2

if 𝑠 ∈ [

0, 𝑡∕2
]

,

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝛼

2𝜎 ‖
‖

‖

|𝑢(𝑠, 𝑥)|𝑝 − |𝑣(𝑠, 𝑥)|𝑝‖‖
‖𝐿2

if 𝑠 ∈ [

𝑡∕2, 𝑡
]

.
(40)
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So, by the fact that
|

|

|

|𝑢(𝑠, 𝑥)|𝑝 − |𝑣(𝑠, 𝑥)|𝑝||
|

≲ |𝑢(𝑠, 𝑥) − 𝑣(𝑠, 𝑥)|
(

|𝑢(𝑠, 𝑥)|𝑝−1 + |𝑣(𝑠, 𝑥)|𝑝−1
)

and Hölder’s inequality we obtain
‖

‖

‖

|𝑢(𝑠, ⋅)|𝑝 − |𝑣(𝑠, ⋅)|𝑝‖‖
‖𝐿𝑚

≲ ‖𝑢(𝑠, ⋅) − 𝑣(𝑠, ⋅)‖𝐿𝑚𝑝
(

‖𝑢(𝑠, ⋅)‖𝑝−1𝐿𝑚𝑝 + ‖𝑣(𝑠, ⋅)‖𝑝−1𝐿𝑚𝑝
)

,
‖

‖

‖

|𝑢(𝑠, ⋅)|𝑝 − |𝑣(𝑠, ⋅)|𝑝‖‖
‖𝐿2

≲ ‖𝑢(𝑠, ⋅) − 𝑣(𝑠, ⋅)‖𝐿2𝑝

(

‖𝑢(𝑠, ⋅)‖𝑝−1𝐿2𝑝 + ‖𝑣(𝑠, ⋅)‖𝑝−1𝐿2𝑝

)

.

In a similar way to the proof of (36) we use again the fractional Gagliardo-Nirenberg inequality from Proposition 2 to the
following terms:

‖𝑢(𝑠, ⋅) − 𝑣(𝑠, ⋅)‖𝐿ℎ , ‖𝑢(𝑠, ⋅)‖𝐿ℎ and ‖𝑣(𝑠, ⋅)‖𝐿ℎ

with ℎ = 𝑚𝑝 and ℎ = 2𝑝. After deriving and plugging these estimates in (40), we follow the same ideas as we did in estimation
for ‖ |𝐷|

𝛼𝑢non(𝑡, ⋅)‖𝐿2 to conclude the inequality (37). Hence, from the definition of 𝑋(𝑇 ) we may conclude the proof of the
inequality (37). In this way the proof of Theorem 1 is completed.

5 BLOW-UP RESULT

Before giving the proof of Theorem 2, we would like to recall the following useful lemma which will be utilized in the sequel.
Lemma 10 (see21,24). Let us consider the initial value problem for the ordinary differential equation

{

−𝑔′(𝑡) + 𝑏(𝑡)𝑔(𝑡) = 1, 𝑡 > 0,
𝑔(0) = 𝔹0,

(41)

where the constant 𝔹0 is defined in Theorem 2. Then, the solutions to (41) enjoy the following properties:
i) There exist positive constants 𝑇0, 𝔹1 and 𝔹2 such that it holds for any 𝑡 ≥ 𝑇0

𝔹1 ≤ 𝑏(𝑡)𝑔(𝑡) ≤ 𝔹2.

ii) There exists a positive constant 𝑇0 such that it holds for any 𝑡 ≥ 𝑇0

|𝑔′(𝑡)| ≤
1 + 𝔹∞

1 − 𝔹∞
.

Now, we are ready to present the proof of Theorem 2.

5.1 The case that 𝜎 is an integer number
Proof. At first, we introduce the test functions 𝜂 = 𝜂(𝑡) and 𝜑 = 𝜑(𝑥) having the following properties (see, for example,8,29):

1. 𝜂 ∈ ∞
0
(

[0,∞)
) and 𝜂(𝑡) =

⎧

⎪

⎨

⎪

⎩

1 if 0 ≤ 𝑡 ≤ 1∕2,
decreasing if 1∕2 ≤ 𝑡 ≤ 1,
0 if 𝑡 ≥ 1,

2. 𝜑 ∈ ∞
0 (ℝ𝑛) and 𝜑(𝑥) =

⎧

⎪

⎨

⎪

⎩

1 if |𝑥| ≤ 1∕2,
decreasing if 1∕2 ≤ |𝑥| ≤ 1,
0 if |𝑥| ≥ 1,

3. 𝜂−
𝑝′

𝑝 (𝑡)
(

|𝜂′(𝑡)|𝑝′ + |𝜂′′(𝑡)|𝑝′
)

≤ 𝐶 for any 𝑡 ∈ [1∕2, 1], (42)
and 𝜑− 𝑝′

𝑝 (𝑥)|Δ𝜎𝜑(𝑥)|𝑝′ ≤ 𝐶 for any 𝑥 ∈ ℝ𝑛 such that |𝑥| ∈ [1∕2, 1], (43)
where 𝑝′ is the conjugate of 𝑝 and 𝐶 is a suitable positive constant. In addition, we suppose that 𝜑 = 𝜑(|𝑥|) is a radial function
satisfying 𝜑(|𝑥|) ≤ 𝜑(|𝑦|) for any |𝑥| ≥ |𝑦|.
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Let 𝑅 be a large parameter in [0,∞). Because of the assumption (B4), let us choose a large parameter 𝑇 ∈ [0,∞) fulfilling
the relation

𝑅2𝜎 =

𝑇

∫
0

1
𝑏(𝑠)

𝑑𝑠. (∗)

We define the following test function:
𝜙𝑇 ,𝑅(𝑡, 𝑥) = 𝜂𝑇 (𝑡)𝜑𝑅(𝑥),

where
𝜂𝑇 (𝑡) ∶= 𝜂(𝑇 −1𝑡) and 𝜑𝑅(𝑥) ∶= 𝜑(𝑅−1𝑥).

Assume that 𝑔(𝑡) is the solution to (41). After multiplying the first equation in (4) by 𝑔(𝑡) and performing a direct calculation,
one achieves

[

𝑔(𝑡)𝑢(𝑡, 𝑥)
]

𝑡𝑡 + (−Δ)𝜎
[

𝑔(𝑡)𝑢(𝑡, 𝑥)
]

−
[(

𝑔′(𝑡) − 1
)

𝑢(𝑡, 𝑥)
]

𝑡 = 𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝. (44)
Now we define the functionals

𝐼𝑅 =

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑇 ,𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡 = ∫
𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑇 ,𝑅(𝑡, 𝑥)𝑑(𝑥, 𝑡),

where
𝑄𝑇 ,𝑅 ∶= [0, 𝑇 ] × 𝐵𝑅 with 𝐵𝑅 ∶=

{

𝑥 ∈ ℝ𝑛 ∶ |𝑥| ≤ 𝑅
}

.
Let us assume that 𝑢 = 𝑢(𝑡, 𝑥) is a global (in time) Sobolev solution from 

(

[0,∞), 𝐿2) to (4). Multiplying the equation (44) by
𝜙𝑇 ,𝑅 = 𝜙𝑇 ,𝑅(𝑡, 𝑥), we carry out integration by parts to obtain

𝐼𝑅 + ∫
𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 = ∫
𝑄𝑇 ,𝑅

𝑔(𝑡)𝑢(𝑡, 𝑥)𝜂′′𝑇 (𝑡)𝜑𝑅(𝑥)𝑑(𝑥, 𝑡) + ∫
𝑄𝑇 ,𝑅

𝑔(𝑡)𝑢(𝑡, 𝑥)𝜂𝑅(𝑡)(−Δ)𝜎𝜑𝑅(𝑥)𝑑(𝑥, 𝑡)

+ ∫
𝑄𝑇 ,𝑅

(

𝑔′(𝑡) − 1
)

𝑢(𝑡, 𝑥)𝜂′𝑇 (𝑡)𝜑𝑅(𝑥)𝑑(𝑥, 𝑡)

=∶ 𝐼1,𝑅 + 𝐼2,𝑅 + 𝐼3,𝑅. (45)
Employing Hölder’s inequality with 1

𝑝
+ 1

𝑝′
= 1 we can proceed as follows:

|𝐼1,𝑅| ≤ ∫
𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)| ||
|

𝜂′′𝑇 (𝑡)
|

|

|

𝜑𝑅(𝑥)𝑑(𝑥, 𝑡)

≲
(

∫
𝑄𝑇 ,𝑅

|

|

|

𝑔(𝑡)
1
𝑝 𝑢(𝑡, 𝑥)𝜙

1
𝑝

𝑇 ,𝑅(𝑡, 𝑥)
|

|

|

𝑝
𝑑(𝑥, 𝑡)

)
1
𝑝
(

∫
𝑄𝑇 ,𝑅

|

|

|

𝑔(𝑡)
1
𝑝′ 𝜙

− 1
𝑝

𝑇 ,𝑅(𝑡, 𝑥)𝜂
′′
𝑇 (𝑡)𝜑𝑅(𝑥)

|

|

|

𝑝′
𝑑(𝑥, 𝑡)

)
1
𝑝′

≲ 𝐼
1
𝑝

𝑅

(

∫
𝑄𝑇 ,𝑅

𝑔(𝑡)𝜂
− 𝑝′

𝑝

𝑇 (𝑡)|𝜂′′𝑇 (𝑡)|
𝑝′𝜑𝑅(𝑥)𝑑(𝑥, 𝑡)

)
1
𝑝′

.

After performing the change of variables 𝑡 ∶= 𝑇 −1𝑡 and 𝑥̃ ∶= 𝑅−1𝑥, we derive

|𝐼1,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛
𝑝′

(

𝑇

∫
𝑇 ∕2

𝑔(𝑡)𝑑𝑡
)

1
𝑝′

,

where we have utilized the relation
𝜂′′𝑇 (𝑡) = 𝑇 −2𝜂′′(𝑡)

and the assumption (42). To estimate the above integral, the application of Lemma 10 plays a key role. The behavior 𝑔(𝑡) ∼ 𝑏(𝑡)−1

from the assertion i) of Lemma 10 leads to

|𝐼1,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛
𝑝′

(

𝑇

∫
𝑇 ∕2

1
𝑏(𝑡)

𝑑𝑡
)

1
𝑝′

≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛+2𝜎
𝑝′ . (46)
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Analogously, we may arrive at the following estimate:

|𝐼2,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛

𝑝′

(

𝑇

∫
0

1
𝑏(𝑡)

𝑑𝑡
)

1
𝑝′

≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ (47)

by noticing that it holds
(−Δ)𝜎𝜑𝑅(𝑥) = 𝑅−2𝜎(−Δ)𝜎𝜑(𝑥̃)

since 𝜎 is an integer number. Here the assumption (43) is also used in the previous inequality. Next, in order to handle the
estimation for 𝐼3,𝑅, first one recognizes from Lemma 10 that the term |𝑔′(𝑡) − 1| is bounded. Combining this and the assertion
i) of Lemma 10, we deduce

|𝑔′(𝑡) − 1| ∼ 𝑏(𝑡)𝑔(𝑡).

Thus, it follows immediately
|𝐼3,𝑅| ≲ ∫

𝑄𝑇 ,𝑅

𝑏(𝑡)𝑔(𝑡)|𝑢(𝑡, 𝑥)| |𝜂′𝑇 (𝑡)|𝜑𝑅(𝑥)𝑑(𝑥, 𝑡).

In an analogous procedure as we have estimated 𝐼1,𝑅, we may conclude that

|𝐼3,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−1𝑅

𝑛
𝑝′

(

𝑇

∫
𝑇 ∕2

𝑔(𝑡)𝑏(𝑡)𝑝′𝑑𝑡
)

1
𝑝′

≲ 𝐼
1
𝑝

𝑅 𝑇
−1𝑅

𝑛
𝑝′ max
𝑡∈[𝑇 ∕2,𝑇 ]

𝑏(𝑡)
(

𝑇

∫
𝑇 ∕2

𝑔(𝑡)𝑑𝑡
)

1
𝑝′

,

where we have used the relation
𝜂′𝑇 (𝑡) = 𝑇 −1𝜂′(𝑡)

and the assumption (42). For any 𝑡 ∈ [𝑇 ∕2, 𝑇 ], one rewrites

𝑔(𝑡) = 𝑔(0) +

𝑡

∫
0

𝑔′(𝑠)𝑑𝑠 ∼ 𝑔(0) + 𝐶𝑡 ∼ 𝑡,

thanks to the assertion ii) of Lemma 10, whenever 𝑇 is chosen to be sufficiently large. This means that 𝑏(𝑡) ∼ 𝑡−1 ∼ 𝑇 −1 for any
𝑡 ∈ [𝑇 ∕2, 𝑇 ] with a sufficiently large number 𝑇 . From this observation, we obtain

|𝐼3,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛
𝑝′

(

𝑇

∫
𝑇 ∕2

𝑔(𝑡)𝑑𝑡
)

1
𝑝′

≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛+2𝜎
𝑝′ . (48)

So, combining the estimates from (45) to (48) we have shown that
𝐼𝑅 + ∫

𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛+2𝜎
𝑝′ + 𝐼

1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ . (49)

For any 𝑡 ∈ [0, 𝑇 ], recalling (∗) one may verify

𝑔(𝑡)2

𝑅2𝜎
≤

𝑔(0)2 + 2

𝑡

∫
0

𝑔(𝑠)𝑔′(𝑠)𝑑𝑠

1 +

𝑡

∫
0

𝑔(𝑠)𝑑𝑠

≤

𝔹2
0 + 2‖𝑔′‖𝐿∞

𝑡

∫
0

𝑔(𝑠)𝑑𝑠

1 +

𝑡

∫
0

𝑔(𝑠)𝑑𝑠

≤ max
{

𝔹2
0,
2(1 + 𝔹∞)
1 − 𝔹∞

}

,

which is equivalent to
𝑔(𝑡) ≲ 𝑅𝜎 . (50)

Obviously, the previous estimate leads to

𝑅2𝜎 = 1 +

𝑇

∫
0

𝑔(𝑡)𝑑𝑡 ≲ 𝑇 max
[0,𝑇 ]

𝑔(𝑡) ≲ 𝑇𝑅𝜎 , that is, 𝑅𝜎 ≲ 𝑇 .
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As a result, both the above verification and the estimate (49) give
𝐼𝑅 + ∫

𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 ≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ . (51)

Due to the assumption (6), there exists a sufficiently large constant 𝑅0 > 0 so that it holds

∫
𝐵𝑅

(

𝑢0(𝑥) + 𝔹0𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 > 0,

that is,
∫
𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 > 0, (52)

for any 𝑅 > 𝑅0. From (51) and (52), one gets
𝐼
1− 1

𝑝

𝑅 ≲ 𝑅−2𝜎+ 𝑛+2𝜎
𝑝′ . (53)

It is clear that the assumption (7) is equivalent to −2𝜎 + 𝑛+2𝜎
𝑝′

≤ 0. For this reason, we shall split our consideration into two
subcases as follows:

∙ Case 1: If
𝑝 < 1 + 2𝜎

𝑛
, i.e. − 2𝜎 + 𝑛 + 2𝜎

𝑝′
< 0,

then passing 𝑅→ ∞ in (53) we obtain
∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝑑𝑥𝑑𝑡 = 0.

This implies 𝑢 ≡ 0, which is a contradiction to the assumption (6). Therefore, there is no global (in time) Sobolev solution
to (4) in the subcritical case.

∙ Case 2: If
𝑝 = 1 + 2𝜎

𝑛
, i.e. − 2𝜎 + 𝑛 + 2𝜎

𝑝′
= 0,

then from (53) there exists a positive constant 𝐶0 such that
𝐼𝑅 = ∫

𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥)𝑑(𝑥, 𝑡) ≤ 𝐶0

for a sufficiently large 𝑅. Thus, it follows

∫
𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥)𝑑(𝑥, 𝑡) → 0 as 𝑅→ ∞, (54)

where we introduce the notation
𝑄𝑇 ,𝑅 ∶= 𝑄𝑇 ,𝑅 ⧵

([

0, 𝑇 ∕2] × 𝐵𝑅∕2
) with 𝐵𝑅∕2 ∶=

{

𝑥 ∈ ℝ𝑛 ∶ |𝑥| ≤ 𝑅∕2
}

.

Since
𝜕2𝑡 𝜙𝑅(𝑡, 𝑥) = 𝜕𝑡𝜙𝑅(𝑡, 𝑥) = (−Δ)𝜎𝜙𝑅(𝑡, 𝑥) = 0 in (

ℝ+ ×ℝ𝑛) ⧵𝑄𝑇 ,𝑅,

we may repeat several steps of the proofs from (45) to (51) to conclude the following estimates:

𝐼𝑅 + ∫
𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 ≲
(

∫
𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥)𝑑(𝑥, 𝑡)
)

1
𝑝

𝑅−2𝜎+ 𝑛+2𝜎
𝑝′

=
(

∫
𝑄𝑇 ,𝑅

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥)𝑑(𝑥, 𝑡)
)

1
𝑝

, (55)
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because −2𝜎 + 𝑛+2𝜎
𝑝′

= 0. By using (54), we let 𝑅→ ∞ in (55) to derive
∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝑑𝑥𝑑𝑡 + ∫
ℝ𝑛

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝑑𝑥 = 0.

This is again a contradiction to the assumption (6), that is, there is no global (in time) Sobolev solution to (4) in the critical
case.

Hence, our proof of Theorem 2 in the case that 𝜎 is an integer number is completed.

5.2 The case that 𝜎 is a fractional number
At first, let us recall some auxiliary knowledge of the modified test function 𝜓 = 𝜓(𝑥) ∶=

⟨

𝑥
⟩−𝑟 for any 𝑟 > 0.

Lemma 11 (Lemma 3 in9). Let 𝜎 ≥ 1 be a fractional number. We denote 𝑠 ∶= 𝜎 − [𝜎]. Then, the following estimates hold for
all 𝑥 ∈ ℝ𝑛:

|(−Δ)𝜎𝜓(𝑥)| ≲

⎧

⎪

⎨

⎪

⎩

⟨

𝑥
⟩−𝑟−2𝜎 if 0 < 𝑟 + 2[𝜎] < 𝑛,

⟨

𝑥
⟩−𝑛−2𝑠 log(𝑒 + |𝑥|) if 𝑟 + 2[𝜎] = 𝑛,

⟨

𝑥
⟩−𝑛−2𝑠 if 𝑟 + 2[𝜎] > 𝑛.

Lemma 12 (Lemma 3.3 in10). Let 𝜎 ≥ 1 be a fractional number. For any 𝑅 > 0, let 𝜓𝑅 be a function defined by
𝜓𝑅(𝑥) = 𝜓

(

𝑅−1𝑥
) for all 𝑥 ∈ ℝ𝑛.

Then, (−Δ)𝜎(𝜓𝑅) satisfies the following scaling properties for all 𝑥 ∈ ℝ𝑛:
(−Δ)𝜎(𝜓𝑅)(𝑥) = 𝑅−2𝜎((−Δ)𝜎𝜓

)(

𝑅−1𝑥
)

.

Lemma 13 (Lemma 7 in9). Let 𝑠 ∈ ℝ. We assume that 𝜇1 = 𝜇1(𝑥) ∈ 𝐻𝑠 and 𝜇2 = 𝜇2(𝑥) ∈ 𝐻−𝑠. Then, the following relation
holds:

∫
ℝ𝑛

𝜇1(𝑥)𝜇2(𝑥)𝑑𝑥 = ∫
ℝ𝑛

𝜇1(𝜉)𝜇2(𝜉)𝑑𝜉.

Proof. At first, we denote the constant 𝜎 ∶= 𝜎 − [𝜎]. Since 𝜎 is a fractional number, it follows that 𝜎 ∈ (0, 1). We introduce, on
the one hand, the function 𝜂 = 𝜂(𝑡) satisfying the same properties as in Section 5.1. On the other hand, we define the function
𝜑 = 𝜑(|𝑥|) =

⟨

𝑥
⟩−𝑛−2𝜎 .

Let 𝑅 and 𝑇 be two large parameters in [0,∞) enjoying the relation (∗). We introduce the following test function:
𝜙𝑇 ,𝑅(𝑡, 𝑥) = 𝜂𝑇 (𝑡)𝜑𝑅(𝑥),

where 𝜂𝑇 (𝑡) ∶= 𝜂(𝑇 −1𝑡) and 𝜑𝑅(𝑥) ∶= 𝜑(𝑅−1𝑥). We define the functionals

𝐼𝑅 =

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 =

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜙𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡.

Let us assume that 𝑢 = 𝑢(𝑡, 𝑥) is a global (in time) Sobolev solution from 
(

[0,∞), 𝐿2) to (4). After multiplying the equation
(44) by 𝜙𝑇 ,𝑅 = 𝜙𝑇 ,𝑅(𝑡, 𝑥), we perform partial integration to obtain

𝐼𝑅 + ∫
ℝ𝑛

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 =

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

𝑔(𝑡)𝑢(𝑡, 𝑥)𝜂′′𝑇 (𝑡)𝜑𝑅(𝑥) 𝑑𝑥𝑑𝑡 +

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝜂𝑇 (𝑡)𝜑𝑅(𝑥) (−Δ)𝜎𝑢(𝑡, 𝑥) 𝑑𝑥𝑑𝑡

+

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

(

𝑔′(𝑡) − 1
)

𝜂′𝑇 (𝑡)𝜑𝑅(𝑥) 𝑢(𝑡, 𝑥) 𝑑𝑥𝑑𝑡

=∶ 𝐼1,𝑅 + 𝐼2,𝑅 + 𝐼3,𝑅. (56)
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Applying Hölder’s inequality with 1
𝑝
+ 1

𝑝′
= 1 we may deal with 𝐼1,𝑅 as follows:

|𝐼1,𝑅| ≤

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)| ||
|

𝜂′′𝑇 (𝑡)
|

|

|

𝜑𝑅(𝑥) 𝑑𝑥𝑑𝑡

≲
(

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

𝑔(𝑡)||
|

𝑢(𝑡, 𝑥)𝜙
1
𝑝

𝑇 ,𝑅(𝑡, 𝑥)
|

|

|

𝑝
𝑑𝑥𝑑𝑡

)
1
𝑝
(

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

𝑔(𝑡)||
|

𝜙
− 1
𝑝

𝑇 ,𝑅(𝑡, 𝑥)𝜂
′′
𝑇 (𝑡)𝜑𝑅(𝑥)

|

|

|

𝑝′
𝑑𝑥𝑑𝑡

)
1
𝑝′

≲ 𝐼
1
𝑝

𝑅

(

𝑇

∫
𝑇 ∕2

∫
ℝ𝑛

𝑔(𝑡)𝜂
− 𝑝′

𝑝

𝑇 (𝑡)||
|

𝜂′′𝑇 (𝑡)
|

|

|

𝑝′
𝜑𝑅(𝑥) 𝑑𝑥𝑑𝑡

)
1
𝑝′

.

By using the change of variables 𝑡 ∶= 𝑇 −1𝑡 and 𝑥̃ ∶= 𝑅−1𝑥, we compute directly to give

|𝐼1,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛
𝑝′

(

𝑇

∫
𝑇 ∕2

𝑔(𝑡)𝑑𝑡
)

1
𝑝′
(

∫
ℝ𝑛

⟨

𝑥̃
⟩−𝑛−2𝜎 𝑑𝑥̃

)
1
𝑝′

.

Here we used 𝜂′′𝑇 (𝑡) = 𝑇 −2𝜂′′(𝑡) and the assumption (42). After repeating the same argument as we did in Section 5.1, one finds

|𝐼1,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛+2𝜎
𝑝′

(

∫
ℝ𝑛

⟨

𝑥̃
⟩−𝑛−2𝜎 𝑑𝑥̃

)
1
𝑝′

. (57)

In an analogous way, we may conclude the following estimate for 𝐼3,𝑅:

|𝐼3,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑇
−2𝑅

𝑛+2𝜎
𝑝′

(

∫
ℝ𝑛

⟨

𝑥̃
⟩−𝑛−2𝜎 𝑑𝑥̃

)
1
𝑝′

. (58)

Now let us focus our attention on estimating 𝐼2,𝑅. In the first step, since 𝜑𝑅 ∈ 𝐻2𝜎 and 𝑢 ∈ 
(

[0,∞), 𝐿2), we apply Lemma 13
to derive the following identities:

∫
ℝ𝑛

𝜑𝑅(𝑥) (−Δ)𝜎𝑢(𝑡, 𝑥) 𝑑𝑥 = ∫
ℝ𝑛

|𝜉|2𝜎𝜑̂𝑅(𝜉) 𝑢̂(𝑡, 𝜉) 𝑑𝜉 = ∫
ℝ𝑛

𝑢(𝑡, 𝑥) (−Δ)𝜎𝜑𝑅(𝑥) 𝑑𝑥.

Therefore, we get

𝐼2,𝑅 =

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝜂𝑇 (𝑡)𝜑𝑅(𝑥) (−Δ)𝜎𝑢(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 =

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝜂𝑇 (𝑡)𝑢(𝑡, 𝑥) (−Δ)𝜎𝜑𝑅(𝑥) 𝑑𝑥𝑑𝑡.

The application of Hölder’s inequality again as we estimated 𝐼1,𝑅 gives

|𝐼2,𝑅| ≤ 𝐼
1
𝑝

𝑅

(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝜂𝑇 (𝑡)𝜑
− 𝑝′

𝑝

𝑅 (𝑥) |(−Δ)𝜎𝜑𝑅(𝑥)|𝑝
′ 𝑑𝑥𝑑𝑡

)
1
𝑝′

.

In the second step, to control the above integral we shall apply results from Lemmas 11 and 12 as the key tools. In particular,
carrying out the change of variables 𝑥̃ ∶= 𝑅−1𝑥 we get the following relation from Lemma 12:

(−Δ)𝜎𝜑𝑅(𝑥) = 𝑅−2𝜎(−Δ)𝜎(𝜑)(𝑥̃).

After using the change of variables 𝑡 ∶= 𝑇 −1𝑡 we achieve

|𝐼2,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′

(

∫
ℝ𝑛

𝜑− 𝑝′

𝑝 (𝑥̃) |(−Δ)𝜎(𝜑)(𝑥̃)|𝑝′ 𝑑𝑥̃
)

1
𝑝′

.

Next, the employment of Lemma 11 leads to the following estimate:

|𝐼2,𝑅| ≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′

(

∫
ℝ𝑛

⟨

𝑥̃
⟩−𝑛−2𝜎 𝑑𝑥̃

)
1
𝑝′

. (59)
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Let us now link the derived estimates from (56) to (59) and then repeat some steps in the proof of Section 5.1 to establish

𝐼𝑅 ≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′

(

∫
ℝ𝑛

⟨

𝑥̃
⟩−𝑛−2𝜎 𝑑𝑥̃

)
1
𝑝′

≲ 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ .

This means
𝐼
1− 1

𝑝

𝑅 ≲ 𝑅−2𝜎+ 𝑛+2𝜎
𝑝′ . (60)

We can see that the assumption (7) is equivalent to −2𝜎 + 𝑛+2𝜎
𝑝′

< 0. For this reason, passing 𝑅→ ∞ in (60) we get

𝐼𝑅 =

∞

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝 𝑑𝑥𝑑𝑡 = 0,

which follows 𝑢 ≡ 0. This is a contradiction to the assumption (6), that is, there is no global (in time) Sobolev solution to (4) in
the subcritical case. Summarizing, the proof of Theorem 2 in the case that 𝜎 is a fractional number is completed.

6 LIFESPAN ESTIMATES

6.1 Upper bound of lifespan
To show Theorem 3, the following lemma is useful in our proof.
Lemma 14 (see30 at page 202). The following formula of derivative of composed function holds for any multi-index 𝛾:

𝜕𝛾𝜉ℎ
(

𝑓 (𝜉)
)

=
|𝛾|
∑

𝑘=1
ℎ(𝑘)

(

𝑓 (𝜉)
)

⎛

⎜

⎜

⎜

⎝

∑

𝛾1+⋯+𝛾𝑘≤𝛾
|𝛾1|+⋯+|𝛾𝑘|=|𝛼|, |𝛾𝑖|≥1

(

𝜕𝛾1𝜉 𝑓 (𝜉)
)

⋯
(

𝜕𝛾𝑘𝜉 𝑓 (𝜉)
)

⎞

⎟

⎟

⎟

⎠

,

where ℎ = ℎ(𝑧) and ℎ(𝑘)(𝑧) = 𝑑𝑘ℎ(𝑧)
𝑑 𝑧𝑘

.

Proof of Theorem 3. We assume that 𝑢 = 𝑢(𝑡, 𝑥) is a local solution to (4) in [0, 𝑇𝜀) × ℝ𝑛 with 𝑇𝜀 = LifeSpan(𝑢). The proof of
Theorem 3 can be divided into two cases as follows:

∙ Case 1: If
𝑝 < 1 + 2𝜎

𝑛
(subcritical case),

then we repeat some steps in the proof of Theorem 2 to obtain the following estimate:
𝐼𝑅 + 𝑐𝜀 ≤ 𝐶 𝐼

1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ , i.e. 𝑐𝜀 ≤ 𝐶 𝐼
1
𝑝

𝑅 𝑅
−2𝜎+ 𝑛+2𝜎

𝑝′ − 𝐼𝑅, (61)
where 𝑐 is a suitable constant being subject to

∫
𝐵𝑅

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 > 𝑐 > 0

for any 𝑅 > 𝑅0. Here 𝑅0 > 0 stands for a sufficiently large constant. After applying the elementary inequality
𝐴𝑦𝛽 − 𝑦 ≤ 𝐴

1
1−𝛽 for any 𝐴 > 0, 𝑦 ≥ 0 and 0 < 𝛽 < 1,

to (61), one may directly calculate to arrive at
𝜀 ≤ 𝐶 𝑅−(2𝜎𝑝′−𝑛−2𝜎) = 𝐶ℬ(0, 𝑇 )−

2𝜎𝑝′−𝑛−2𝜎
2𝜎 ,

provided that 𝑅2𝜎 = ℬ(0, 𝑇 ) holds, which is reasonable from (∗). Therefore, letting 𝑇 → 𝑇 −
𝜀 in the previous inequality

we may conclude
ℬ(0, 𝑇𝜀) ≤ 𝐶𝜀−

2𝜎(𝑝−1)
2𝜎−𝑛(𝑝−1) ,

which is the first desired estimate in (8).
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∙ Case 2: If
𝑝 = 1 + 2𝜎

𝑛
(critical case),

then we introduce another test function 𝜂∗ = 𝜂∗(𝑠) given by

𝜂∗(𝑠) ∶=

{

0 if 𝑠 ∈ [0, 1∕2),
𝜂(𝑠) if 𝑠 ∈ [1∕2,∞),

where the test function 𝜂 = 𝜂(𝑠) is defined as in the proof of Theorem 2. Moreover, for a large parameter 𝑅 ∈ (0,∞), we
denote 𝜓𝑅 = 𝜓𝑅(𝑡, 𝑥) and 𝜓∗

𝑅 = 𝜓∗
𝑅(𝑡, 𝑥) as follows:

𝜓𝑅(𝑡, 𝑥) ∶=
(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎

and 𝜓∗
𝑅(𝑡, 𝑥) ∶=

(

𝜂∗
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎

.

Obviously, one recognizes that
supp𝜓𝑅 ⊂

{

(𝑡, 𝑥) ∶ (𝑡, |𝑥|) ∈ [0, 𝑇 ] ×
[

0, 𝑅
1
2𝜎

]}

,

supp𝜓∗
𝑅 ⊂

(

[0, 𝑇 ] ×
[

0, 𝑅
1
2𝜎

])

∖
{

(𝑡, 𝑥) ∶ ℬ(0, 𝑡) + |𝑥|2𝜎 ⩽ 𝑅
2

}

,

where 𝑇 is chosen to be a large number enjoying the relation

𝑅 =

𝑇

∫
0

1
𝑏(𝑠)

𝑑𝑠. (∗∗)

By multiplying the equation (44) by 𝜓𝑅 = 𝜓𝑅(𝑡, 𝑥), we perform integration by parts to derive
𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 + 𝜀∫
ℝ𝑛

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜓𝑅(0, 𝑥)𝑑𝑥

=

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝑢(𝑡, 𝑥)𝜕2𝑡 𝜓𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡 +

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)𝑢(𝑡, 𝑥)(−Δ)𝜎𝜓𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡

+

𝑇

∫
0

∫
ℝ𝑛

(

𝑔′(𝑡) − 1
)

𝑢(𝑡, 𝑥)𝜕𝑡𝜓𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡

=∶ 𝐼1,𝑅 + 𝐼2,𝑅 + 𝐼3,𝑅. (62)
Because of the assumption (6), there exists a sufficiently large constant 𝑅0 > 0 such that for any 𝑅 > 𝑅0 we have

∫
ℝ𝑛

(

𝑢0(𝑥) + 𝑔(0)𝑢1(𝑥)
)

𝜑𝑅(𝑥)𝑑𝑥 > 𝑐 > 0 for a suitable constant 𝑐. (63)

At the first stage, we will verify the following auxiliary estimates:
|

|

𝜕𝑡𝜓𝑅(𝑡, 𝑥)|| ≲ 𝑅
−1𝑔(𝑡)

(

𝜓∗
𝑅(𝑡, 𝑥)

)
𝑛+2𝜎−1
𝑛+2𝜎 , (64)

|

|

|

𝜕2𝑡 𝜓𝑅(𝑡, 𝑥)
|

|

|

≲ 𝑅−1(𝜓∗
𝑅(𝑡, 𝑥)

)
𝑛+2𝜎−2
𝑛+2𝜎 , (65)

|

|

(−Δ)𝜎𝜂𝑅(𝑡, 𝑥)|| ≲ 𝑅
−1(𝜓∗

𝑅(𝑡, 𝑥)
)

𝑛
𝑛+2𝜎 . (66)

Namely, by straightforward calculations one finds

𝜕𝑡𝜓𝑅(𝑡, 𝑥) =
(𝑛 + 2𝜎)
𝑅𝑏(𝑡)

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−1

𝜂′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)
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and

𝜕2𝑡 𝜓𝑅(𝑡, 𝑥) =
(𝑛 + 2𝜎)𝑏′(𝑡)
𝑅𝑏(𝑡)2

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−1

𝜂′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

+
(𝑛 + 2𝜎)(𝑛 + 2𝜎 − 1)

𝑅2𝑏(𝑡)2

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−2 (

𝜂′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))2

+
(𝑛 + 2𝜎)
𝑅2𝑏(𝑡)2

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−1

𝜂′′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

.

Since the properties

𝜂′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

≢ 0 and 𝜂′′
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

≢ 0 for 𝑅
2
<ℬ(0, 𝑡) + |𝑥|2𝜎 < 𝑅,

are valid, we may claim the estimates (64) and (65) by using the assertion i) of Lemma 10, the assumption (B-L) and
noticing the relations 0 < 𝜓∗

𝑅(𝑡, 𝑥) < 1 as well as 𝑔(𝑡) ≲ √

𝑅. Here we want to underline that the latter relation can be
verified in the same procedure as we did in (50) by the help of (∗∗). What’s more, to control (−Δ)𝜎𝜓𝑅(𝑡, 𝑥), we shall apply
Lemma 14 as a key tool. Particularly, we shall separate our computations into three steps as follows:

Step 1: The application of Lemma 14 with ℎ(𝑧) = ℬ(0, 𝑡) + 𝑧𝜎

𝑅
and 𝑧 = 𝑓 (𝑥) = |𝑥|2 gives the following estimate for

|𝛾| ≥ 1:
|

|

|

|

|

𝜕𝛾𝑥

(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

≤
|𝛾|
∑

𝑘=1

|𝑥|2𝜎−2𝑘

𝑅

(

∑

|𝛾1|+⋯+|𝛾𝑘|=|𝛾|
|𝛾𝑖|≥1

|

|

|

𝜕𝛾1𝑥
(

|𝑥|2
)

|

|

|

⋯ |

|

|

𝜕𝛾𝑘𝑥
(

|𝑥|2
)

|

|

|

)

≤
|𝛾|
∑

𝑘=1

|𝑥|2𝜎−2𝑘

𝑅

(

∑

|𝛾1|+⋯+|𝛾𝑘|=|𝛾|
1≤|𝛾𝑖|≤2

|

|

|

𝜕𝛾1𝑥
(

|𝑥|2
)

|

|

|

⋯ |

|

|

𝜕𝛾𝑘𝑥
(

|𝑥|2
)

|

|

|

)

≲
|𝛾|
∑

𝑘=1

|𝑥|2𝜎−2𝑘

𝑅

(

∑

|𝛾1|+⋯+|𝛾𝑘|=|𝛾|
1≤|𝛾𝑖|≤2

|𝑥|2−|𝛾1| ⋯ |𝑥|2−|𝛾𝑘|
)

≲
|𝛾|
∑

𝑘=1

|𝑥|2𝜎−2𝑘

𝑅
|𝑥|2𝑘−|𝛾| ≲

|𝑥|2𝜎−|𝛾|

𝑅
.

Step 2: Applying Lemma 14 with ℎ(𝑧) = 𝜂(𝑧) and 𝑧 = 𝑓 (𝑥) =
ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅
one gets for all |𝛾| ≥ 1 the estimate

|

|

|

|

|

𝜕𝛾𝑥𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

≤
|𝛾|
∑

𝑘=1

|

|

|

|

|

𝜂(𝑘)
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

(

∑

|𝛾1|+⋯+|𝛾𝑘|=|𝛾|
1≤|𝛾𝑖|≤2𝜎

|

|

|

|

|

𝜕𝛾1𝑥

(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

⋯
|

|

|

|

|

𝜕𝛾𝑘𝑥

(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

)

≤
|𝛾|
∑

𝑘=1

|

|

|

|

|

𝜂(𝑘)
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

(

∑

|𝛾1|+⋯+|𝛾𝑘|=|𝛾|
1≤|𝛾𝑖|≤2𝜎

|𝑥|2𝜎−|𝛾1|

𝑅
⋯

|𝑥|2𝜎−|𝛾𝑘|

𝑅

)

≲
|𝛾|
∑

𝑘=1

(

|𝑥|2𝜎

𝑅

)𝑘

|𝑥|−|𝛾| ≲
|𝑥|2𝜎−|𝛾|

𝑅

(

since |𝑥|2𝜎 ≤ 𝑅 in supp𝜓∗
𝑅

)

.
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Step 3: After applying Lemma 14 with ℎ(𝑧) = 𝑧𝑛+2𝜎 and 𝑧 = 𝑓 (𝑥) = 𝜂
(ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

we conclude
|

|

|

(−Δ)𝜎𝜂𝑅(𝑡, 𝑥)
|

|

|

≲
∑

|𝛾|=2𝜎

|

|

|

𝜕𝛾𝑥𝜂𝑅(𝑡, 𝑥)
|

|

|

≲
2𝜎
∑

𝑘=1

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−𝑘
(

∑

|𝛾1|+⋯+|𝛾𝑘|=2𝜎
|𝛾𝑖|≥1

|

|

|

|

|

𝜕𝛾1𝑥 𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

⋯
|

|

|

|

|

𝜕𝛾𝑘𝑥 𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

)

|

|

|

|

|

)

≲
2𝜎
∑

𝑘=1

(

𝜂∗
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−𝑘
∑

|𝛾1|+⋯+|𝛾𝑘|=2𝜎
|𝛾𝑖|≥1

|𝑥|2𝜎−|𝛾1|

𝑅
⋯

|𝑥|2𝜎−|𝛾𝑘|

𝑅

≲
2𝜎
∑

𝑘=1

(

𝜂∗
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎−𝑘
|𝑥|2(𝑘−1)𝜎

𝑅𝑘

≲ 𝑅−1
(

𝜂∗
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛
(

since |𝑥|2𝜎 ≤ 𝑅 in supp𝜓∗
𝑅

)

,

which yields immediately the estimate (66).

Let us now turn to estimate 𝐼1,𝑅. By (65), the employment of Hölder’s inequality leads to

|𝐼1,𝑅| ≤ 𝑅−1

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|
(

𝜓∗
𝑅(𝑡, 𝑥)

)
𝑛+2𝜎−2
𝑛+2𝜎 𝑑𝑥𝑑𝑡

⩽ 𝑅−1
(

∫
supp𝜓∗

𝑅

𝑔(𝑡)𝑑(𝑥, 𝑡)
)

1
𝑝′
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜓∗
𝑅(𝑡, 𝑥)

)
(𝑛+2𝜎−2)𝑝
𝑛+2𝜎 𝑑𝑥𝑑𝑡

)
1
𝑝

≲ 𝑅( 𝑛
2𝜎
+1) 1

𝑝′
−1
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜓∗
𝑅(𝑡, 𝑥)

)
(𝑛+2𝜎−2)𝑝
𝑛+2𝜎 𝑑𝑥𝑑𝑡

)
1
𝑝

, (67)

where we have utilized the estimate

∫
supp𝜓∗

𝑅

𝑔(𝑡)𝑑(𝑥, 𝑡) ≲

𝑇

∫
0

𝑅
1
2𝜎

∫
0

|𝑥|𝑛−1𝑔(𝑡)𝑑|𝑥|𝑑𝑡 ≲ 𝑅
𝑛
2𝜎ℬ(𝑇 ) ≲ 𝑅

𝑛
2𝜎
+1

thanks to the relation (∗∗). Repeating the same procedure as the above together with the help of (66) and (64) one has

|𝐼2,𝑅| ≲ 𝑅
( 𝑛
2𝜎
+1) 1

𝑝′
−1
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜓∗
𝑅(𝑡, 𝑥)

)
𝑛𝑝
𝑛+2𝜎 𝑑𝑥𝑑𝑡

)
1
𝑝 (68)

and

|𝐼3,𝑅| ≲ 𝑅
( 𝑛
2𝜎
+1) 1

𝑝′
−1
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜓∗
𝑅(𝑡, 𝑥)

)
(𝑛+2𝜎−1)𝑝
𝑛+2𝜎 𝑑𝑥𝑑𝑡

)
1
𝑝

, (69)

respectively. For this reason, in (62) we link the derived estimates (63) and (67)-(69) to establish

𝑐𝜀 +

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 ≲ 𝑅
( 𝑛
2𝜎
+1) 1

𝑝′
−1
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜓∗
𝑅(𝑡, 𝑥)

)
𝑛𝑝
𝑛+2𝜎 𝑑𝑥𝑑𝑡

)
1
𝑝

=
(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓∗
𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡

)
1
𝑝 (70)



28 Aslan and Dao

by observing from the assumption 𝑝 = 1 + 2𝜎
𝑛+2𝜎

that
( 𝑛
2𝜎

+ 1
) 1
𝑝′

− 1 = 0 and 𝑛𝑝
𝑛 + 2𝜎

= 1.

In the next stage, let us introduce the following auxiliary functions:

𝑦(𝑟) ∶=

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓∗
𝑟 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 with 𝑟 ∈ (0,∞)

and
𝑌 (𝑅) ∶=

𝑅

∫
0

𝑦(𝑟)𝑟−1𝑑𝑟.

By using the change of variable 𝑠 = ℬ(0, 𝑡) + |𝑥|2𝜎

𝑟
, we achieve

𝑌 (𝑅) =

𝑅

∫
0

(

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜂∗
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑟

))𝑛+2𝜎

𝑑𝑥𝑑𝑡
)

𝑟−1𝑑𝑟

=

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
∞

∫
ℬ(0,𝑡)+|𝑥|2𝜎

𝑅

(

𝜂∗(𝑠)
)𝑛+2𝜎𝑠−1𝑑𝑠𝑑𝑥𝑑𝑡

⩽

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

1

∫
1∕2

(

𝜂∗(𝑠)
)𝑛+2𝜎𝑠−1𝑑𝑠

)

𝑑𝑥𝑑𝑡
(

since supp 𝜂∗ ⊂ [1∕2, 1]
)

=

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

1

∫
1∕2

(

𝜂(𝑠)
)𝑛+2𝜎𝑠−1𝑑𝑠

)

𝑑𝑥𝑑𝑡
(

since 𝜂∗ ≡ 𝜂 in [1∕2, 1]
)

≤

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝 sup
𝑟∈(0,𝑅)

(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑟

))𝑛+2𝜎 ( 1

∫
1∕2

𝑠−1 𝑑𝑠
)

𝑑𝑥𝑑𝑡

≤ log 2

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝
(

𝜂
(

ℬ(0, 𝑡) + |𝑥|2𝜎

𝑅

))𝑛+2𝜎

𝑑𝑥𝑑𝑡
(

since 𝜂 is decreasing
)

= log 2

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡. (71)

In addition, it holds
𝑌 ′(𝑅)𝑅 = 𝑦(𝑅) =

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓∗
𝑅(𝑡, 𝑥)𝑑𝑥𝑑𝑡. (72)

After combining from (70) to (72), one has demonstrated the following estimate:

𝑐𝜀 +
𝑌 (𝑅)
log 2

≤ 𝑐𝜀 +

𝑇

∫
0

∫
ℝ𝑛

𝑔(𝑡)|𝑢(𝑡, 𝑥)|𝑝𝜓𝑅(𝑡, 𝑥) 𝑑𝑥𝑑𝑡 ≲
(

𝑌 ′(𝑅)𝑅
)

1
𝑝 ,

which is equivalent to
𝑅−1

(

𝑐𝜀 +
𝑌 (𝑅)
log 2

)𝑝

≤ 𝐶 𝑌 ′(𝑅).

Thus, it follows that
𝑅−1(𝑌 (𝑅)

)𝑝 ≤ 𝐶(log 2)𝑝𝑌 ′(𝑅), i.e. 𝑅−1 ≤ 𝐶(log 2)𝑝
𝑌 ′(𝑅)

(

𝑌 (𝑅)
)𝑝 (73)
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and
𝑐𝑝𝜀𝑝𝑅−1 ≤ 𝐶 𝑌 ′(𝑅). (74)

By putting 𝑟 ∶= 𝑅 and taking account of 𝑅 ⩾ 𝑅2
0, we integrate two sides of (73) over [√𝑅,𝑅] to get

1
2
log𝑅 ≤ −

𝐶(log 2)𝑝

𝑝 − 1
(

𝑌 (𝑟)
)−(𝑝−1)

|

|

|

𝑟=𝑅

𝑟=
√

𝑅
≤
𝐶(log 2)𝑝

𝑝 − 1
(

𝑌 (
√

𝑅)
)−(𝑝−1). (75)

Again, denoting 𝑟 ∶= 𝑅 and taking integration of (74) over [𝑅0,
√

𝑅] one gains
𝑐𝑝𝜀𝑝

(

log
√

𝑅 − log𝑅0

)

≤ 𝐶
(

𝑌 (
√

𝑅) − 𝑌 (𝑅0)
)

,

which results
1
4
𝑐𝑝𝜀𝑝 log𝑅 ≤ 𝐶 𝑌 (

√

𝑅).
Finally, we plug the previous inequality in (75) to catch the estimate

1
2
log𝑅 ≤

𝐶(log 2)𝑝

𝑝 − 1

( 1
4𝐶

𝑐𝑝𝜀𝑝 log𝑅
)−(𝑝−1)

,

that is,
log𝑅 ≤

𝐶 log 2
𝑐𝑝−1

(

22𝑝−1
𝑝 − 1

)
1
𝑝

𝜀−(𝑝−1).

For this reason, letting 𝑅→ ℬ(0, 𝑇𝜀), i.e. 𝑇 → 𝑇 −
𝜀 , in the last estimate we may conclude that

ℬ(0, 𝑇𝜀) ≤ exp
(

𝐶 log 2
𝑐𝑝−1

(22𝑝−1
𝑝 − 1

)
1
𝑝 𝜀−(𝑝−1)

)

what we wanted to prove.
Summarizing, the proof of Theorem 3 is complete.

6.2 Lower bound of lifespan
Proof of Theorem 4. First of all, let us define the evolution space of solutions 𝑋(𝑇 ) together with its corresponding norm as in
the proof of Theorem 1 with 𝑚 = 1. In the followings, we are going to use again some notations which are introduced before
from Section 4. The main crux of our approach to indicate the desired lower bound estimates for the lifespan relies on a pair of
inequalities as follows:

‖𝑢‖𝑋(𝑇 ) ⩽ 𝜀𝐶0 +

{

𝐶1 log
(

e +ℬ(0, 𝑡)
)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 = 1 + 2𝜎
𝑛
,

𝐶1
(

1 +ℬ(0, 𝑡)
)1− 𝑛

2𝜎
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 < 1 + 2𝜎
𝑛
,

(76)

for all 𝑡 ∈ [0, 𝑇 ], where 𝐶0 = 𝐶0(𝑛, 𝑢0, 𝑢1) and 𝐶1 is a positive constant independent of 𝑇 . Clearly, it entails immediately the
following estimate from the definition of the norm of 𝑋(𝑇 ) and Theorem 3:

‖𝑢lin‖𝑋(𝑇 ) ⩽ 𝜀𝐶0(𝑛, 𝑢0, 𝑢1).

For this reason, we need to establish

‖𝑢non‖𝑋(𝑇 ) ⩽

{

𝐶1 log
(

e +ℬ(0, 𝑡)
)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 = 1 + 2𝜎
𝑛
,

𝐶1
(

1 +ℬ(0, 𝑡)
)1− 𝑛

2𝜎
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 < 1 + 2𝜎
𝑛
,

(77)

instead of (76). Indeed, repeating the same procedure and analogous arguments as we did in the proof of Theorem 1 one arrives
at

‖ |𝐷|

𝑘𝛼𝑢non(𝑡, ⋅)‖𝐿2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎
‖𝑢‖𝑝𝑋(𝑇 )

𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎
(𝑝−1) 𝑑𝑠

+
(

1 +ℬ(0, 𝑡)
)− 𝑛

2𝜎
𝑝+ 𝑛

4𝜎
‖𝑢‖𝑝𝑋(𝑇 )

𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝑘𝛼

2𝜎 𝑑𝑠

=∶ 𝐼1 + 𝐼2
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with 𝑘 = 0, 1. Concerning the second integral we use the change of variables 𝑟 = ℬ(𝑠, 𝑡), i.e. 𝑟 = ℬ(0, 𝑡) −ℬ(0, 𝑠), to achieve
𝑡

∫
𝑡
2

𝑏(𝑠)−1
(

1 +ℬ(𝑠, 𝑡)
)− 𝑘𝛼

2𝜎 𝑑𝑠 =

ℬ(𝑡∕2,𝑡)

∫
0

(1 + 𝑟)−
𝑘𝛼
2𝜎 𝑑𝑟 ≲

(

1 +ℬ(𝑡∕2, 𝑡)
)1− 𝑘𝛼

2𝜎 ≲
(

1 +ℬ(0, 𝑡)
)1− 𝑘𝛼

2𝜎

since 𝑘𝛼
2𝜎
< 1, which implies

𝐼2 ≲
(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎
+1− 𝑛

2𝜎
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ). (78)
To control 𝐼1, let us now separate our considerations into two cases as follows:

• Case 1: If
𝑝 = 1 + 2𝜎

𝑛
, i.e. 𝑛

2𝜎
(𝑝 − 1) = 1,

then
𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎
(𝑝−1) 𝑑𝑠 ≲ log

(

e +ℬ(0, 𝑡∕2)
)

≲ log
(

e +ℬ(0, 𝑡)
)

.

This yields that
𝐼1 ≲

(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎 log
(

e +ℬ(0, 𝑡)
)

‖𝑢‖𝑝𝑋(𝑇 ). (79)
• Case 2: If

𝑝 < 1 + 2𝜎
𝑛
, i.e. 𝑛

2𝜎
(𝑝 − 1) < 1,

then
𝑡
2

∫
0

𝑏(𝑠)−1
(

1 +ℬ(0, 𝑠)
)− 𝑛

2𝜎
(𝑝−1) 𝑑𝑠 ≲

(

1 +ℬ(0, 𝑡∕2)
)1− 𝑛

2𝜎
(𝑝−1) ≲

(

1 +ℬ(0, 𝑡)
)1− 𝑛

2𝜎
(𝑝−1).

This follows that
𝐼1 ≲

(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎
+1− 𝑛

2𝜎
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ). (80)
Summarizing, we link the obtained estimates from (78) to (80) to conclude

‖ |𝐷|

𝑘𝛼𝑢non(𝑡, ⋅)‖𝐿2 ≲

⎧

⎪

⎨

⎪

⎩

(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎 log
(

e +ℬ(0, 𝑡)
)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 = 1 + 2𝜎
𝑛
,

(

1 +ℬ(0, 𝑡)
)− 𝑛

4𝜎
− 𝑘𝛼

2𝜎
+1− 𝑛

2𝜎
(𝑝−1)

‖𝑢‖𝑝𝑋(𝑇 ) if 𝑝 < 1 + 2𝜎
𝑛
,

for 𝑘 = 0, 1. This completes the proof of (77).
What’s more, motivated by the approach in19 let us define

𝑇 ∗ ∶= sup
{

𝑇 ∈ (0, 𝑇𝜀) such that 𝐹 (𝑇 ) ∶= ‖𝑢‖𝑋(𝑇 ) ⩽𝑀𝜀
}

with 𝑇𝜀 = LifeSpan(𝑢), where 𝑀 > 0 is a sufficiently large constant which will be determined later. From this definition and
(76), it is clear to see that

𝐹 (𝑇 ∗) = ‖𝑢‖𝑋(𝑇 ∗) ≤
⎧

⎪

⎨

⎪

⎩

(

𝐶0𝑀−1 + 𝐶1 log
(

e +ℬ(0, 𝑇 ∗)
)

(𝑀𝜀)𝑝−1
)

𝑀𝜀 if 𝑝 = 1 + 2𝜎
𝑛
,

(

𝐶0𝑀−1 + 𝐶1
(

1 +ℬ(0, 𝑇 ∗)
)1− 𝑛

2𝜎
(𝑝−1)(𝑀𝜀)𝑝−1

)

𝑀𝜀 if 𝑝 < 1 + 2𝜎
𝑛
.

Now we take a large constant 𝑀 > 0 such that 𝐶0𝑀−1 < 1
4
. Assume that the following estimates hold:

1
4
>

{

𝐶1 log
(

e +ℬ(0, 𝑇 ∗)
)

(𝑀𝜀)𝑝−1 if 𝑝 = 1 + 2𝜎
𝑛
,

𝐶1
(

1 +ℬ(0, 𝑇 ∗)
)1− 𝑛

2𝜎
(𝑝−1)(𝑀𝜀)𝑝−1 if 𝑝 < 1 + 2𝜎

𝑛
.

(81)

Then, it follows immediately that
𝐹 (𝑇 ∗) ≤ 1

2
𝑀𝜀 ≤𝑀𝜀.
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Thanks to the continuity of the function 𝐹 (𝑇 ), we claim that there exists 𝑇 ∈ (𝑇 ∗, 𝑇𝜀) enjoying the relation 𝐹 (𝑇 ) ≤𝑀𝜀, which
is a contradiction to the definition of 𝑇 ∗. This means that the assumption (81) is not true, i.e.

1
4
≤

{

𝐶1 log
(

e +ℬ(0, 𝑇 ∗)
)

(𝑀𝜀)𝑝−1 if 𝑝 = 1 + 2𝜎
𝑛
,

𝐶1
(

1 +ℬ(0, 𝑇 ∗)
)1− 𝑛

2𝜎
(𝑝−1)(𝑀𝜀)𝑝−1 if 𝑝 < 1 + 2𝜎

𝑛
.

More precisely, this observation gives

ℬ(0, 𝑇 ∗) ≥
⎧

⎪

⎨

⎪

⎩

exp
(

𝑐𝜀−(𝑝−1)
) if 𝑝 = 1 + 2𝜎

𝑛
,

𝑐𝜀−
2𝜎(𝑝−1)

2𝜎−𝑛(𝑝−1) if 𝑝 < 1 + 2𝜎
𝑛
.

Therefore, the desired estimates for lifespan from the below (9) are established by the last inequality.

7 CONCLUDING REMARKS

Remark 5. It can be also expected to study the global (in time) existence of small data Sobolev solutions from suitable function
spaces to weakly coupled systems of semi-linear 𝜎-evolution models with time-dependent coefficients and different power non-
linearities. For this reason, it is interesting to consider the following Cauchy problem for weakly coupled systems of semi-linear
𝜎-evolution equations with time-dependent damping:

⎧

⎪

⎨

⎪

⎩

𝑢𝑡𝑡 + (−Δ)𝜎𝑢 + 𝑏1(𝑡)𝑢𝑡 = |𝜕𝑗𝑡 𝑣|
𝑝, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,

𝑣𝑡𝑡 + (−Δ)𝜎𝑣 + 𝑏2(𝑡)𝑣𝑡 = |𝜕𝑘𝑡 𝑢|
𝑞 , (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,

(𝑢, 𝑢𝑡, 𝑣, 𝑣𝑡)(0, 𝑥) = (𝑢0, 𝑢1, 𝑣0, 𝑣1)(𝑥), 𝑥 ∈ ℝ𝑛,

(82)

with any fractional number 𝜎 ≥ 1, 𝑗, 𝑘 = 0, 1 and 𝑝, 𝑞 > 1. Here the damping terms 𝑏1(𝑡)𝑢𝑡 and 𝑏2(𝑡)𝑣𝑡 are assumed to be effective
(see Definition 1). Using the derived estimates to the single equation from Proposition 1 and Corollary 3 for the corresponding
linear Cauchy problems of (82), we may prove global (in time) existence of small data Sobolev solutions to the weakly coupled
systems of semi-linear 𝜎-evolution model (82) with suitable function spaces. On the other hand, by using the modified test
function method not only the blow-up of Sobolev solution, but also lifespans estimate can be studied to (82) when 𝜎 ≥ 1 is any
fractional number.
Remark 6. Motivated by the quite recent paper11, where the authors investigated the equation

{

𝑢𝑡𝑡 + (−Δ)𝜎𝑢 +
𝜇

1 + 𝑡
𝑢𝑡 = |𝑢|𝑝, (𝑡, 𝑥) ∈ [0,∞) ×ℝ𝑛,

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑢𝑡(0, 𝑥) = 𝑢1(𝑥), 𝑥 ∈ ℝ𝑛,
(83)

with 𝜇 > 0, 𝜎 > 1 and 𝑝 > 1, we can see that another interesting problem is to study the Cauchy problem (82) for weakly coupled
system of semi-linear 𝜎-evolution equations with with different scale-invariant time-dependent dissipation terms. Namely, the
following damping terms 𝑏1(𝑡)𝑢𝑡 and 𝑏2(𝑡)𝑣𝑡 are of interest:

𝑏1(𝑡) =
𝜇1
1 + 𝑡

with 𝜇1 > 0 and 𝑏2(𝑡) =
𝜇2
1 + 𝑡

with 𝜇2 > 0.

Depending on the size of the parameter 𝜇1 and 𝜇2, we expect to achieve blow-up results and lifespan estimates for solutions by
an application of the same approaches used in this paper. Moreover, the critical curve of 𝑝, 𝑞 for the global (in time) existence of
small data solutions could be reasonable to conclude by the help of optimal 𝐿𝑟 − 𝐿𝑠 decay estimates, with 1 ≤ 𝑟 ≤ 2 ≤ 𝑠 ≤ ∞,
for solutions to the corresponding linear Cauchy problem of (83).
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