References
Arseneau, R.J., Steeves, R. and Laflamme, M. (2017) Modified low-salt
CTAB extraction of high-quality DNA from contaminant-rich tissues.
Molecular Ecology Resources. 17, 686–693.
Baloch, M.J., Khan, N.U., Jatoi, W.A., Hassan, G., Khakhwani, A.A.,
Soomro, Z.A. and Weesar, N.F. (2011) Drought tolerance studies through
WSSI and stomata in upland cotton. Pak J Bot. 43, 2479–2484.
Bandurska, H. and Stroiński, A. (2005) The effect of salicylic acid on
barley response to water deficit. Acta Physiol Plant. 27,379–386.
Blanco, F., Salinas, P., Cecchini, N.M., Jordana, X., Van Hummelen, P.,
Alvarez, M.E., and Holuigue, L. (2009). Early genomic responses to
salicylic acid in Arabidopsis . Plant Mol. Biol. 70, 79-102.
Bohnert, H.J., Gong, Q., Li P. and and Ma S. (2006). Unraveling abiotic
stress tolerance mechanism: getting genomics going. Curr. Opin. Plant
Biol. 9, 180–188.
Borsani, O., Valpuesta, V.and Botella, M.A. (2001) Evidence for a role
of Salicylic acid in the oxidative damage generated by NaCl and osmotic
stress in Arabidopsis seedlings. Plant Physiology. 126, 1024-1030.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation
of microgram quantities of protein utilizing the principle of
protein-dye binding. Analytical Biochemistry. 72: 248-254.
Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T. and Kangasjärvi,
J. (2016) ROS signalling in a destabilised world: A molecular
understanding of climate change.
J
Plant Physiol. 203, 69-83.
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012). The
role of WRKY transcription factors in plant abiotic stresses. Biochim.
Biophys. Acta. 1819: 120–128.
Chini, A., Grant, J.J., Seki, M., Shinozaki, K. and Loake, G.J. (2004).
Drought tolerance established by enhanced expression of the CCI-NBS-LRR
gene, ADR1, requires salicylic acid, EDS1 and ABI1. The Plant Journal.
38, 810–822.
Cochrane, F.C., Davin, L.B., and Lewis, N.G. (2004). TheArabidopsis phenylalanine ammonia lyase gene family: kinetic
characterization of the four PAL isoforms. Phytochemistry. 65,
1557-1564.
Cui, X., Fan, B., Scholz, J., and Chen, Z. (2007). Roles
of Arabidopsis cyclin-dependent kinase C complexes in cauliflower
mosaic virus infection, plant growth, and development. Plant
Cell. 19, 1388–1402.
Desikan, R., Mackerness, S.A.H., Hancock, J.T. and Neill, S.J. (2001)
Regulation of the Arabidopsis transcriptome by oxidative stress. Plant
Physiol. 127:159–172.
Ding,Z.J., Yan, J.Y., Xu, X.Y., Yu, D.Q., Li, G.X., Zhang, S.Q. and
Zheng, S.J. (2014) Transcription factor WRKY46 regulates osmotic stress
responses and stomatal movement independently in Arabidopsis . The
Plant Journal. 79, 13–27.
Duan, Y.J., Jiang, Y.Z., Ye, S.L., Karim, A., Ling, Z.Y., He,Y.Q. and
Yang, S.Q.(2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY
transcription factor, is involved in disease resistance inArabidopsis thaliana . Plant Cell Rep. 34,831–841.
Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000). The
WRKY superfamily of plant transcription factors. Trends in Plant Science
5, 199–206.
Fryer, M.J., Oxborough, K., Mullineaux, P.M. and Baker, N.R. (2002)
Imaging of photo-oxidative stress responses in leaves. J Exp Bot
53:1249–1254.
Guo, P.R., Li, Z.H., Huang, P.X., Li, B.S., Shuang, F., Chu, J.F. and
Guo, H.W. (2017). Tripartite amplification loop involving the
transcription factor WRKY75, salicylic acid, and reactive oxygen species
accelerates leaf senescence. Plant Cell. 11, 2854-2870.
Han, X., Tang, S., An, Y., Zheng, D.C., Xia, X.L. and Yin, W.L. (2013)
Overexpression of the poplar NF-YB7 transcription factor confers drought
tolerance and improves water-use efficiency in Arabidopsis. J. Exp. Bot.
64, 4589–4601.
Hayata, Q., Hayata, S., Irfan, M. and Ahmad, A. (2010) Effect of
exogenous salicylic acid under changing environment: a review. Environ.
exp. Bot. 68, 14-25.
Janda, T., Szalai, G., Tari, I. and Páldi, E. (1999) Hydroponic
treatment with salicylic acid decreases the effects of chilling injury
in maize (Zea mays L.) plants. Planta. 208, 175-180.
Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. (1987). GUS fusions:
beta-glucuronidase as a sensitive and versatile gene fusion marker in
higher plants. EMBO Journal 6: 3901–3907.
Jiang, Y.J., Liang, G. and Yu, D.Q. (2012) Activated expression of
WRKY57 confers drought tolerance in Arabidopsis . Molecular Plant.
5, 1375–1388.
Jiang, Y.Z., Duan, Y.J., Yin, J., Ye, S.L., Zhu, J.R., Zhang, F.Q. and
Lu, W.X. et al . (2014) Genome-wide identification and
characterization of the Populus WRKY transcription factor family
and analysis of their expression in response to biotic and abiotic
stresses. Journal of Experimental Botany. 65, 6629–6644.
Jiang, Y.Z., Guo, L., Ma, X.D., Zhao, X., Jiao, B., Li, C.F., Luo, K.M.
(2017) The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote
Melampsora resistance in Populus.
Tree
Physiol. 37,665-675.
Kang, G.Z., Li, G.Z., Xu, W., Peng, X.Q., Han, Q.X., Zhu, Y.J. and Guo,
T.C. (2012) Proteomics reveals the effects of salicylic acid on growth
and tolerance to subsequent drought stress in Wheat. J. Proteome Res.
11, 6066-6079.
Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R.,
Martinez, N.M. and Krishnan, A. et al . (2007) Improvement of
water use efficiency in rice by expression of HARDY, an Arabidopsis
drought and salt tolerance gene. PNAS. 104, 15270-15275.
Ke, Q.B., Wang, Z., Ji, C.Y., Jeong, J.C., Lee, H.S., Li, H.B., Xu, B.C.
et al. (2016) Transgenic poplar expressing codA exhibits enhanced growth
and abiotic stress tolerance. Plant Physiol. Biochem. 100, 75–84.
Khokon, M.A.R., Okuma, E., Hossain, M.A., Munemasa, S., Uraji, M.,
Nakamura, Y., Mori, I.C. and Murata, Y. (2011) Involvement of
extracellular oxidative burst in salicylic acid-induced stomatal closure
in Arabidopsis . Plant, Cell Environ. 34, 434–443.
Lee,S., Kim, S.G. and Park, C.M. (2010) Salicylic acid promotes seed
germination under high salinity by modulating antioxidant activity in
Arabidopsis. New Phytologist. 188, 626–637.
Li, D.D., Song, S.Y., Xia, X.L. and Yin, W.L. (2012) Two CBL genes fromPopulus euphratica confer multiple stress tolerance in transgenic
triploid white poplar. Plant Cell Tiss. Org. 109, 477–489.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids-pigments of
photosynthetic biomembranes. Methods Enzymol. 148, 350–382.
Liu, P., Xu, Z.S., Lu, P.P., Hu, D., Chen, M., Li, L.C. and Ma, Y.Z.
(2013) A wheat PI4K gene whose product possesses threonine
autophophorylation activity confers tolerance to drought and salt in
Arabidopsis. J Exp Bot. 64, 2915–2927.
Ma, H.S., Liang, D., Shuai, P., Xia, X.L. and Yin, W.L. (2010). The
salt- and drought-inducible poplar GRAS protein SCL7 confers salt and
drought tolerance in Arabidopsis thaliana. J. Exp. Bot. 61, 4011–4019.
Maija, S., Cezary, W., Triin, V. and Jaakko, K. (2016). Reactive oxygen
species in the regulation of stomatal movements. Plant Physiology.171,
1569–1580.
Martin-StPaul, N., Delzon, S. and Cochard, H. (2017) Plant resistance to
drought depends on timely stomatal closure. Ecology Letters. 20,
1437–1447.
Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P.M.
and Murata, Y. (2013) SIZ1 deficiency causes reduced stomatal aperture
and enhanced drought tolerance via controlling salicylic acid-induced
accumulation of reactive oxygen species in Arabidopsis. The Plant
Journal. 73, 91–104.
Monclus, R., Dreyer, E., Villar, M., Delmotte, F.M., Delay, D., Petit,
J.M.,
Barbaroux, C., Thiec, D., Brechet, C. and Brignolas, F. (2006) Impact of
drought on productivity and water use efficiency in 29 genotypes of
Populus deltoides x Populus nigra. New Phytol. 169, 765–777.
Mori, I.C., Pinontoan, R., Kawano, T. and Muto, S. (2001). Involvement
of superoxide generation in salicylic acid-induced stomatal closure inVicia faba . Plant cell physiol. 42, 1383-1388.
Munné-Bosch, S. and Peñuelas, J. (2003). Photo- and antioxidative
protection, and a role for salicylic acid during drought and recovery in
field grown Phillyrea angustifolia plants. Planta. 217, 758–766.
Munemasa , S. , Oda , K. , Watanabe-Sugimoto , M. , Nakamura , Y. ,
Shimoshi, Y. and Murata , Y. ( 2007 ) The coronatine -insensitive
1 mutation reveals the hormonal signaling interaction between abscisic
acid and methyl jasmonate in Arabidopsis guard cells. Specific
impairment of ion channel activation and second messenger production.
Plant Physiol. 143, 1398–1407.
Nawrath, C., and Metraux, J.P. (1999). Salicylic acid
induction-deficient mutants of Arabidopsis express PR-2and PR-5 and accumulate high levels of camalexin after pathogen
inoculation. Plant Cell. 11, 1393-1404.
Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma,
B. et al . (2012) Wheat WRKY genes TaWRKY2 andTaWRKY19 regulate abiotic stress tolerance in transgenicArabidopsis plants. Plant, Cell and Environment. 35, 1156–1170.
Pan, X.Q., Welti, r. and Wang, X.M. (2010). Quantitative analysis of
major plant hormones in crude plant extracts by high-performance liquid
chromatography–mass spectrometry. Nature protocols. 5:986-992.
Parinita, A., Reddy, M.P., and Jitendra, C. (2011). WRKY: Its structure,
evolutionary relationship, DNA-binding selectivity, role in stress
tolerance and development of plants. Mol. Biol. Rep. 38: 3883-3896.
Qiu, Y.P. and Yu, D.Q. (2008). Over-expression of the stress-inducedOsWRKY45 enhances disease resistance and drought tolerance inArabidopsis . Environ. Exp. Bot. 65, 35–47.
Ren, X.Z., Chen, Z.Z., Liu, Y., Zhang, H.R., Zhang, M., Liu, Q., Hong,
X.H., Zhu, J.K. et al . (2010). ABO3, a WRKY transcription factor,
mediates plant responses to abscisic acid and drought tolerance in
Arabidopsis. Plant J. 63(3): 417–429.
Rizhsky, L., Hallak-Herr, E., Breusegem, F.V., Rachmilevitch, S., Barr,
J.E., Rodermel, S., Inz, D. and Mittler, R. (2002) Double antisense
plants lacking ascorbate peroxidase and catalase are less sensitive to
oxidative stress than single antisense plants lacking ascorbate
peroxidase or catalase. Plant J. 32, 329–342.
Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. (2010). WRKY
transcription factors. Trends Plant Sci. 15: 247–258.
Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by
the comparative C-T method. Nat. Protoc. 3, 1101–1108.
Senaratna, T., Touchell, D., Bunn, E. and Dixon, K. (2000). Acetyl
salicylic acid (Aspirin) and salicylic acid induce multiple stress
tolerance in bean and tomato plants. Plant Growth Regulation. 30,
157–161.
Sierla, M., Waszczak, C., Vahisalu, T. and Kangasjärvi, J. (2016)
Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant
Physiology. 171, 1569–1580.
Singha, R., Parihara, P., Singha, S., Mishraa, R.K., Singhb, V.P. and
Prasada, S.M. (2017). Reactive oxygen species signaling and stomatal
movement: Current updates and future perspectives. Redox Biology. 11,
213–218.
Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang,
Y. et al . (2013) Manipulation of arginase expression modulates
abiotic stress tolerance in Arabidopsis : effect on arginine
metabolism and ROS accumulation. J. Exp.Bot. 64, 1367–1379.
Song, J.Y., Lu, S.F., Chen, Z.Z., Lourenco, R. and Chiang, V.L. (2006)
Genetic Transformation of Populus trichocarpa Genotype
Nisqually-1: A Functional Genomic Tool for Woody Plants. Plant Cell
Physiol. 47, 1582–1589.
Song, Y.W., Miao, Y.C. and Song, C.P. (2014) Behind the scenes: the
roles of reactive oxygen species in guard cells. New Phytologist. 201,
1121–1140.
Tardieu, F. (2012) Any trait or trait-related allele can confer drought
tolerance: just design the right drought scenario. Journal of
Experimental Botany, 63, 25–31.
Tschaplinski, T., Tuskan, G. and Gunderson, C. (1994) Water-stress
tolerance of black and eastern cottonwood clones and four hybrid
progeny. I. Growth, water relations, and gas exchange. Can. J. For. Res.
24, 364–371.
Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I.,
Hellsten, U. and Putnam, N. (2006) The Genome of Black Cottonwood,
Populus trichocarpa (Torr. & Gray). Science . 313, 1596-1604.
Ullah,A., Manghwar, H., Shaban, M., Khan, A.H. and Ali, A.E. et
al . (2018) Phytohormones enhanced drought tolerance in plants: a coping
strategy. Environmental Science and Pollution Research. 25,
33103–33118.
Verma, V., Ravindran, P. and Kumar, P.P. (2016) Plant hormone-mediated
regulation of stress responses. BMC Plant Biol. 16-86.
Von Caemmerer, S., Lawson, T., Oxborough, K., Baker, N.R., Andrews, T.J.
and Raines, C.A. (2004) Stomata conductance does not correlate with
photosynthetic capacity in transgenic tobacco with reduced amounts of
Rubisco. J Exp Bot. 55, 1157–1166.
Wang, C.P., Liu, S., Dong, Y., Zhao, Y., Geng, A.K., Xia, X.L. and Yin,
W.L. (2016) PdEPF1 regulates water-use efficiency and drought
tolerance by modulating stomatal density in poplar. Plant Biotechnology
Journal. 14, 849–860.
Wang, C.T., Ru, J.N., Liu, Y.W., Yang, J.F., Li, M., Xu, Z.S. and Fu,
J.D. (2018) The maize WRKY transcription factor ZmWRKY40 confers drought
resistance in transgenic Arabidopsis .
Int J Mol
Sci. 19, 2580.
Wang, J, Sun, P.P., Chen, C.L., Wang, Y., Fu, X.Z. and Liu JH (2011) An
arginine decarboxylase gene PtADC from Poncirus trifoliata confers
abiotic stress tolerance and promotes primary root growth in
Arabidopsis. J Exp Bot 62: 2899-2914
Xu, Z., Zhou, G. and Shimizu, H. (2010) Plant responses to drought and
rewatering. Plant Signal Behav. 5, 649–654.
Yang, Y.N., Li, R.G., Qin, M. (2000) In vivo analysis of plant
promoters and transcription factors by agroinfiltration of tobacoo
leaves. Plant Journal . 22: 543–551.
Yoo, C.Y., Pence, H.E., Hasegawa, P.M. and Mickelbart, M.V. (2009)
Regulation of transpiration to improve crop water use. Crit. Rev. Plant
Sci. 28, 410–431.
Yoo, C.Y., Pence, H.E., Jin, J.B., Miura, K., Gosney, M.J., Hasegawa,
P.M. and Mickelbart, M.V. (2010) The arabidopsis GTL1 transcription
factor regulates water use efficiency and drought tolerance by
modulating stomatal density via transrepression of SDD1. Plant Cell, 22,
4128–4141.
Zhang, L.P., Chen, L.G. and Yu, D.Q. (2017) Transcription factor WRKY75
interacts with DELLA proteins to affect flowering.
Plant Physiol. 176,
790-803.
Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R. and Zhang,
X.F. (2011) The Arabidopsis Ca2+-dependent protein
kinase CPK12 negatively regulates abscisic acid signaling in seed
germination and post-germination growth. New Phytologis. 192, 61–73.
Zhao, W.S., Sun, Y.L., Kjelgren. R. and Liu, X.P. (2015) Response of
stomatal density and bound gas exchange in leaves of maize to soil water
deficit. Acta Physiol Plant. 37-1704.
Zhu, J.K. (2002). Salt and drought stress signal transduction in plants.
Annu. Rev. Plant Biol. 53, 247–273.
Zhu, J.K. (2016). Abiotic Stress Signaling and Responses in Plants.
Cell. 167, 313-324.
Zhu, Z.T., Kang, X.Y. and Zhang, Z.Y. (1998) Studies on selection of
natural triploids of Populus tomentosa. Scientia Silvae Sinicae. 34,
22–31.