References
- Pedersen DV, Gadeberg TAF, Thomas C et al. Structural basis for
properdin oligomerization and convertase stimulation in the human
complement system. Front Immunol 2019; 10: 2007.
- van den Bos RM, Pearce NM, Granneman J, Brondijk THC, Gros P. Insights
into enhanced complement activation by structures of properdin and its
complex with the C-terminal domain of C3b. Front Immunol 2019;
10: 2097.
- Pangburn MK. Analysis of the natural polymeric forms of human
properdin and their functions in complement activation. J
Immunol 1989; 142: 202–7.
- Smith CA, Pangburn MK, Vogel CW, Muller-Eberhard HJ. Molecular
architecture of human properdin, a positive regulator of the
alternative pathway of complement. J Biol Chem 1984; 259:
4582–8.
- Zaferani A, Vivès RR, van der Pol P et al. Identification of tubular
heparan sulfate as a docking platform for the alternative complement
component properdin in proteinuric renal disease. J Biol Chem2011; 286: 5359–67.
- Kemper C, Atkinson JP, Hourcade DE. Properdin: emerging roles of a
pattern-recognition molecule. Annu Rev Immunol 2010; 28:
131–55.
- Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can
initiate complement activation by binding specific target surfaces and
providing a platform for de novo convertase assembly. J Immunol2007; 179: 2600–8.
- Xu W, Berger SP, Trouw LA, de Boer HC, Schlagwein N, Mutsaers C, Daha
MR, van Kooten C. Properdin binds to late apoptotic and necrotic cells
independently of C3b and regulates alternative pathway complement
activation. J Immunol 2008; 180: 7613–21.
- Gaarkeuken H, Siezenga MA, Zuidwijk K, van Kooten C, Rabelink TJ, Daha
MR, Berger SP. Complement activation by tubular cells is mediated by
properdin binding. Am J Physiol Renal Physiol 2008; 295:
F1397–403.
- Harboe M, Johnson C, Nymo S et al. Properdin binding to complement
activating surfaces depends on initial C3b deposition. Proc Natl
Acad Sci USA 2017; 114: E534–9.
- Al-Rayahi IA, Browning MJ, Stover C. Tumour cell conditioned medium
reveals greater M2 skewing of macrophages in the absence of properdin.Immun Inflamm Dis 2017; 5: 68–77.
- Dupont A, Mohamed F, Salehen N et al. Septicaemia models using
Streptococcus pneumoniae and Listeria monocytogenes: understanding the
role of complement properdin. Med Microbiol Immunol 2014; 203:
257–71.
- Steiner T, Francescut L, Byrne S et al. Protective role for properdin
in progression of experimental murine atherosclerosis. PLoS One2014; 9(3): e92404.
- van Essen MF, Ruben JM, de Vries APJ, van Kooten C. Role of properdin
in complement-mediated kidney diseases. Nephrol Dial Transplant2019; 34(5): 742-50.
- Ziegler JB, Rosen FS, Alper CA, Grupe W, Lepow IH. Metabolism of
properdin in normal subjects and patients with renal disease. J
Clin Invest 1975; 56: 761–7.
- Perrin LH, Lambert PH, Miescher PA. Properdin levels in systemic lupus
erythematosus and membranoproliferative glomerulonephritis. Clin
Exp Immunol 1974; 16: 575–81.
- Józsi M, Reuter S, Nozal P, López-Trascasa M, Sánchez-Corral P,
Prohászka Z, Uzonyi B. Autoantibodies to complement components in C3
glomerulopathy and atypical hemolytic uremic syndrome. Immunol
Lett 2014; 160(2): 163-71.
- Nozal P, Garrido S, Martínez-Ara J. Case report: lupus nephritis with
autoantibodies to complement alternative pathway proteins and C3 gene
mutation. BMC Nephrol 2015; 16: 40.
- Tanuma Y, Ohi H, Hatano M. Two types of C3 nephritic factor:
properdin-dependent C3NeF and properdin-independent C3NeF. Clin
Immunol Immunopathol 1990; 56(2): 226-38.
- Appel GB, D’Agati VD. Lupus nephritis-pathology and pathogenesis. In
Wallace DJ, Hahn BH, ds. Dubois’ Lupus Erythematosus. 7th ed.
Philadelphia: Lippincott Williams & Wilkins 2007; 1094-112.
- Gerald BA, Radhakrishnan J, D’Agati VD, et al. Systemic Lupus
Erythematosus. In: Brener & Rector’s The Kidney. 9th ed. Taal
M, Chertow G, Marsden P, Skorecki K, Yu A, Brenner B eds.
Philadelphia. Elsevier Saunders 2012; 1193-208.
- Appel GB, D’Agati VD. Renal involvement in systemic lupus
erythematosus. In: Massry S, Glassock R, eds. Textbook of Kidney
Disease. St. Louis: Williams & Wilkins 2001; 2000: 787-97.
- Hay EM, Bacon PA, Gordon C et al. The BILAG index: a reliable and
valid instrument for measuring clinical disease activity in systemic
lupus erythematosus. Q J Med 1993; 86(7): 447-58.
- Isenberg DA, Rahman A, Allen E, et al. BILAG 2004. Development and
initial validation of an updated version of the British Isles Lupus
Assessment Group’s disease activity index for patients with systemic
lupus erythematosus. Rheumatology (Oxford) 2005; 44(7): 902-6.
- Weening JJ, D’Agati VD, Appel GB, et al. The Classification of
glomerulonephritis in systemic lupus erythematosus revisited. J
Am Soc Nephrol 2004; 15: 241-50.
- Markowitz GS, D’Agati VD. Classification of lupus nephritis.Curr Opin Nephrol Hypertens 2009; 18(3): 220-5.
- Marinozzi MC, Chauvet S, Le Quintrec M et al. C5 nephritic factors
drive the biological phenotype of C3 glomerulopathies. Kidney
Int 2017; 92(5): 1232-41.
- Hourcade DE. Properdin and complement activation: a fresh perspective.Curr Drug Targets 2008; 9(2): 158-64.
- Marinozzi MC, Roumenina LT, Chauvet S et al. Anti-Factor B and
Anti-C3b Autoantibodies in C3 Glomerulopathy and Ig-Associated
Membranoproliferative GN. J Am Soc Nephrol 2017; 28(5):
1603-13.
- Vasilev VV, Noe R, Dragon-Durey MA et al. Functional Characterization
of Autoantibodies against Complement Component C3 in Patients with
Lupus Nephritis.J Biol Chem 2015; 290(42): 25343-55.
- Vasilev VV, Radanova M, Lazarov VJ, Dragon-Durey MA, Fremeaux-Bacchi
V, Roumenina LT. Autoantibodies Against C3b-Functional Consequences
and Disease Relevance. Front Immunol 2019; 10: 64.
- Blanc C, Togarsimalemath SK, Chauvet S, et al. Anti-factor H
autoantibodies in C3 glomerulopathies and in atypical hemolytic uremic
syndrome: one target, two diseases. J Immunol 2015; 194(11):
5129-38.
- Djoumerska-Alexieva IK, Dimitrov JD, Voynova EN, Lacroix-Desmazes S,
Kaveri SV, Vassilev TL. Exposure of IgG to an acidic environment
results in molecular modifications and in enhanced protective activity
in sepsis. FEBS J 2010; 277(14): 3039-50.
- Moroni G, Quaglini S, Radice A, Trezzi B, Raffiotta F, Messa P, Sinico
RA. The value of a panel of autoantibodies for predicting the activity
of lupus nephritis at time of renal biopsy. J Immunol Res 2015;
2015: 106904.
- Chi S, Yu Y, Shi J, Zhang Y, Yang J, Yang L, Liu X. Antibodies against
C1q Are a Valuable Serological Marker for Identification of Systemic
Lupus Erythematosus Patients with Active Lupus Nephritis. Dis
Markers 2015; 2015: 450351.
- Tan Y, Song D, Wu LH, Yu F, Zhao MH. Serum levels and renal deposition
of C1q complement component and its antibodies reflect disease
activity of lupus nephritis. BMC Nephrol 2013; 14: 63.
- Matrat A, Veysseyre-Balter C, Trolliet P, Villar E, Dijoud F, Bienvenu
J et al. Simultaneous detection of anti-C1q and anti-double stranded
DNA autoantibodies in lupus nephritis: predictive value for renal
flares. Lupus 2011; 20: 28-34.
- Meyer OC, Nicaise-Roland P, Cadoudal N, Grootenboer-Mignot S, Palazzo
E, Hayem G, et al. Anti-C1q antibodies antedate patent active
glomerulonephritis in patients with systemic lupus erythematosus.Arthritis Res Ther 2009; 11(3): R87.
- Orbai AM, Truedsson L, Sturfelt G et al. Anti-C1q antibodies in
systemic lupus erythematosus. Lupus 2015; 24(1): 42-9.
- Akhter E, Burlingame RW, Seaman AL, Magder L, Petri M. Anti-C1q
antibodies have higher correlation with flares of lupus nephritis than
other serum markers. Lupus 2011; 20(12): 1267-74.
- Marto N, Bertolaccini M, Calabuig E, Hughes G, Khamashta M. Anti-C1q
antibodies in nephritis: correlation between titres and renal disease
activity and positive predictive value in systemic lupus
erythematosus. Ann Rheum Dis 2005; 64(3): 444–8.
- Bock M, Heijnen I, Trendelenburg M. Anti-C1q Antibodies as a Follow-Up
Marker in SLE Patients. PLoS One 2015; 10(4): e0123572.
- Julkunen H, Ekblom-Kullberg S, Miettinen A. Nonrenal and renal
activity of systemic lupus erythematosus: a comparison of two anti-C1q
and five anti-dsDNA assays and complement C3 and C4. Rheumatol
Int 2012; 32(8): 2445-51.
Fig. 1 Detection of anti-properdin autoantibodies: A.Levels of anti-properdin in 74 patients with LN and 72 healthy
volunteers. B. Dose dependent ELISA with anti-properdin
positive patients. C. SPR senzograms of binding of purified IgG
from seropositive patient 33 (P33), D. - from seropositive
patient 35 (P35) and E. - from seropositive patient 38 (P38) to
properdin. F. SPR senzograms of binding of purified IgG from
healthy volunteer (K1) and G. - from healthy volunteer (K2) to
properdin.
Fig 2. Statistical analysis with anti-properdin
autoantibodies: A. Levels of anti-properdin autoantibodies in
patients divided on the complex clinical-laboratory estimation for LN
activity according BILAG Renal Score. B. Comparative analysis
of proteinuria in anti-properdin positive and anti-properdin negative
patients in cross-section analysis. C. Correlation between
levels of anti-properdin antibodies and eGFR. D. Levels of
anti-properdin in patients with LN depending on the presence or absence
of pathological ANA, E. anti-dsDNA, F. C3
hypocomplementemia, G. C4 hypocomplementemia and H.anti-C1q. With ”+” is marked the presence of increased ANA, anti-dsDNA
and anti-C1q; with ”-” are marked the reference values of ANA,
anti-dsDNA and anti-C1q in the samples. The two groups in every graphic
were compared via Mann-Whitney, nonparametric t-test. I.Correlation between levels of anti-properdin and levels of ANA,J. anti-dsDNA, K. C3, L. C4 and M.anti-C1q in patients with LN. In order to estimate the correlations
between anti-properdin with every immunological markers a nonparametric
Spearman analysis was used.
Fig. 3. Functional analysis with anti-properdin autoantibodies:
A. SPR sensograms for the effect of purified IgG from patient 33 (P33),
positive for anti-properdin antibodies and from healthy volunteer (К1)
on properdin binding with C3b, B. with C3b+FB (proconvertase),C. and with C3b+FB+FD (convertase) in real time. D.The effect of purified IgG from patient 35 (P35), positive for
anti-properdin and from healthy volunteer (К1) on properdin binding with
C3b, E. with C3b+FB (proconvertase), F. and with
C3b+FB+FD (convertase) in real time. G. The effect of purified
IgG from patient 38 (P38), positive for anti-properdin and from healthy
volunteer (К1) on properdin binding with C3b, H. with C3b+FB
(proconvertase), I. and with C3b+FB+FD (convertase) in real
time. Properdin is immobilized on SPR chip and then expose to IgG from
patients positive for anti-properdin (P33, P35 and P38) and IgG from
healthy volunteer (К1), followed by C3b (A., D., G. ), C3b+FB
(B., E., H. ) and C3b+FB+FD (C., F., I. ) addition.J. Histogram of FACS analysis of С3 deposition in the presence
of purified IgG from patients 9 (P9) and K. - purified IgG from
patients 35 (P35), both positive for anti-properdin. L.Histogram of FACS analysis of С3 deposition in the presence of purified
IgG from patients 32 (P32) and M. - purified IgG from patients
17 (P17), both positive for anti-C3. All patients are compared with a
control sample (К85).
Fig. 4 Prediction of the B cell epitopes of properdin: A.Epitopes, predicted by the IEDB server http://tools.iedb.org/bcell/.B. Visualizaiton of the predicted peptides (red) on the surface
of a properdin monomer (green)