References
Arseneau, R.J., Steeves, R. and Laflamme, M. (2017) Modified low-salt CTAB extraction of high-quality DNA from contaminant-rich tissues. Molecular Ecology Resources. 17, 686–693.
Baloch, M.J., Khan, N.U., Jatoi, W.A., Hassan, G., Khakhwani, A.A., Soomro, Z.A. and Weesar, N.F. (2011) Drought tolerance studies through WSSI and stomata in upland cotton. Pak J Bot. 43, 2479–2484.
Bandurska, H. and Stroiński, A. (2005) The effect of salicylic acid on barley response to water deficit. Acta Physiol Plant. 27,379–386.
Blanco, F., Salinas, P., Cecchini, N.M., Jordana, X., Van Hummelen, P., Alvarez, M.E., and Holuigue, L. (2009). Early genomic responses to salicylic acid in Arabidopsis . Plant Mol. Biol. 70, 79-102.
Bohnert, H.J., Gong, Q., Li P. and and Ma S. (2006). Unraveling abiotic stress tolerance mechanism: getting genomics going. Curr. Opin. Plant Biol. 9, 180–188.
Borsani, O., Valpuesta, V.and Botella, M.A. (2001) Evidence for a role of Salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiology. 126, 1024-1030.
Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry. 72: 248-254.
Carmody, M., Waszczak, C., Idänheimo, N., Saarinen, T. and Kangasjärvi, J. (2016) ROS signalling in a destabilised world: A molecular understanding of climate change. J Plant Physiol. 203, 69-83.
Chen, L., Song, Y., Li, S., Zhang, L., Zou, C., and Yu, D. (2012). The role of WRKY transcription factors in plant abiotic stresses. Biochim. Biophys. Acta. 1819: 120–128.
Chini, A., Grant, J.J., Seki, M., Shinozaki, K. and Loake, G.J. (2004). Drought tolerance established by enhanced expression of the CCI-NBS-LRR gene, ADR1, requires salicylic acid, EDS1 and ABI1. The Plant Journal. 38, 810–822.
Cochrane, F.C., Davin, L.B., and Lewis, N.G. (2004). TheArabidopsis phenylalanine ammonia lyase gene family: kinetic characterization of the four PAL isoforms. Phytochemistry. 65, 1557-1564.
Cui, X., Fan, B., Scholz, J., and Chen, Z. (2007). Roles of Arabidopsis  cyclin-dependent kinase C complexes in cauliflower mosaic virus infection, plant growth, and development. Plant Cell. 19, 1388–1402.
Desikan, R., Mackerness, S.A.H., Hancock, J.T. and Neill, S.J. (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127:159–172.
Ding,Z.J., Yan, J.Y., Xu, X.Y., Yu, D.Q., Li, G.X., Zhang, S.Q. and Zheng, S.J. (2014) Transcription factor WRKY46 regulates osmotic stress responses and stomatal movement independently in Arabidopsis . The Plant Journal. 79, 13–27.
Duan, Y.J., Jiang, Y.Z., Ye, S.L., Karim, A., Ling, Z.Y., He,Y.Q. and Yang, S.Q.(2015) PtrWRKY73, a salicylic acid-inducible poplar WRKY transcription factor, is involved in disease resistance inArabidopsis thaliana . Plant Cell Rep. 34,831–841.
Eulgem, T., Rushton, P.J., Robatzek, S. and Somssich, I.E. (2000). The WRKY superfamily of plant transcription factors. Trends in Plant Science 5, 199–206.
Fryer, M.J., Oxborough, K., Mullineaux, P.M. and Baker, N.R. (2002) Imaging of photo-oxidative stress responses in leaves. J Exp Bot 53:1249–1254.
Guo, P.R., Li, Z.H., Huang, P.X., Li, B.S., Shuang, F., Chu, J.F. and Guo, H.W. (2017). Tripartite amplification loop involving the transcription factor WRKY75, salicylic acid, and reactive oxygen species accelerates leaf senescence. Plant Cell. 11, 2854-2870.
Han, X., Tang, S., An, Y., Zheng, D.C., Xia, X.L. and Yin, W.L. (2013) Overexpression of the poplar NF-YB7 transcription factor confers drought tolerance and improves water-use efficiency in Arabidopsis. J. Exp. Bot. 64, 4589–4601.
Hayata, Q., Hayata, S., Irfan, M. and Ahmad, A. (2010) Effect of exogenous salicylic acid under changing environment: a review. Environ. exp. Bot. 68, 14-25.
Janda, T., Szalai, G., Tari, I. and Páldi, E. (1999) Hydroponic treatment with salicylic acid decreases the effects of chilling injury in maize (Zea mays L.) plants. Planta. 208, 175-180.
Jefferson, R.A., Kavanagh, T.A., Bevan, M.W. (1987). GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901–3907.
Jiang, Y.J., Liang, G. and Yu, D.Q. (2012) Activated expression of WRKY57 confers drought tolerance in Arabidopsis . Molecular Plant. 5, 1375–1388.
Jiang, Y.Z., Duan, Y.J., Yin, J., Ye, S.L., Zhu, J.R., Zhang, F.Q. and Lu, W.X. et al . (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. Journal of Experimental Botany. 65, 6629–6644.
Jiang, Y.Z., Guo, L., Ma, X.D., Zhao, X., Jiao, B., Li, C.F., Luo, K.M. (2017) The WRKY transcription factors PtrWRKY18 and PtrWRKY35 promote Melampsora resistance in Populus. Tree Physiol. 37,665-675.
Kang, G.Z., Li, G.Z., Xu, W., Peng, X.Q., Han, Q.X., Zhu, Y.J. and Guo, T.C. (2012) Proteomics reveals the effects of salicylic acid on growth and tolerance to subsequent drought stress in Wheat. J. Proteome Res. 11, 6066-6079.
Karaba, A., Dixit, S., Greco, R., Aharoni, A., Trijatmiko, K.R., Martinez, N.M. and Krishnan, A. et al . (2007) Improvement of water use efficiency in rice by expression of HARDY, an Arabidopsis drought and salt tolerance gene. PNAS. 104, 15270-15275.
Ke, Q.B., Wang, Z., Ji, C.Y., Jeong, J.C., Lee, H.S., Li, H.B., Xu, B.C. et al. (2016) Transgenic poplar expressing codA exhibits enhanced growth and abiotic stress tolerance. Plant Physiol. Biochem. 100, 75–84.
Khokon, M.A.R., Okuma, E., Hossain, M.A., Munemasa, S., Uraji, M., Nakamura, Y., Mori, I.C. and Murata, Y. (2011) Involvement of extracellular oxidative burst in salicylic acid-induced stomatal closure in Arabidopsis . Plant, Cell Environ. 34, 434–443.
Lee,S., Kim, S.G. and Park, C.M. (2010) Salicylic acid promotes seed germination under high salinity by modulating antioxidant activity in Arabidopsis. New Phytologist. 188, 626–637.
Li, D.D., Song, S.Y., Xia, X.L. and Yin, W.L. (2012) Two CBL genes fromPopulus euphratica confer multiple stress tolerance in transgenic triploid white poplar. Plant Cell Tiss. Org. 109, 477–489.
Lichtenthaler, H.K. (1987). Chlorophylls and carotenoids-pigments of photosynthetic biomembranes. Methods Enzymol. 148, 350–382.
Liu, P., Xu, Z.S., Lu, P.P., Hu, D., Chen, M., Li, L.C. and Ma, Y.Z. (2013) A wheat PI4K gene whose product possesses threonine autophophorylation activity confers tolerance to drought and salt in Arabidopsis. J Exp Bot. 64, 2915–2927.
Ma, H.S., Liang, D., Shuai, P., Xia, X.L. and Yin, W.L. (2010). The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J. Exp. Bot. 61, 4011–4019.
Maija, S., Cezary, W., Triin, V. and Jaakko, K. (2016). Reactive oxygen species in the regulation of stomatal movements. Plant Physiology.171, 1569–1580.
Martin-StPaul, N., Delzon, S. and Cochard, H. (2017) Plant resistance to drought depends on timely stomatal closure. Ecology Letters. 20, 1437–1447.
Miura, K., Okamoto, H., Okuma, E., Shiba, H., Kamada, H., Hasegawa, P.M. and Murata, Y. (2013) SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. The Plant Journal. 73, 91–104.
Monclus, R., Dreyer, E., Villar, M., Delmotte, F.M., Delay, D., Petit, J.M.,
Barbaroux, C., Thiec, D., Brechet, C. and Brignolas, F. (2006) Impact of drought on productivity and water use efficiency in 29 genotypes of Populus deltoides x Populus nigra. New Phytol. 169, 765–777.
Mori, I.C., Pinontoan, R., Kawano, T. and Muto, S. (2001). Involvement of superoxide generation in salicylic acid-induced stomatal closure inVicia faba . Plant cell physiol. 42, 1383-1388.
Munné-Bosch, S. and Peñuelas, J. (2003). Photo- and antioxidative protection, and a role for salicylic acid during drought and recovery in field grown Phillyrea angustifolia plants. Planta. 217, 758–766.
Munemasa , S. , Oda , K. , Watanabe-Sugimoto , M. , Nakamura , Y. , Shimoshi, Y. and Murata , Y. ( 2007 ) The coronatine -insensitive 1 mutation reveals the hormonal signaling interaction between abscisic acid and methyl jasmonate in Arabidopsis guard cells. Specific impairment of ion channel activation and second messenger production. Plant Physiol. 143, 1398–1407.
Nawrath, C., and Metraux, J.P. (1999). Salicylic acid induction-deficient mutants of Arabidopsis express PR-2and PR-5 and accumulate high levels of camalexin after pathogen inoculation. Plant Cell. 11, 1393-1404.
Niu, C.F., Wei, W., Zhou, Q.Y., Tian, A.G., Hao, Y.J., Zhang, W.K., Ma, B. et al . (2012) Wheat WRKY genes TaWRKY2 andTaWRKY19 regulate abiotic stress tolerance in transgenicArabidopsis plants. Plant, Cell and Environment. 35, 1156–1170.
Pan, X.Q., Welti, r. and Wang, X.M. (2010). Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatography–mass spectrometry. Nature protocols. 5:986-992.
Parinita, A., Reddy, M.P., and Jitendra, C. (2011). WRKY: Its structure, evolutionary relationship, DNA-binding selectivity, role in stress tolerance and development of plants. Mol. Biol. Rep. 38: 3883-3896.
Qiu, Y.P. and Yu, D.Q. (2008). Over-expression of the stress-inducedOsWRKY45 enhances disease resistance and drought tolerance inArabidopsis . Environ. Exp. Bot. 65, 35–47.
Ren, X.Z., Chen, Z.Z., Liu, Y., Zhang, H.R., Zhang, M., Liu, Q., Hong, X.H., Zhu, J.K. et al . (2010). ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J. 63(3): 417–429.
Rizhsky, L., Hallak-Herr, E., Breusegem, F.V., Rachmilevitch, S., Barr, J.E., Rodermel, S., Inz, D. and Mittler, R. (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J. 32, 329–342.
Rushton, P.J., Somssich, I.E., Ringler, P. and Shen, Q.J. (2010). WRKY transcription factors. Trends Plant Sci. 15: 247–258.
Schmittgen, T.D. and Livak, K.J. (2008) Analyzing real-time PCR data by the comparative C-T method. Nat. Protoc. 3, 1101–1108.
Senaratna, T., Touchell, D., Bunn, E. and Dixon, K. (2000). Acetyl salicylic acid (Aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Regulation. 30, 157–161.
Sierla, M., Waszczak, C., Vahisalu, T. and Kangasjärvi, J. (2016) Reactive Oxygen Species in the Regulation of Stomatal Movements. Plant Physiology. 171, 1569–1580.
Singha, R., Parihara, P., Singha, S., Mishraa, R.K., Singhb, V.P. and Prasada, S.M. (2017). Reactive oxygen species signaling and stomatal movement: Current updates and future perspectives. Redox Biology. 11, 213–218.
Shi, H., Ye, T., Chen, F., Cheng, Z., Wang, Y., Yang, P., Zhang, Y. et al . (2013) Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis : effect on arginine metabolism and ROS accumulation. J. Exp.Bot. 64, 1367–1379.
Song, J.Y., Lu, S.F., Chen, Z.Z., Lourenco, R. and Chiang, V.L. (2006) Genetic Transformation of Populus trichocarpa Genotype Nisqually-1: A Functional Genomic Tool for Woody Plants. Plant Cell Physiol. 47, 1582–1589.
Song, Y.W., Miao, Y.C. and Song, C.P. (2014) Behind the scenes: the roles of reactive oxygen species in guard cells. New Phytologist. 201, 1121–1140.
Tardieu, F. (2012) Any trait or trait-related allele can confer drought tolerance: just design the right drought scenario. Journal of Experimental Botany, 63, 25–31.
Tschaplinski, T., Tuskan, G. and Gunderson, C. (1994) Water-stress tolerance of black and eastern cottonwood clones and four hybrid progeny. I. Growth, water relations, and gas exchange. Can. J. For. Res. 24, 364–371.
Tuskan, G.A., DiFazio, S., Jansson, S., Bohlmann, J., Grigoriev, I., Hellsten, U. and Putnam, N. (2006) The Genome of Black Cottonwood, Populus trichocarpa (Torr. & Gray). Science . 313, 1596-1604.
Ullah,A., Manghwar, H., Shaban, M., Khan, A.H. and Ali, A.E. et al . (2018) Phytohormones enhanced drought tolerance in plants: a coping strategy. Environmental Science and Pollution Research. 25, 33103–33118.
Verma, V., Ravindran, P. and Kumar, P.P. (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol. 16-86.
Von Caemmerer, S., Lawson, T., Oxborough, K., Baker, N.R., Andrews, T.J. and Raines, C.A. (2004) Stomata conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot. 55, 1157–1166.
Wang, C.P., Liu, S., Dong, Y., Zhao, Y., Geng, A.K., Xia, X.L. and Yin, W.L. (2016) PdEPF1 regulates water-use efficiency and drought tolerance by modulating stomatal density in poplar. Plant Biotechnology Journal. 14, 849–860.
Wang, C.T., Ru, J.N., Liu, Y.W., Yang, J.F., Li, M., Xu, Z.S. and Fu, J.D. (2018) The maize WRKY transcription factor ZmWRKY40 confers drought resistance in transgenic Arabidopsis . Int J Mol Sci. 19, 2580.
Wang, J, Sun, P.P., Chen, C.L., Wang, Y., Fu, X.Z. and Liu JH (2011) An arginine decarboxylase gene PtADC from Poncirus trifoliata confers abiotic stress tolerance and promotes primary root growth in Arabidopsis. J Exp Bot 62: 2899-2914
Xu, Z., Zhou, G. and Shimizu, H. (2010) Plant responses to drought and rewatering. Plant Signal Behav. 5, 649–654.
Yang, Y.N., Li, R.G., Qin, M. (2000) In vivo analysis of plant promoters and transcription factors by agroinfiltration of tobacoo leaves. Plant Journal . 22: 543–551.
Yoo, C.Y., Pence, H.E., Hasegawa, P.M. and Mickelbart, M.V. (2009) Regulation of transpiration to improve crop water use. Crit. Rev. Plant Sci. 28, 410–431.
Yoo, C.Y., Pence, H.E., Jin, J.B., Miura, K., Gosney, M.J., Hasegawa, P.M. and Mickelbart, M.V. (2010) The arabidopsis GTL1 transcription factor regulates water use efficiency and drought tolerance by modulating stomatal density via transrepression of SDD1. Plant Cell, 22, 4128–4141.
Zhang, L.P., Chen, L.G. and Yu, D.Q. (2017) Transcription factor WRKY75 interacts with DELLA proteins to affect flowering. Plant Physiol. 176, 790-803.
Zhao, R., Sun, H.L., Mei, C., Wang, X.J., Yan, L., Liu, R. and Zhang, X.F. (2011) The Arabidopsis Ca2+-dependent protein kinase CPK12 negatively regulates abscisic acid signaling in seed germination and post-germination growth. New Phytologis. 192, 61–73.
Zhao, W.S., Sun, Y.L., Kjelgren. R. and Liu, X.P. (2015) Response of stomatal density and bound gas exchange in leaves of maize to soil water deficit. Acta Physiol Plant. 37-1704.
Zhu, J.K. (2002). Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53, 247–273.
Zhu, J.K. (2016). Abiotic Stress Signaling and Responses in Plants. Cell. 167, 313-324.
Zhu, Z.T., Kang, X.Y. and Zhang, Z.Y. (1998) Studies on selection of natural triploids of Populus tomentosa. Scientia Silvae Sinicae. 34, 22–31.