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1 Introduction

The singularity theory of curves and surfaces is an active area of research in
different branches of mathematics and physics. In the view of differential ge-
ometry, curves and surfaces are represented by functions with one variable and
two variables, respectively. In recent years, singularity theory for the curves and
surfaces became important tools for various interesting fields such as medical
imaging and computer vision. (see e.g. [1-4]).

As we know, sweeping surface is the surface generated by the motion of a
plane curve (the profile curve or generatrix) whilst the plane is moved through
space in such away that the movement of the plane is always in the direction of
the normal to the plane. Sweeping is a very important, powerful, and widespread
method in geometric modelling. The basic idea is to choose some geometrical
object (generator), which is then swept along a spine curve (trajectory) in the
space. The result of such evolution, consisting of motion through space and
intrinsic shape deformation, is a sweep object. The sweep object type is defined
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by the choice of the generator and the trajectory. Then, sweeping a curve along
the other curve generates a sweeping surface. There are several different names
of sweeping surface that we are familiar with, such as tubular surface, pipe
surface, string, and canal surface [5-9].

One of the most appropriate methods to study curves and surfaces from the
view differential geometry, Serret–Frenet frame, but not unique, there is another
frame fields as the rotation minimizing frame (RMF) or Bishop frame [10]. Some
applications of the Bishop frame can be found in [11-14]. Corresponding to
Bishop frame in Euclidean space, there is a Minkowski version’s frame which is
named a Minkowski Bishop frame as applied to Minkowski geometry. By the
investigation of the space curve, it is easier to use the Minkowski Bishop frame
among the curve as an essential tool more than the Serret–Frenet frame type
frame in Lorentzian space. Several papers focus on Minkowski Bishop frame,
for example [15-17].

In this paper, we present the notion of timelike sweeping surfaces with ro-
tation minimizing frames in Minkowski 3–Space E3

1. By applying singularity
theory we classify the generic properties, and present new invariant connected
to the singularity of this timelike sweeping surface. It is leads to the main
generic singularity of this sweeping surface are the well known cuspidal edge
and swallowtail, and the kind of them are characterized by this new invariant,
respectively. Finally, to illustrate the principle results some examples are given
and investigated in details.

2 Preliminaries

At this section, some notations on Minkowski 3-space are introduced. More
concepts and properties are in [18, 19].

Suppose R3 = {(a1, a2, a3) |, ai ∈ R (i=1, 2, 3)} be a 3-dimensional Carte-
sian space. For all a = (a1, a2, a3), and b = (b1, b2, b3) ∈ R3, the pseudo scalar
product of a, and b is denoted by

< a,b > = −a1b1 + a2b2 + a3b3. (2.1)

(R3, <,>) is called Minkowski 3-space. In fact, we use E3
1 rather than (R3, <,>).

We say that the non-zero vector a ∈E3
1 is spacelike, lightlike or timelike in case

< a,a >>0, < a,a > = 0 or < a,a ><0 in the same order. The norm of the
vector a ∈E3

1 is denoted to be ‖a‖ =
√
|< a,a >|. For any two vectors a, c ∈ E3

1,
we determine the vector a× c as

a× c =

∣∣∣∣∣∣
−e1 e2 e3

a1 a2 a3
c1 c2 c3

∣∣∣∣∣∣ = (−(a2c3 − a3c2), (a3c1 − a1c3), (a1c2 − a2c1)) ,

(2.2)
where e1, e2, e3 is the canonical basis of E3

1. We can easily check that

det(a, c,b) =< a× c,b >, (2.3)
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so that a× c is pseudo orthogonal to any b = (b1, b2, b3) ∈ E3
1. The Lorentzian

unit sphere with center in the origin of E3
1 is given as

S21 = {x ∈E3
1 |< x,x > = 1}. (2.4)

Let β = β(s) is the unit speed timelike curve; by κ(s) and τ(s) we define
the natural curvature and torsion of β(s), in the same order. Let {T(s), N(s),
B(s)} be the Serret–Frenet frame related to β(s). For all points on β(s), the
corresponding Serret-Frenet frame is: T

′

N
′

B
′

 =

 0 κ(s) 0
κ(s) 0 τ(s)
0 −τ(s) 0

 T
N
B

 = ω ×

 T
N
B

 , (2.5)

where ω(s) = τT + κB is Darboux vector of the Serret–Frenet formula. At this
paper, dash indicats to the derivation with respect to the arc-length parameter
s. It seems clear that

T×N = B, T×B = −N, N×B = −T. (2.6)

Definition 2.1. A pseudo orthogonal moving frame {ξ1, ξ3, ξ3}, along a non
null space curve α(s), is rotation minimizing frame (RMF) respecting to ξ1 in
case the derivatives of ξ2 and ξ3 are both parallel to ξ1, or its angular velocity
ω satisfies < ω, ξ1 >= 0. Similarly, characterization stays hold in case ξ2 or ξ3
is selected as a reference direction.

According to the Definition 2.1, it is observed that the Serret–Frenet frame
is RMF respecting to the principal normal N, but not respecting to the tangent
T and the binormal B. Despite the fact that Serret–Frenet frame is not RMF
respecting to T, it is not difficult to derive such a RMF from it. New normal
plane vectors (N1,N2) are particular among the rotation of (N,B) as following T1

N1

N2

 =

 1 0 0
0 cosϑ sinϑ
0 − sinϑ cosϑ

 T
N
B

 , (2.7)

with a certain spacelike angle ϑ(s) ≥ 0. Here, we will call the set {T1, N1, N2}
as RMF or Bishop frame. The RMF vector satisfy the relations

T1 ×N1 = N2, T1 × N2 = −N1, N1 ×N2 = −T1. (2.8)

As a result, the alternative frame equations are T
′

1

N
′

1

N
′

2

 =

 0 κ1(s) −κ2(s)
κ1(s) 0 0
−κ2(s) 0 0

 T1

N1

N2

 = ω̃ ×

 T1

N1

N2

 , (2.9)
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where ω̃(s) = κ2N1 + κ1N2 is RMF Darboux vector. Here, the Bishop cur-
vatures are defined by κ1(s) = κ cosϑ, and κ2(s) = κ sinϑ. One can show
that

κ(s) =
√
κ21 + κ22, and ϑ = tanh−1

(
κ2

κ1

)
; κ1 6= 0,

ϑ(s) = −
s∫
s0

τds+ ϑ0, ϑ0 = ϑ(0).

 (2.10)

By the comparison of Eq. (2.4) and Eq. (2.8), it is observed that the relative
velocity is

ω̃(s)− ω(s)=τT. (2.11)

Consequently, the Serre-Frenet frame and the RMF are identical iff β(s) is a
planar, i.e. τ(s) = 0. Now we define the spacelike Bishop spherical Darboux
image e : I → S21, by

e(s) =
ω̃(s)

‖ω̃(s)‖
=

κ1√
κ21 + κ22

(
κ2
κ1

N1 + N2

)
. (2.12)

Therefore, we consider a new geometric invariant ρ(s) = κ1κ
′

2 − κ2κ
′

1.

Definition 2.2. A sweeping surface along β(s) is a surface defined by

M : X(s, u) = β(s) + T (s)x(u) = α(s) + x1(u)N1(s) + x2(u)N2(s), (2.13)

where β(s) is called the (at least C1-continuos). x(u) is planar profile (cross-
section) curve defined as he parametric representation x(u) = (0, x1(u), x2(u))t,
’t’ as a symbol indicates to the transposition, in addition to another parameter
u ∈ I ⊆ R. The semi orthogonal matrix T (s) = {T1, N1, N2} specifies the
RMF along β(s).

3 Timelike sweeping surface

In this section, we present timelike sweeping surface in Minkowski 3-space E3
1 .

Consider the planar profile curve given by x(u) = (0, cosu, sinu). By using Eq.
(2.11), it follows that

M : X(s, u) = β(s) + cosuN1 + sinuN2. (3.1)

By the formulae expressed in Eq. (2.8), we can calculate

Xs(s, u) = (1 + κ1 cosu− κ2 sinu) T1,
Xu(s, u) = cosuN1 + sinuN2,

}
(3.2)

where Xi = ∂X
∂i . The unit normal vector of M is

U(s, u) : =
Xs ×Xu

‖Xs ×Xu‖
= − sinuN1 + cosuN2. (3.3)
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Note that ‖N(s, u)‖2 = 1 means that M is a timelike surface. Our aim of this
work is the following theorem:

Theorem 3.1. Suppose β: I → E3
1 is the unit speed timelike curve with

κ1 > 0. Then, for any fixed x ∈S21, one has the following:
A- (1) e(s) is locally diffeomorphic to the line {0}×R at s0 iff ρ(s0) 6= 0;

(2) e(s) is locally diffeomorphic to the cusp C × R at s0 iff ρ(s0) = 0, and
ρ

′
(s0) 6= 0.

B- (1).M is locally diffeomorphic to Cuspidal edge CE at (s0, u0) iff x = ±e(s0),
and ρ(s0) 6= 0.

(2) M is locally diffeomorphic to Swallowtail SW at (s0, u0) iff x = ±e(s0),
ρ(s0) = 0, and ρ

′
(s0) = 0.

The proof will appear later. Her,

C × R =
{

(x1, x2)|x21 = x32
}
× R,

CE =
{

(x1, x2, x3)|x1=u, x2=v2, x3=v3
}
,

W =
{

(x1, x2, x3)|x1 = u, x2 = 3v2 + uv2, x3 = 4v3 + 2uv
}
.

The pictures of C × R, CE, and SW will be seen in Figs 1, 2, 3.

Figure 1: C×R Figure 2: CE.
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Figure 3: SW

3.1 Lorentzian height functions

Next, let us present two different families of Lorentzian height functions that
will be used to study the singularties of M as follows [1-3]: H : I × S21 → R, by
H(s,x) =< β(s),x >. We call it Lorentzian height function. We use the nota-

tion hx(s) = H(s,x) for any fixed x ∈ S21. We also define H̃ : I×S21×R→ R, by

H̃(s,x, w) =< β,x > −w that is called the extended Lorentzian height function

of β(s). We denote that h̃x(s) = H̃(s,x). From now on, we shall often not write
the parameter s. Then, we give the next proposition:

Proposition 3.1. Suppose β: I → E3
1 is the unit speed timelike curve with

κ1 6= 0. Then the following holds:
(A).

(1)- h
′

x(s) = 0 iff x = a1N1 + a2N2, and a21 + a22 = 1.
(2)- h

′

x(s) = h
′′

x(s) = 0 iff x = ±e(s);
(3)- h

′

x(s) = h
′′

x(s) = h
′′′

x (s) = 0 iff x = ±e(s), and ρ(s) = 0.

(4)- h
′

x(s) = h
′′

x(s) = h
′′′

x (s) = h
(4)
x (s) = 0 iff x = ±e(s), and ρ(s) = ρ

′
(s) =

0.
(5)- h

′

x(s) = h
′′

x(s) = h
′′′

x (s) = h
(4)
x (s) = h

(5)
x (s) = 0 iff x = ±e(s), and

ρ(s) = ρ
′
(s) = ρ

′′

(s) = 0.
(B).

(1)- h̃x(s) = 0 iff there exist < β,x >= w;

(2)- h̃x(s) = h̃
′

x(s) = 0 iff there is a1, a2 ∈ R that is x = cosuN1 + sinuN2,
and < β,x >= w.

(3)- h̃x(s) = h̃
′

x(s) = h̃
′′

x(s) = h̃
′′

x(s) = 0 iff x = ±e(s), < β,x >= w, and
ρ(s) = 0;

(4)- h̃x(s) = h̃
′

x(s) = h̃
′′

x(s) = h̃
′′

x(s) = h̃
′′′

x (s) = 0 iff x = ±e(s), < β,x >=
w, and ρ(s) = ρ

′
(s) = 0.
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(5)- h̃x(s) = h̃
′

x(s) = h̃
′′

x(s) = h̃
′′

x(s) = h̃
′′′

x (s) = h̃
(4)

x (s) = 0 iff x = ±e(s),

< β,x >= w and ρ(s) = ρ
′
(s) = ρ

′′

(s) = 0. Proof. (A). (1) Since h
′

x(s) =<
T1,x >, and {T1, N1, N2} is RMF along β(s), then there exists a1, a2 ∈ R
such that x = a1N1 + a2N2. Moreover, in combination with x ∈ S21, we get
a21 + a22 = 1, it follows that h

′

x(s) = 0 iff x = a1N1 + a2N2, and a21 + a22 = 1.
(2)- When h

′

x(s) = 0, the assertion (2) follows from the fact that h
′′

x(s) =<
T

′

1,x >=< κ1N1 − κ2N2,x > = 0. Thus, we have that a1κ1 − a2κ2 = 0.
It follows from the fact a21 + a22 = 1 that a1 = ±κ2/

√
κ21 + κ22, and a2 =

±κ1/
√
κ21 + κ22. Thereby, we have that

x =

(
∓ κ1√

κ21 + κ22

(
κ2
κ1

N1 + N2

))
(s) = ±e(s). (*)

Thus, we get that h
′

x(s) = h
′′

x(s) = 0 iff x = ±e(s).

(3)- Under the condition that h
′

x(s) = h
′′

x(s) = 0, h
′′′

x (s) =< T
′′

1 ,x >=<(
κ21 + κ22

)
T1 + κ

′

1N1 − κ
′

2N2,x > = 0, and by Eq. (*), we have that

± κ1√
κ21 + κ22

(
κ2κ

′

1 − κ1κ
′

2

κ1

)
(s) = ± κ1√

κ21 + κ22

(
ρ

κ1

)
(s) = 0.

Since κ1 6= 0, we get that h
′′′

x (s) = 0 iff x = ±e(s), and ρ(s) = 0.
(4)- Since

h
(4)

x (s) =< T
′′′

1 ,x >=< 3(κ1κ
′

1 + κ2κ
′

2)T1 +
(
κ

′′

1 + κ1
(
κ21 + κ22

))
N1

−
(
κ

′′

2 + κ2
(
κ21 + κ22

))
N2,x > = 0.


Thus, making use of Eq. (*) in the above, we have that

± κ1√
κ21 + κ22


(
κ2κ

′

1 − κ1κ
′

2

)′

κ1

 (s) = 0.

This is equivalent to the condition ρ(s) = ρ
′
(s) = 0.

(5)- Since h
(5)

x (s) =< T
(4)

1 ,x > 0, we have:

<
((
κ21 + κ22

)2
+ 4

(
κ2κ

′′

2 + κ1κ
′′

1

)
+ 3

(
κ

′2
1 + κ

′2
2

))
T1+(

κ
′′′

1 + 5κ1

(
κ

′

1κ1 + κ
′

2κ2

)
+ κ

′

1

(
κ21 + κ22

))
N1−(

κ
′′′

2 + 5κ2

(
κ

′

2κ2 + κ
′

1κ1

)
+ κ

′

2

(
κ21 + κ22

))
N2,x >= 0.


Similarly, by Eq. (*) in the above, we have that:

± 1√
κ21 + κ22

κ2κ′′′

1 − κ1κ
′′′

2 +
(
κ2κ

′

1 − κ1κ
′

2

) (
κ21 + κ22

)
κ1

 = 0.
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This is equivalent to the condition ρ(s) = ρ
′
(s) = ρ

′′

(s) = 0. (B). Similar to
the proof of (A), we have (B) �.

Proposition 3.2. Suppose β: I → E3
1 is the unit speed timelike curve with

κ1 6= 0. Then , we have ρ(s) = 0 iff

e(s) =
κ1√
κ21 + κ22

(
κ2
κ1

N1 + N2

)
is a constant vector.
Proof. Let κ1 6= 0, using simple calculations, we have

e
′
(s) =

ρ(s)(√
κ21 + κ22

)3 (κ1N1 + κ2N2) .

Thus e
′
(s) = 0 iff ρ(s) = κ2κ

′

1 − κ1κ
′

2 = 0�.

Proposition 3.3. Let β: I → E3
1 is the unit speed timelike curve with κ1 6= 0.

Then we state the the following.
(a) β is a slant helix iff κ2/κ1 is constant.
(b) N2 is a part of a circle on S21 whose center is the spacelike constant vector

e0. Proof. (a) Suppose that ρ(s) = κ2κ
′

1 − κ1κ
′

2 = 0. Hence, we can write(
κ2
κ1

)′

=
κ1κ

′

2 − κ2κ
′

1

κ21
=
−ρ(s)

κ21
= 0.

This means that κ2

κ1
=constant, that is, β is a slant helix.

(b) Suppose that κ1 6= 0. Since

< e,N2 >=
κ1√
κ21 + κ22

<

(
κ2
κ1

N1 + N2

)
,N2 >=

1√
1 + κ22/κ

2
1

= const.

This means that N2 is a part of a circle on S21 whose center is the constant
spacelike vector e0(s) �.

3.2 Unfolding of functions by one-variable

Now, some general results will be used on the singularity theory for families of
function germs [1-3]. suppose F : (R× Rr, (s0,x0))→ R is the smooth function,
and f(s) = Fx0

(s,x0). Then F is called an r-parameter unfolding of f(s).
We say that f(s) has Ak-singulaity at s0 if f (p)(s0) = 0 for all 1 ≤ p ≤ k, and
f (k+1)(s0) 6= 0. In addition, it is said that f has A>k-singulaity (k > 1) at s0. Let

the (k − 1)-jet of the partial derivative ∂F
∂xi

at s0 be j(k−1)
(
∂F
∂xi

(s,x0)
)

(s0) =

Σk−1j=0Lji (s− s0)
j

(without the constant term), for i = 1, ..., r. Therefore, F (s)
is named an p-versal unfolding in case the k × r matrix of coefficients (Lji) of

8



the rank k (k ≤ r). So, we write important set about the unfolding relative to
the above notations. The discriminant set of F is the set

DF =

{
x∈Rr| there is s with F (s,x) =

∂F

∂s
(s,x) = 0 at (s,x)

}
. (3.4)

The bifurcation set of F is the set

BF =

{
x∈Rr| there is s with

∂F

∂s
(s,x) =

∂2F

∂s2
(s,x) = 0 at (s,x)

}
. (3.5)

Then similar to [1-3], we state the following theorem:

Theorem 3.2. suppose F : (R× Rr, (s0,x0)) → R is an r-parameter unfold-
ing of f(s), that has the Ak singularity at s0.

Let F is a p-versal unfolding.
(a) If k = 1, so DF is locally diffeomorphic to {0}×Rr−1, and BF = ∅;
(b) If k = 2, so DF is locally diffeomorphic to C×Rr−2, and BF is locally

diffeomorphic to {0}×Rr−1;
(c) If k = 3, so DF is locally diffeomorphic to SW×Rr−3, and BF is locally

diffeomorphic to C×Rr−2.

Hence, we give the following fundamental proposition:

Proposition 3.4. Suppose β: I → E3
1 is the unit speed timelike curve κ1 6= 0.

(1). If hx(s) = H(s,x) has an Ak-singularity (k = 2, 3) at s0 ∈ R, therefore

H is a p−versal unfolding of hx0
(s0). (2). If h̃x(s) = H̃(s,x, w) has an Ak-

singularity (k = 2, 3) at s0 ∈ R, then H̃ is a p−versal unfolding of h̃x0
(s0)

Proof. (1) Because of x = (x0,x1, x2) ∈ S21, and β(s)= (β0(s),β1(s), β2(s)) ∈ E3
1

and Without loss of generality, Let x2 6= 0. So by x2 =
√

1 + x20 − x21, we have

H(s,x) = −x0β0(s) + x1β1(s) +
√

1 + x20 − x21β2(s). (3.6)

Thus, we have that

∂H
∂x0

= −β0(s) + x0β2(s)√
1+x2

0−x2
1

, ∂H
∂x1

= β1(s)− x1β2(s)√
1+x2

1−x2
2

,

∂2H
∂s∂x0

= −β′

0(s) +
x0β

′
2(s)√

1+x2
0−x2

1

, ∂2H
∂s∂x1

= β
′

1(s)− x1β
′
2(s)√

1+x2
1−x2

2

.


Therefore, the 2-jets of ∂H

∂xi
at s0 (i=0, 1) are: Let x0= (x00,x10, x20) ∈ S21, and

assume x20 6= 0, then

j1
(
∂H
∂x0

(s,x0)
)

=

(
−β′

0(s) +
x00β

′
2(s)

x20

)
(s− s0),

j1
(
∂H
∂x1

(s,x0)
)

=

(
β

′

1(s)− x10β
′
2(s)

x20

)
(s− s0),

 (3.7)
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and

j2
(
∂H
∂x0

(s,x0)
)

=
(
−β′

0(s) + x00β2(s)
x20

)
(s− s0)

+ 1
2

(
−β

′′

0 +
x00β

′′

2 (s)
x20

)
(s− s0)

2
,

j2
(
∂H
∂x1

(s,x0)
)

=

(
β

′

1(s)− x10β
′
2(s)

x20

)
(s− s0)

+ 1
2

(
β

′′

1 (s)− x10β
′′

2 (s)
x20

)
(s− s0)

2


(3.8)

(i) If hx0
(s0) has the A2-singularity at s0, then h

′

x0
(s0) = 0. So the (2− 1)× 2

matrix of coefficients (Lji) is:

A =
(
−β′

0(s) +
x00β

′
2(s)

x20
β

′

1(s)− x10β
′
2(s)

x20

)
. (3.9)

Suppose that the rank of the matrix A is zero, then we have:

β
′

0(s) =
x00β

′

2(s)

x20
, β

′

1(s) =
x10β

′

2(s)

x20
. (3.10)

Since
∥∥∥β′

(s0)
∥∥∥ = ‖T1(s0)‖ = 1, we have β

′

2(s0) 6= 0, so that we have the

contradiction as follows:

0 = <
(
β

′

0(s0), β
′

1(s0), β
′

2(s0)
)
, (x00,x10, x20) > (3.11)

= −β
′

0(s0)x00 + β
′

1(s0)x10 + β
′

2(s0)x20

= −x
2
00β

′

2(s0)

x20
+
x210β

′

2(s0)

x20
+ β

′

2(s0)x20 (3.12)

=
β

′

2(s0)

x20

(
−x200 + x210 + x220

)
=

β
′

2(s0)

x20
6= 0.

Therefore rank(A) = 1, and H is the (p) versal unfolding of hx0
at s0.

(ii) In case hx0
(s0) has the A3-singularity at s0 ∈ R, thus h

′

x0
(s0) = h

′′

x0
(s0) = 0,

and by Proposition 3.1:

e(s0)=
κ1√
κ21 + κ22

(
κ2
κ1

N1 + N2

)
, (3.13)

where ρ
′
(s0) = 0, and ρ

′′
(s0) 6= 0. So the (3 − 1) × 2 matrix of the coefficients

(Lji) is

B =

(
L11 L12

L21 L22

)
=

 −β′

0(s) + x00β2(s)
x20

β
′

1(s)− x10β
′
2(s)

x20

−β
′′

0 +
x00β

′′

2 (s)
x20

β
′′

1 (s)− x10β
′′

2 (s)
x20

 . (3.14)
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For this purpose, we also require the 2× 2 matrix B to be non-singular, which
always holds true. In fact, the determinate of this matrix at s0 is

det (B) =
1

x20

∣∣∣∣∣∣∣
−β′

0 β
′

1 β
′

2

−β
′′

0 β
′′

1 β
′′

2

x00 x10 x20

∣∣∣∣∣∣∣ (3.15)

=
1

x20
< β

′
×β

′′
, e0 >

= ∓ κ1

x20
√
κ21 + κ22

< β
′
×β

′′
,

(
κ2
κ1

N1 + N2

)
> (3.16)

Since β
′

= T1, we have β
′′

= κ1N1 − κ2N2. Substituting these relations to the
above equality, we have that

det (B) = ∓
√
κ21 + κ22
x20

6= 0. (3.17)

This means that rank(B) = 2.
(2) Under similar notations as in (1), we have

H̃(s,x,x2) = −x0β0(s) + x1β1(s) +
√

1 + x20 − x21β2(s)− x2. (3.18)

We require the 2× 3 matrix

G =

 −β′

0(s) + x00β2(s)
x20

β
′

1(s)− x10β
′
2(s)

x20
−1

−β
′′

0 +
x00β

′′

2 (s)
x20

β
′′

1 (s)− x10β
′′

2 (s)
x20

0

 ,

to get the maximal rank. Using case (1) in Eq. (3.14), the second raw of G is
not equal zero, so rank(G) = 2 �.

Proof of Theorem 3.1. (1) Using Proposition 3.1, the bifurcation set of
H(s,x) is

BH =

{
κ1√
κ21 + κ22

(
κ2
κ1

N1 + N2

)
|s ∈ R|s ∈ R

}
. (3.19)

The assertion (1) of Theorem 3.1 follows from Proposition 3.1, Proposition 3.4,

and Theorem 3.2. The discriminant set of H̃(s,x) is given as follows:

DH̃ = {x0 = β + cosuN1 + sinuN2|s ∈ R} . (3.20)

The assertion (1) of Theorem 3.1 follows from Proposition 3.1, and Proposition
3.4, and Theorem 3.2 �.

Example 3.1. Given the timelike helix:

β(s) = (
√

3 sinh s,
√

2s,
√

3 cosh s), − 1 ≤ s ≤ 1,

11



Clearly
T(s) = (

√
3 cosh s,

√
2,
√

3 sinh s),
N(s) = (sinh s, 0, cosh s),

B(s) = (−
√

2 cosh s,−
√

3,−
√

2 sinh s),

κ(s) =
√

3, and τ(s) = −
√

2.


Taking θ0 = 0 we have θ(s) =

√
2s. Using the Eq. (2.7), we obtain

κ1(s) =
√

3 cos
√

2s, and κ2(s) =
√

3 sin
√

2s.

Hence, the geometric invariant is

ρ(s) =
√

6.

Therefore, the transformation matrix can be expressed as: T1

N1

N2

 =

 1 0 0

0 cos
√

2s sin
√

2s

0 − sin
√

2s cos
√

2s

 T
N
B

 ,

From this, we have

N1 =

 N11

N12

N13

 =

 sinh s cos
√

2s−
√

2 cosh s sin
√

2s

−
√

3 sin
√

2s

cosh s cos
√

2s−
√

2 sinh s sin
√

2s

 ,

N2 =

 N21

N22

N23

 =

 sinh s sin
√

2s−
√

2 cosh s cos
√

2s

−
√

3 cos
√

2s

cosh s cos
√

2s−
√

2 sinh s cos
√

2s

 .

Hence, the spacelike sweeping surface is (Figure 4)

M : R(s, u) =
(√

3 sinh s,
√

2s,
√

3 cosh s
)

+ cosu

 N11

N12

N13

+ sinu

 N21

N22

N23

 .

The Bishop spherical Darboux image is (Figure 5)

e(s) = sin
√

2s

 N11

N12

N13

+ cos
√

2s

 N21

N22

N23

 .
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Figure 4: Timelike sweeping surface.
Figure 5: Bishop spherical Darboux im-
age which has a cusp point.

3.3 Singularities of developable surfaces

Developable surfaces are considered as special cases of ruled surfaces. This kind
of surfaces are used in different fields as the manufacture of automobile body
parts, airplane wings, and ship hulls. Therefore, we analyze the case that the
profile curve x degenerates into a line. Then, we have the following two timelike
developable surfaces

R : Q(s, u) = β(s) + uN2(s), u ∈ R, (3.21)

and
R⊥ : Q⊥(s, u) = β(s) + uN1(s), u ∈ R. (3.22)

Obviously, R(s, 0) = α(s) (resp. R⊥(s, 0) = α(s)), 0 ≤ s ≤ L, that is, the
surface R (resp. R⊥) interpolate the curve α(s). We can also calculate that

R : Qs ×Qu = − (1− uκ2) N1(s),

and
R⊥ : Q⊥s ×Q⊥u = (1 + uκ1) N2(s).

Then we have R (resp. R⊥) is non-singular at (s0, u0) iff 1−u0κ2(s0) 6= 0 (resp.
(1 + u0κ1(s0) 6= 0). Hence, by using κ2 we classify the singularities as in the
following.

Theorem 3.3. Let R be the timelike developable expressed by Eq. (3.21).
Then we have the following
(1) R is locally diffeomorphic to Cuspidal edge at (s0, u0) iff κ2(s0) = 0, and
κ

′

2(s0) 6= 0;
(2) R is locally diffeomorphic to Swallowtail at (s0, u0) iff κ2(s0) 6= 0, and
κ
′
2(s0)

κ2
2(s0)

6= 0.

Proof. If there exists a parameter s0 such that κ2(s0) = 0, and u
′

0 =
κ
′
2(s0)

κ2
2(s0)

6= 0
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(κ
′

2(s0) 6= 0), then R is locally diffeomorphic to Cuspidal edge at (s0, u0). So, as-
sertion (1) holds. Also, if there exists a parameter s0 such that u0 = 1

κ2(s0)
6= 0,

u
′

0 =
κ
′
2(s0)

κ2
2(s0)

= 0, and
(

1
κ2(s0)

)′′

6= 0, then R is locally diffeomorphic to Swallow-

tail at (s0, u0), assertion (2) holds �.

Example 3.2. By making using of Example 3.1, we have the following:
(1) If s0 = 0, then κ2(s0) = 0, and κ

′

2(s0) 6= 0. The timelike developable surface

M : Q(s, u) =

(√
3

2
sinh s,

s

2
,

√
3

2
cosh s

)
+u

 1
2 cosh s

2 cosh s− sinh s
2 sinh s

−
√
3
2 cosh s

2
1
2 cosh s

2 sinh s− sinh s
2 cosh s

 ,

is locally diffeomorphic to the Cuspidal edge, u ∈ R, see Figure 6.
(2) If s0 = 0, then κ1(s0) 6= 0, and κ

′

2(s0) = 0. The timelike developable surface

M⊥ : Q⊥(s, u) =

(√
3

2
sinh s,

s

2
,

√
3

2
cosh s

)
+u

 cosh s
2 sinh s− 1

2 sinh s
2 cosh s√

3
2 sinh s

2
cosh s

2 cosh s− 1
2 sinh s

2 sinh s

 ,

is locally diffeomorphic to Swallowtail, u ∈ R, see Figure 7.

Figure 6: CE timelike developale
surface.

Figure 7: SW timelike developale
surface.
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