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Involutes of fronts in the Euclidean 2-sphere

Enze Li, Donghe Pei∗

In this paper, we investigate the properties of involutes of singular spherical curves. In general, the involute of a regular

spherical curve has singularities, hence we consider Legendre curves in the unit spherical bundle. By using the moving frame

and the curvature of fronts, we define involutes of fronts in the Euclidean 2-sphere. We give some properties of involutes at

singular points. Moreover, we consider the relationships between evolutes and involutes of fronts without inflection points

and give a kind of four vertices theorem. Furthermore, by the definition of pedal curves, we define contrapedal curves of

fronts in the Euclidean 2-sphere and give some relationships between them. Copyright c© 2014 John Wiley & Sons, Ltd.
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1. Introduction

Critical points of functions and mappings on manifolds are an classical field of research in mathematics. Among them, the

topic of curves with singular points became an active field of research. Involutes and evolutes are classical object in differential

geometry which have a wide range of applications in different areas of mathematics. They were discussed and studied both in

regular condition and in singular condition [1–10].

For a regular spherical curve, a curve γ which is called an involute of the curve β if β is the evolute of γ. There are many

relationships between involutes and evolutes hence we always call them evolute-involute pairs. For a regular plane curve, the

evolute is described not only the caustics of the regular curve but also the locus of singular loci of parallel curves. The original

curve is called an involute of the evolute. Conversely, an involute of a regular plane curve is the trajectory described by the end

of stretched string unwinding from a base point of the curve. We also describe them on the view point of envelope theory [11],

evolute is the envelope for the family of normal lines of the original curve and involute is described as one of the orthogonal

trajectories for the family of tangent lines of the original curve. In [1], for regular spatial curves, the evolute of the given spatial

curve is the enveloping curve of the family of normal planes to the curve and the original curve is called an involute.

For singular condition, if the curve has singularities at some points, we cannot define evolutes and involutes at these points

as the regular condition. In [2], evolutes of fronts in the Euclidean plane are defined. In [3], involutes of fronts in the Euclidean

plane are also defined. They are the generalizations of evolutes and involutes of regular plane curves. In [9], evolutes of Legendre

curves in the unit spherical bundle is defined. In [10], some properties of evolutes of fronts are given. In this paper, we define

involutes of curves with singular points in the unit spherical bundle which are called fronts. In section 2, in order to consider

properties of an involute of a front, we introduce a moving frame along a front. In section 3, we define involutes of fronts in

the Euclidean 2-sphere. We can see the involute of a front without inflection points is also a front. As a difference between

plane curves and spherical curves, the evolute of an involute of a front without inflection points is not the original curve but

the trajectory of it contain the trajectory of the front. In section 4, we analyse the singular points of the involute of a front

without inflection points. By the relations between the vertices of involutes and the singular points of the fronts, we give a

kind of vertices theorem of front. Moreover, by the definition of pedal curves, we define contrapedal curves of fronts in the

Euclidean 2-sphere. Then we give the relationships between evolute-involute pairs and pedal-contrapedal curve pairs. In section

5, we consider repeated involutes of a front and give a formula of the nth involute of the front. In section 6, we give a example

to show the phenomena of a evolute-involute pair and a pedal-contrapedal curve pair of a front in the Euclidean 2-sphere. For

the basic results on the singularity theory see [5, 12–14].

All maps and manifolds considered here are differential of class C∞.
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2. Preliminaries

Let R3={(x1, x2, x3)|x1, x2, x3 ∈ R} be the 3-dimensional Euclidean space. The inner product on R3 is given by a · b =

a1b1 + a2b2 + a3b3 and the vector product of a and b on R3 is given by

a× b =

∣∣∣∣∣∣
e1 e2 e3

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ ,
where e1, e2, e3 is the canonical basis on R3, a = (a1, a2, a3) and b = (b1, b2, b3). Euclidean 2-sphere is denoted by S2 = {x ∈
R3 | x · x = 1}.

Let γ : I → S2 be a regular spherical curve, where I is an open interval. Denote the unit tangent vector t(t) = γ̇(t)/|γ̇(t)| and

the unit normal vector n(t) = γ(t)× γ̇(t)/|γ̇(t)|, where |γ̇(t)| =
√
γ̇(t) · γ̇(t) and γ̇(t) = (dγ/dt)(t). Then {γ(t), t(t), n(t)}

is a moving frame along γ(t) and the Frenet Serret formula is given byγ̇(t)

ṫ(t)

ṅ(t)

 =

 0 |γ̇(t)| 0

−|γ̇(t)| 0 |γ̇(t)|κg(t)

0 −|γ̇(t)|κg(t) 0

γ(t)

t(t)

n(t)

 ,
where the geodesic curvature is

κg(t) = ṫ(t) · n(t)/|γ̇(t)| = det(γ(t), γ̇(t), γ̈(t))/|γ̇(t)|3.

For singular spherical curve γ : I → S2, we can not construct Frenet Serret formula at singular points. In this paper, we consider

Legendre curves in the unit spherical bundle [9].

Denote a 3-dimensional manifold ∆ = {(a, b) ∈ S2 × S2|a · b = 0}.

Definition 2.1 We say that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve if γ̇(t) · ν(t) = 0 for all t ∈ I. We call γ a frontal

and ν a dual of γ. Moreover, if (γ, ν) is a immersion, we call (γ, ν) is a Legendre immersion and γ is a front.

Let µ(t) = γ(t)× ν(t), we have {γ(t), ν(t), µ(t)} is a moving frame along the frontal γ(t). The Frenet Serret type formula is

as follows:

Proposition 2.2 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre curve. Then we haveγ̇(t)

ν̇(t)

µ̇(t)

 =

 0 0 m(t)

0 0 n(t)

−m(t) −n(t) 0

γ(t)

ν(t)

µ(t)

 ,
where m(t) = γ̇(t) · µ(t) and n(t) = ν̇(t) · µ(t).

We call the pair (m, n) the curvature of the Legendre curve (γ, ν) : I → ∆ ⊂ S2 × S2.

Remark 2.3 If (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve with the curvature (m, n), then (γ,−ν) is a Legendre curve with

the curvature (−m, n) and (−γ, ν) is a Legendre curve with the curvature (m,−n). Moreover (ν, γ) is a Legendre curve with

the curvature (−n,−m).

Definition 2.4 Let (γ, ν) and (γ̃, ν̃) : I → ∆ ⊂ S2 × S2 be Legendre curves. We say that (γ, ν) and (γ̃, ν̃) are congruent as

Legendre curves if there exists a special orthogonal matrix A ∈ SO(3) such that

γ̃(t) = A(γ(t)), ν̃(t) = A(ν(t)),

for all t ∈ I.

We have the existence and uniqueness theorem for Legendre curves [9].

Theorem 2.5 (The Existence Theorem) Let (m, n) : I → R× R be a smooth mapping. There exists a Legendre curve

(γ, ν) : I → ∆ ⊂ S2 × S2 whose associated curvature is (m, n).

Theorem 2.6 (The Uniqueness Theorem) Let (γ, ν) and (γ̃, ν̃) : I → ∆ ⊂ S2 × S2 be Legendre curves whose curvatures (m, n)

and (m̃, ñ) coincide. Then (γ, ν) and (γ̃, ν̃) are congruent as Legendre curves.
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Example 2.7 Let γ : I → S2 be a regular spherical curve. We consider a Legendre immersion (γ, n) : I → ∆ ⊂ S2 × S2. Then

the relationship between the geodesic curvature κg of γ and the curvature (m, n) of (γ, n) is given by κg(t) = n(t)/|m(t)|.
We also have m(t) = −|γ̇(t)|.

Definition 2.8 Let I and Ĩ be intervals. A smooth function u : Ĩ → I is a (positive) change of parameter when u is surjective

and a positive derivative at every point.

Let (γ, ν) : I → ∆ and (γ̃, ν̃) : Ĩ → ∆ be Legendre curves whose curvatures are (m, n) and (m̃, ñ) respectively. Suppose that

(γ, ν) and (γ̃, ν̃) are parametrically equivalent via the change of parameter t : Ĩ → I, that is, (γ̃(u), ν̃(u)) = (γ(t(u)), ν(t(u)))

for all u ∈ Ĩ. We have

m̃(u) = m(t(u))ṫ(u), ñ(u) = n(t(u))ṫ(u).

In this paper, we say t0 is an inflection point of the front γ (or, the framed immersion (γ, ν)) if n(t0) = 0.

In [9], evolutes of fronts in Euclidean 2-sphere are defined. Let (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the

curvature (m, n), that is, (m(t), n(t) 6= (0, 0)) for all t ∈ I. We give the definition and basic results of evolutes of fronts in the

Euclidean 2-sphere. More details about evolutes of fronts in the Euclidean 2-sphere see [9].

Definition 2.9 The evolute Ev(γ) : I → S2 of the front γ is defined by

Ev(γ)(t) = ±
(
n(t)/

√
m2(t) + n2(t)

)
γ(t)∓

(
m(t)/

√
m2(t) + n2(t)

)
ν(t).

Proposition 2.10 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n). Then Ev(γ) is a front.

More precisely, (Ev(γ), µ) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the curvature

mEv (t) = (ṁ(t)n(t)−m(t)ṅ(t))/(m2(t) + n2(t)), nEv (t) = ±
√
m2(t) + n2(t).

We give the definition of a parallel curve of (γ, ν).

Definition 2.11 The parallel curve γθ : I → S2 of the Legendre immersion (γ, ν) is defined by

γθ(t) = cosθγ(t) + sinθν(t)

for each θ ∈ [0, 2π).

Proposition 2.12 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n), the parallel curve

γθ : I → S2 is a front for each θ ∈ [0, 2π). More precisely, (γθ, νθ) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the

curvature

(m(t)cosθ + n(t)sinθ,−m(t)sinθ + n(t)cosθ)

for each θ ∈ [0, 2π), where νθ(t) = −sinθγ(t) + cosθν(t).

Proposition 2.13 Let θ ∈ [0, 2π) and (γθ, νθ) : I → ∆ ⊂ S2 × S2 be a parallel Legendre immersion of (γ, ν). Then the evolute

of the parallel curve and the evolute of the front are coincide [9].

3. Involutes of fronts in the Euclidean 2-sphere

In this section, we assume the condition that (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion. We define an involute of the

front and give some properties of the involute in the Euclidean 2-sphere.

Definition 3.1 We define an involute Inv(γ, t0) : I → S2 of the front γ at t0 ∈ I by

Inv(γ, t0)(t) = cos
(∫ t

t0
m(t)dt

)
γ(t)− sin

(∫ t
t0
m(t)dt

)
µ(t).

Remark 3.2 If (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve but not a Legendre immersion, then we can also define the

involute of the frontal γ as Definition 3.1.

By Example 2.7, we define the involute of a regular spherical curve.

Definition 3.3 For a regular spherical curve γ : I → S2 with the moving frame {γ(t), t(t), n(t)}, the involute of γ at t0 ∈ I
is defined by

Inv(γ, t0)(t) = cos
(∫ t

t0
|γ̇(t)|dt

)
γ(t)− sin

(∫ t
t0
|γ̇(t)|dt

)
t(t).
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Proposition 3.4 Let (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the curvature (m, n) and without

inflection points. Then the involute Inv(γ, t0) : I → S2 of γ at t0 ∈ I is a front. More precisely, the involute(
Inv(γ, t0)(t), sin

(∫ t
t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t)

)
: I → S2 × S2 is a Legendre immersion with the curvature(

−sin
(∫ t

t0
m(t)dt

)
n(t), cos

(∫ t
t0
m(t)dt

)
n(t)

)
.

Proof. By a strightforward calculation, we have

İnv(γ, t0)(t) = sin
(∫ t

t0
m(t)dt

)
n(t)ν(t).

Then we define

νIt0 (t) = sin
(∫ t

t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t).

We have

Inv(γ, t0)(t) · νIt0 (t) = 0,

and

İnv(γ, t0)(t) · νIt0 (t) = 0.

Moreover, we have µIt0 (t) = Inv(γ, t0)× νIt0 (t) = −ν(t). Thus (Inv(γ, t0), νIt0 ) is a Legendre curve with the moving frame

{Inv(γ, t0), νIt0 , µIt0 }

and Inv(γ, t0) is a frontal. On the other hand, we have µ̇It0 (t) = −n(t)µ(t), so that

mIt0
(t) = İnv(γ, t0)(t) · µIt0 (t) = −sin

(∫ t
t0
m(t)dt

)
n(t),

nIt0 (t) = −µ̇It0 (t) · νIt0 (t) = cos
(∫ t

t0
m(t)dt

)
n(t).

Since (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the curvature (m, n) without inflection points, we have n(t) 6= 0

for all t ∈ I. Thus (mIt0
(t), nIt0 (t)) 6= (0, 0) for all t ∈ I and (Inv(γ, t0), νIt0 ) is a Legendre immersion.

Remark 3.5 By Remark 3.2 and the proof of Proposition 3.4, if (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve but not a

Legendre immersion, then (Inv(γ, t0), νIt0 ) : I → ∆ ⊂ S2 × S2 is also a Legendre curve.

Remark 3.6 By Proposition 3.4, if (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion without inflection points, then the

involute Inv(γ, t0) may have inflection points. Actually, when cos
(∫ t1

t0
m(t)dt

)
= 0 (t1 ∈ I), then t1 is an inflection point of

Inv(γ, t0). It is quite different from the involute of fronts without inflection points in the Euclidean plane [3].

For Legendre curves without inflection points in the Euclidean plane, one of the famous results is that the evolute of the

involute of a given Legendre curve is the original curve, the involute of the evolute of a given Legendre curve at some points is

a parallel curve of the origin curve. However, for Legendre curves without inflection points in the Euclidean 2-sphere, the results

are similar but not identical.

Proposition 3.7 Let (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre immersion with the curvature (m, n) and without inflection

points. For any t0 ∈ I, we have the following:

(1) Ev(Inv(γ, t0))(t) = ±(n(t)/|n(t)|)γ(t).

(2) Inv(Ev(γ), t0)(t) =
((
±cos

(∫ t
t0
mEv (t)dt

)
n(t)± sin

(∫ t
t0
mEv (t)dt

)
m(t)

)
/
√
m2(t) + n2(t)

)
γ(t)

+
((
∓cos

(∫ t
t0
mEv (t)dt

)
m(t)± sin

(∫ t
t0
mEv (t)dt

)
n(t)

)
/
√
m2(t) + n2(t)

)
ν(t).

Proof. (1) By the definition of the evolute and Proposition 3.4, we have

Ev(Inv(γ, t0))(t) = ±
(
nIt0 (t)/

√
n2
It0

(t) +m2
It0

(t)

)
Inv(γ, t0)

∓
(
nIt0 (t)/

√
m2
It0

(t) +m2
It0

(t)

)
νIt0 (t)

= ±(n(t)/|n(t)|)γ(t).

(2) By the definition of the involute and Proposition 1.2, for any t0 ∈ I, we have

Inv(Ev(γ), t0)(t) = cos
(∫ t

t0
mEv (t)dt

)
Ev(γ)(t)− sin

(∫ t
t0
mEv (t)dt

)
µEv (t)

=
((
±cos

(∫ t
t0
mEv (t)dt

)
n(t)± sin

(∫ t
t0
mEv (t)dt

)
m(t)

)
/
√
m2(t) + n2(t)

)
γ(t)

+
((
∓cos

(∫ t
t0
mEv (t)dt

)
m(t)± sin

(∫ t
t0
mEv (t)dt

)
n(t)

)
/
√
m2(t) + n2(t)

)
ν(t).
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Remark 3.8 (1) From Proposition 3.7, we have

Ev(Inv(γ, t0))(t) = ±(n(t)/|n(t)|)γ(t).

We can easily see that the trajectory of Ev(Inv(γ, t0))(t) coincide with the trajectory of ±γ(t).

(2) By the formula of Inv(Ev(γ), t0) and Definition 2.11, we have Inv(Ev(γ), t0) is a parallel curve of γ. Especially, when t0

satisfies

cos
(∫ t

t0
mEv (t)dt

)
m(t) = sin

(∫ t
t0
mEv (t)dt

)
n(t),

we have

Inv(Ev(γ), t0)(t) = ±γ(t).

For a given Legendre immersion (γ, ν) : I → ∆ ⊂ S2 × S2, we consider the existence condition of a Legendre immersion

(γ̃, ν̃) : I → ∆ ⊂ S2 × S2 such that Ev(γ̃)(t) = ±(n(t)/|n(t)|)γ(t) or Inv(γ̃, t0)(t) = ±γ(t) for some t0. By using Proposition

3.7 and Definition 2.11, we have the following corollaries.

Corollary 3.9 If (γ̃(t), ν̃(t)) = (cosθInv(γ, t0)(t) + sinθνIt0 (t),−sinθInv(γ, t0)(t) + cosθνIt0 (t)) for any t0 ∈ I and any θ ∈
[0, 2π), then we have

Ev(γ̃)(t) = ±(n(t)/|n(t)|)γ(t).

Corollary 3.10 If (γ̃(t), ν̃(t)) = (Ev(γ)(t), µ(t)) and t0 satisfies

cos
(∫ t

t0
mEv (t)dt

)
m(t) = sin

(∫ t
t0
mEv (t)dt

)
n(t),

we have Inv(γ̃, t0)(t) = ±γ(t).

Proposition 3.11 Let (γ, ν) : I → ∆ ⊂ S2 × S2 and (γ̃, ν̃) : Ĩ → ∆ ⊂ S2 × S2 are parameterically equivalent via the change

of parameter t : Ĩ → I. Then Inv(γ̃, u0)(u) = Inv(γ, t0)(t(u)), where u0 satisfies t(u0) = t0.

Proof. Denote (m(t), n(t)) and (m̃(u), ñ(u)) the curvature of (γ(t), ν(t)) and (γ̃(u), ν̃(u)) respectively. By the definition

of parameter change, we have γ̃(u) = γ(t(u)) and µ̃(u) = µ(t(u)). Since m̃(u) = m(t(u))ṫ(u) and t(u0) = t0, we have

Inv(γ̃, u0)(u) = Inv(γ, t0)(t(u)).

4. Properties of involutes of fronts

In this section, let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and without inflection points.

We give some properties of the involutes of fronts.

Proposition 4.1 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and without inflection

points. Then Inv(γ, t1) is a parallel curve of Inv(γ, t0) for each t0, t1 ∈ I.

Proof. By a strightforward calculation, we have

Inv(γ, t1) = cos
(∫ t

t1
m(t)dt

)
γ(t)− sin

(∫ t
t1
m(t)dt

)
µ(t)

= cos
(∫ t0

t1
m(t)dt +

∫ t
t0
m(t)dt

)
γ(t)− sin

(∫ t0
t1
m(t)dt +

∫ t
t0
m(t)dt

)
µ(t)

=
(

cos
(∫ t0

t1
m(t)dt

)
cos
(∫ t

t0
m(t)dt

)
− sin

(∫ t0
t1
m(t)dt

)
sin
(∫ t

t0
m(t)dt

))
γ(t)

−
(

sin
(∫ t0

t1
m(t)dt

)
cos
(∫ t

t0
m(t)dt

)
+ cos

(∫ t0
t1
m(t)dt

)
sin
(∫ t

t0
m(t)dt

))
µ(t)

= cos
(∫ t0

t1
m(t)dt

)(
cos
(∫ t

t0
m(t)dt

)
γ(t)− sin

(∫ t
t0
m(t)dt

)
µ(t)

)
− sin

(∫ t0
t1
m(t)dt

)(
sin
(∫ t

t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t)

)
= cos

(∫ t0
t1
m(t)dt

)
Inv(γ, t0)− sin

(∫ t0
t1
m(t)dt

)
νIt0 (t).

By Definition 2.11, we have Inv(γ, t1) is a parallel curve of Inv(γ, t0).

Proposition 4.2 Suppose that t0 ∈ I, then

(1) t1 is a singular point of Inv(γ, t0) if and only if sin
(∫ t1

t0
m(t)dt

)
= 0.

(2) If t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is diffeomorphic to the 3/2-cusp at t1 if and only if m(t1) 6= 0.

(3) If t1 is a singular point of Inv(γ, t0). Then Inv(γ, t0) is diffeomorphic to the 4/3-cusp at t1 if and only if m(t1) = 0 and

ṁ(t1) 6= 0.
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Proof. (1) By differentiating the involute of the front, we have

İnv(γ, t0)(t) = sin
(∫ t

t0
m(t)dt

)
n(t)ν(t).

Since γ(t) has no inflection points, we have İnv(γ, t0)(t1) = 0 if and only if sin
(∫ t1

t0
m(t)dt

)
= 0.

(2) By a directly calculation, we have

Ïnv(γ, t0)(t) =
(

cos
(∫ t

t0
m(t)dt

)
m(t)n(t) + sin

(∫ t
t0
m(t)dt

)
ṅ(t)

)
ν(t) + sin

(∫ t
t0
m(t)dt

)
n2(t)µ(t).

From (1), we have

Ïnv(γ, t0)(t1) = cos
(∫ t1

t0
m(t)dt

)
m(t1)n(t1)ν(t1).

Moreover, we have
...
I nv(γ, t0)(t1) =

(
2cos

(∫ t1
t0
m(t)dt

)
m(t1)ṅ1(t) + cos

(∫ t1
t0
m(t)dt

)
ṁ1(t)n(t1)

)
+ 2cos

(∫ t1
t0
m(t)dt

)
m(t1)n2(t1)µ(t1).

Since sin
(∫ t1

t0
m(t)dt

)
= 0, we have cos

(∫ t1
t0
m(t)dt

)
6= 0.

Thus

det(Ïnv(γ, t0)(t1),
...
I nv(γ, t0)(t1)) = 2sin2

(∫ t1
t0
m(t)dt

)
m2(t1)n3(t1) 6= 0

if and only if m(t1) 6= 0.

(3) From (2), det(Ïnv(γ, t0)(t1),
...
I nv(γ, t0)(t1)) = 0 if and only if m(t1) = 0. Under the condition

sin
(∫ t1

t0
m(t)dt

)
= 0, m(t1) = 0.

We have

Inv (4)(γ, t0)(t1) =
(

3cos
(∫ t1

t0
m(t)dt

)
ṁ(t1)ṅ(t1) + cos

(∫ t1
t0
m(t)dt

)
m̈(t1)n(t1)

)
ν(t1)

+ 3cos
(∫ t1

t0
m(t)dt

)
ṁ(t1)n3(t1)µ(t1).

Moreover, we have

det(
...
I nv(γ, t0)(t1), Inv (4)(γ, t0)(t1)) = 3cos2

(∫ t1
t0
m(t)dt

)
ṁ2(t1)n3(t1).

Thus

det(Ïnv(γ, t0)(t1),
...
I nv(γ, t0)(t1)) = 0,

det(
...
I nv(γ, t0)(t1), Inv (4)(γ, t0)(t1)) 6= 0

if and only if m(t1) = 0, ṁ(t1) 6= 0, we have Inv(γ, t0) is diffeomorphic to the 4/3-cusp at t1.

Conversely, we have the following results.

Proposition 4.3 Under the above notations, we have the following:

(1) Inv(γ, t0) is diffeomorphic to the 3/2-cusp at t1 if and only if t1 is a regular point of γ.

(2) Inv(γ, t0) is diffeomorphic to the 4/3-cusp at t1 if and only if γ is diffeomorphic to the 3/2-cusp at t1.

Proof. (1) By Proposition 4.2, we have the result.

(2) From the Frenet formula of the front, we have γ̇(t) = m(t)µ(t). By the differentiate of γ̇(t), we have

γ̈(t) = −m2(t)γ(t)−m(t)n(t)ν(t) + ṁ(t)µ(t),

...
γ (t) = −3ṁ(t)m(t)γ(t)− (2ṁ(t)n(t) +m(t)ṅ(t))ν(t) + (m̈(t)−m3(t)−m(t)n2(t))µ(t).

By Proposition 4.2, we have γ̈(t1) = ṁ(t1)µ(t1), and
...
γ (t1) = −2ṁ(t)n(t)ν(t). It follows that

det(γ̈(t1),
...
γ (t1)) = 2ṁ2(t)n(t) 6= 0.

For regular plane curves, a famous result is that the singular point of the evolute of a regular plane curve is corresponding to

the vertex of the curve. For a Legendre immersion (γ, ν) : I → ∆ ⊂ S2 × S2 with the curvature (m, n) without inflection points,

we say t1 ∈ I is a vertex of the front γ if (d/dt)(m/n)(t1) = 0, namely (d/dt)Ev(γ)(t1) = 0. We give the relations between

the singular points of the Legendre immersion and the vertices of the involute.

Proposition 4.4 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and without inflection

points. Then the vertices of the involute Inv(γ, t0) are corresponding to the singular points of γ.

Proof. By Proposition 3.4, we have

mIt0
(t) = −sin

(∫ t
t0
m(t)dt

)
n(t), nIt0 (t) = cos

(∫ t
t0
m(t)dt

)
n(t).

By a directly calculation, we have

(d/dt)(mIt0
/nIt0 )(t) = (ṁIt0

nIt0 −mIt0
ṅIt0 )/n2

It0
= −m(t)/cos2

(∫ t
t0
m(t)dt

)
n2(t).

Hence t1 is a vertex of Inv(γ, t0) if and only if m(t1) = 0. Thus the vertices of the involute Inv(γ, t0) are corresponding to the

singular points of γ.
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Remark 4.5 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and without inflection points.

If t0 is a singular point of γ which degenerate more than 3/2-cusps, then t1 is a vertex of the front γ. In fact,

m(t1) = ṁ(t1) = 0, (d/dt)(m(t)/n(t))(t1) = 0.

In [10], a kind of four vertices theorem for a front is given.

Proposition 4.6 Let (γ, ν) : [0, 2π)→ S2 × S2 be a closed Legendre curves and without inflection points.

(1) If γ has at least two singular points which degenerate more than 3/2-cusp, then γ has at least four vertices.

(2) If γ has at least four singular points, then γ has at least four vertices.

We give the relations between the vertices of the involute and the vertices of the Legendre immersion without inflection

points. Moreover, under some conditions, the singular points of the involute are corresponding to the vertices of the Legendre

immersion and also the singular points of the evolute.

Proposition 4.7 Let (γ, ν) : [0, 2π)→ S2 × S2 be a closed Legendre immersion and without inflection points. If the involute

Inv(γ, t0) has at least four vertices, then γ has at least four vertices.

Proof. Since the involute Inv(γ, t0) has at least four vertices. By Proposition 4.4, γ has at least four singular points. By

Proposition 4.6, γ has at least four vertices.

Proposition 4.8 Let (γ, ν) : [0, 2π)→ S2 × S2 be a closed Legendre immersion with the curvature (m, n) and without

inflection points. If t1 is a singular point of Inv(γ, t0) which degenerate more than 4/3-cusp, then t1 is a vertex of γ

and also a singular point of the evolute Ev(γ).

Proof. If t1 is a singular point of Inv(γ, t0) which degenerate more than 4/3-cusp, by Proposition 4.2, we have

m(t1) = 0, ṁ(t1) = 0.

From Remark 4.5, we have t1 is a vertex of the front γ. By the correspondence between the vertex of γ and the singluar point

of the evolute Ev(γ), t1 is also a singular point of Ev(γ).

Pedal curves are classical topics in differential geometry. The pedal curve of a regular curve is the locus of the bases of the

perpendiculars let down from a fixed point onto all tangents of the curve [15]. Pedal curves can be parametrized by using the

Frenet frame of the given curve. However, when the curve has singularities, we cannot define pedal curves of a singular curve.

In [16], pedal curves of frontals in the Euclidean plane are defined. They are the generalizations of pedal curves of regular plane

curves. In [17], the explicit formulas for pedal curves in the unit sphere are given. In [18,19], the classification of the singularities

of pedal curves in the unit sphere are given. In [20], pedal curves of fronts in the Euclidean 2-sphere are defined. By the definition

of pedal curves, we define contrapedal curves of fronts in the Euclidean 2-sphere. We first recall the concepts of pedal curves of

fronts in the Euclidean 2-sphere [20].

Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and P is a point in S2 − {±ν(t) | t ∈ I}.

Definition 4.9 The pedal curve Peγ,P : I → S2 of the front γ with respect to P is defined by

Peγ,P (t) = (P − (P · ν(t)))ν(t)/
√

1− (P · ν(t))2.

We define contrapedal curves of fronts in the Euclidean 2-sphere. Here we assume that P is a point in S2 − {±µ(t) | t ∈ I}.

Definition 4.10 The contrapedal curve CPeγ,P : I → S2 of the front γ with respect to P is defined by

CPeγ,P (t) = (P − (P · µ(t)))µ(t)/
√

1− (P · µ(t))2.

We give the relationships between evolute-involute pairs and pedal-contrapedal curve pairs.

Proposition 4.11 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and P is a point in

S2 − {±ν(t) | t ∈ I}. Then the contrapedal curve of γ with respect to P coincide with the pedal curve of the evolute of γ

with respect to P , more precisely,

CPeγ,P (t) = PeEv(γ),P (t).

Math. Meth. Appl. Sci. 2014, 00 1–11 Copyright c© 2014 John Wiley & Sons, Ltd. 7
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Proof. By the definition of evolute of the front γ, we have

Ev(γ)(t) = ±
(
n(t)/

√
m2(t) + n2(t)

)
γ(t)∓

(
m(t)/

√
m2(t) + n2(t)

)
ν(t)

and νEv (t) = µ(t). Then

PeEv(γ),P (t) = (P − (P · νEv (t)))νEv (t)/
√

1− (P · νEv (t))2

= (P − (P · µ(t)))µ(t)/
√

1− (P · µ(t))2 = CPeγ,P (t).

Proposition 4.12 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and P is a point in

S2 − {±µ(t) | t ∈ I}. Then the pedal curve of γ with respect to P coincide with the contrapedal curve of the involute of γ

at t0 ∈ I with respect to P , more precisely,

Peγ,P (t) = CPeInv(γ,t0),P (t).

Proof. By the definition of involute of the front γ at t0 ∈ I, we have

Inv(γ, t0)(t) = cos
(∫ t

t0
m(t)dt

)
γ(t)− sin

(∫ t
t0
m(t)dt

)
µ(t)

and µIt0 (t) = −ν(t). Then

CPeInv(γ,t0),P (t) = (P − (P · µIt0 (t)))µIt0 (t)/
√

1− (P · µIt0 (t))2.

= (P − (P · ν(t)))ν(t)/
√

1− (P · ν(t))2 = Peγ,P (t).

5. Involutes of the involutes of fronts

By Proposition 3.4, the involute of a Legendre immersion without inflection points is also a front. We consider a repeated

involute of an involute of a front.

Theorem 5.1 Let (γ, ν) : I → ∆ ⊂ S2 × S2 be a Legendre immersion with the curvature (m, n) and without inflection points.

Then the involute of an involute of a front at t0 is given by

Inv(Inv(γ, t0), t0)(t) = cos
(∫ t

t0
mIt0

(t)dt
)
Inv(γ, t0)(t) + sin

(∫ t
t0
mIt0

(t)dt
)
ν(t).

Proof. Denote γ̃(t) = Inv(γ, t0). By Proposition 3.4, we have

(γ̃(t), ν̃(t)) =
(
Inv(γ, t0)(t), sin

(∫ t
t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t)

)
is a Legendre immersion. Moreover, µ̃(t) = γ̃(t)× ν̃(t) = −ν(t). We also have

m̃(t) = mIt0
(t) = −sin

(∫ t
t0
m(t)dt

)
n(t),

where ˙̃γ(t) = m̃(t)µ̃(t).

Thus,

Inv(Inv(γ, t0), t0)(t) = cos
(∫ t

t0
m̃(t)dt

)
γ̃(t)− sin

(∫ t
t0
m̃(t)dt

)
µ̃(t)

= cos
(∫ t

t0
mIt0

(t)dt
)
Inv(γ, t0)(t) + sin

(∫ t
t0
mIt0

(t)dt
)
ν(t).

Remark 5.2 By Remark 3.6, the involute of a Legendre immersion without inflection points may have inflection points.

Hence the involute of the involute of a Legendre immersion without inflection points is a Legendre curve.

Moreover, let (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve with the curvature (m, n). By Remark 3.2,(
Inv(γ, t0), sin

(∫ t
t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t)

)
: I → S2 × S2

is also a Legendre curve for any t0 ∈ I, we can repeat the involute of the frontal.

We denote

Inv 0(γ, t0)(t) = γ(t), ν0(t) = ν(t), µ0(t) = µ(t)

and

Inv 1(γ, t0)(t) = Inv(γ, t0)(t)

for convenience. We define

Inv p(γ, t0)(t) = Inv(Inv p−1(γ, t0), t0)(t),

and

ν1(t) = sin
(∫ t

t0
m(t)dt

)
γ(t) + cos

(∫ t
t0
m(t)dt

)
µ(t), µ1(t) = −ν(t),
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νp(t) = sin
(∫ t

t0
mp−1(t)dt

)
Inv p−1(γ, t0)(t) + cos

(∫ t
t0
mp−1(t)dt

)
µp−1(t), µp(t) = −νp−1(t),

m1(t) = −sin
(∫ t

t0
m(t)dt

)
n(t), n1(t) = cos

(∫ t
t0
m(t)dt

)
n(t),

mp(t) = −sin
(∫ t

t0
mp−1(t)dt

)
np−1(t), np(t) = cos

(∫ t
t0
mp−1(t)dt

)
np−1(t),

inductively. Then we give the form of the pth involute of the frontal by using induction.

Theorem 5.3 Let (γ, ν) : I → ∆ ⊂ S2 × S2 is a Legendre curve with the curvature (m, n), then (Inv p(γ, t0), νp) : I → S2 × S2

is a Legendre curve with the curvature (mp, vp), where the pth involute of the frontal γ at t0 is given by

Inv p(γ, t0)(t) = cos
(∫ t

t0
mp−1(t)dt

)
Inv p−1(γ, t0)(t)− sin

(∫ t
t0
mp−1(t)dt

)
µp−1(t).

By Theorem 5.3, we have the following sequence of the Legendre curves,

(γ(t), ν(t))
Inv−−→ ((Inv 1(γ, t0)(t), ν1(t))

Inv−−→ ((Inv 2(γ, t0)(t), ν2(t))
Inv−−→ · · ·

and the corresponding sequence of the curvatures of the involutes,

(m(t), n(t))→ (m1(t), n1(t))→ (m2(t), n2(t))→ · · · .

6. Example

We take Spherical nephroid as an example. Let (γ, ν) : [0, 2π)→ ∆ ⊂ S2 × S2 be

γ(t) = (3cost/4− cos3t/4, 3sint/4− sin3t/4,
√

3cost/2),

ν(t) = (3sint/4− sin3t/4,−3cost/4− cos3t/4,−
√

3sint/2).

Since γ(t) · ν(t) = 0 and γ̇(t) · ν(t) = 0, we have (γ, ν) : [0, 2π)→ ∆ ⊂ S2 × S2 is a Legendre curve.

Moreover,

µ(t) = (
√

3cos2t/2,
√

3sin2t/2,−1/2),

and the curvature of (γ, ν) is given by (m(t), n(t)) = (
√

3sint,
√

3cost). The involute of the front at t0 ∈ [0, 2π) is given by

Inv(γ, t0)(t) = cos
(∫ t

t0
m(t)dt

)
γ(t)− sin

(∫ t
t0
m(t)dt

)
µ(t)

= cos
(∫ t

t0

√
3sintdt

)
γ(t)− sin

(∫ t
t0

√
3sintdt

)
µ(t)

= cos(−
√

3cost +
√

3cost0)γ(t)− sin(−
√

3cost +
√

3cost0)µ(t).

By Definition 2.9, The evolute of front is given by

Ev(γ)(t) = ±
(
n(t)/

√
m2(t) + n2(t)

)
γ(t)∓

(
m(t)/

√
m2(t) + n2(t)

)
ν(t)

= ±(cos2t/2, sin2t/2,
√

3/2).

We show the figure of evolute of Legendre immersion (γ, ν) in Figure 1.

Figure 1. These curves are front γ (red) and its evolutes (blue).
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We show the figures of involutes of Legendre immersion (γ, ν) at t0 = 0 and t0 = π/4 in Figure 2 and Figure 3 respectively.

Figure 2. These curves are front γ (red) and its involute at t0 = 0 (blue).

Figure 3. These curves are front γ (red) and its involute at t0 = π/4 (blue).

We choose P = (
√

2/2,
√

2/2, 0) and show the figures of pedal curve and contrapedal curve of the front γ with respect to P

in Figure 4 and Figure 5 respectively.

Figure 4. These curves are front γ (red) and its pedal curve (blue) with respect to P .
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Figure 5. These curves are front γ (red) and its contrapedal curve (blue) with respect to P .
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