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Abstract

A generalization of Moran model of evolution is created using object-
oriented method of modelling. A population consists of individuals which
have a genotype and a phenotype. The genotype is inherited by descendants
and it can mutate. The phenotype is dependent on the genotype. Moreover,
the phenotype causes changes in the fitness of the individuals (natural selec-
tion which four kinds are defined and analysed). Evolution of the population
appears spontaneously. This model is used to analyse how population size
influence the rate of evolution.

Evolution is manifested by two processes: the increase of the pheno-
type size (morphological evolution) and number of mutations accumulated
on genes (molecular evolution). The rate of evolution increases if population
size increases. An adaptive natural selection causes nonlinear changes in the
phenotype size and number of mutations accumulated on genes. A compet-
itive natural selection causes linear evolution. A survive natural selection
causes the faster evolution than a reproductive natural selection.

Keywords: morphological evolution, molecular evolution,
genotype-phenotype interaction, adaptive natural selection, competitive
natural selection, survive natural selection, reproductive natural selection,
object-oriented model

1. Introduction

In various branches of biology ”evolution of a population” is defined dif-
ferently. In palaeontology and ecology the evolution is defined as an increase,
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rarely a decrease of phenotype size of individuals from generation to gener-
ation [23], [21], [42]. This process is named morphological or phenotypic
evolution. Molecular biologists and geneticists define evolution as an accu-
mulation of mutations (substitutions) on genes, a formation of new alleles
and often new RNAs or proteins in cells. For this phenomenon the terms
molecular evolution or genetic evolution are used [12], [5]. But the molecular
evolution influences the morphological one and rates of both processes can
be compared [2], [3], [32].

The relationship between morphological and molecular evolution has not
been well explained by mathematical models so far. In accordance with
the principle of modelling only one numeric variable, mathematical models
correspond to the morphological evolution ([20], [27], [22], [7]) or to the
molecular one ([28], [14], [48])separately. The basic difference between these
groups of the models depends on the assumptions about a single mutation
of a gene.

1. A mutation changes the size of the phenotype by a random positive or
negative number in the models of morphological evolution. Beneficial
and adverse mutations have the same probability.

2. A mutation changes the sequence of nucleotides, creates a new allele
of a gene in the models of molecular evolution. Back mutations are
impossible or they have very little probability.

We know that the genotype influences the phenotype of an individual.
This is a dependence at an individual’s level.

GENOTYPE → PHENOTYPE

Genotypes and phenotypes of all individuals in each generation of the popula-
tion form the genetic and phenotypic structures and the dependence between
them runs in the opposite direction:

PHENOTYPIC STRUCTURE
SELECTION

−→ GENETIC STRUCTURE

This is a dependence at a population level. So far only some generalizations
of Wright - Fisher and Moran genetic drift models with natural selection
take into account this pattern of dependencies ([43], [17], [33], [6], [44]).
The selection in these models are introduced by assigning to each allele a
specific numerical value that is called phenotypic fitness. This number may
be identified with a probability of death, a probability of reproduction or
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mean number of descendants of individuals of a given genotype. In these
models heredity and selection are only assumed. Evolution (genetic drift to
the best fitness) appears spontaneously.

Including mutations to the Moran model creates the biggest problems.
So far it is realised on a population level ([43]). But the important muta-
tions appeared when copying parental genes to a descendant. They create a
new allele but we can never predict their effect on the phenotype. The mu-
tations should be modelled on an individual’s level. Such assumptions are
difficult to make in Moran models created as numeric stochastic processes or
differential equations. But they are possible in Moran model created as an
object-oriented model of a population.

The object-oriented model forms a virtual population after start-up. The
virtual population is a set of individuals and the individuals are formed as
classes, structures or otherwise named objects. Nowadays simulations of
such models are very fast. This model has many advantages (for instance: it
allows us to analyse many variables, all parameters of the model have bio-
logical interpretation and can be estimated by experiments, the time can be
expressed with real units and many others ([15]) and only has one disadvan-
tage. The simulation is possible if all parameters are replaced by numbers.
So the interpretations of results of such modelling are not so general as within
mathematical models are done. According to mathematical rules it can only
be used to show contrasamples to some hypotheses. But it can also be used
to correctly formulate a mathematical model of such phenomena, which are
nowadays modelled in very different ways generating inconsistent results.
Evolution of a population is such a phenomenon.

The primary aim of this paper is to present the basic form of genotype-
phenotype (gen-phen) model. It is a model of the virtual population with
heredity, mutations and selection. Morphological and molecular evolution
of this population occurs spontaneously. Such evolution can be analysed
in the same way as it is done by biologists (calculation of the number of
mutations accumulated on genes and the changes of phenotype size from
generation to generation). Another aim of this article is to use the presented
model to analyse the rate of evolution due to population size to check if some
assumptions are true in some mathematical models of evolution.
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2. Methods

2.1. The model

The population was programmed as a finite set of virtual objects (individ-
uals) that they appear as a result of ”breeding” of existing individuals, they
exist during some time-period, they sometimes reproduce (a random event
called ”reproduction”) and they disappear (a random event called ”death”).
Each individual has two genes. Each descendant inherits one gene from
its mother individual and the other gene from a randomly selected individ-
ual (father). The inheritance involves copying these genes. Sometimes the
parental gene mutates with probability pmut during this copy. In this model
each mutation gives a new allele of the gene and change the descendant’s
phenotype size.

The individual’s gene is a sequence of three numbers: (x,y,z), where x is
a real number (after a mutation of this gene this number can be decreased or
increased by a random number drawn from the normal distribution N(0, σg)),
y is an integral number - allele’s name (after the mutation this number is
changed to a new one, which has not been used yet ), z is an integral number
- the number of mutations accumulated on the gene relative to the ancestor
from the initial population (this number is increased by 1 after the mutation
of this gene).

Each individual has phenotype size - a real number which can be assigned
to some numerical variable (individual mass, length of legs, rate of escape,
etc.). The phenotype size is formed basing on the inherited genotype and
different random features. In the model it is a random number Φ drawn
from the normal distribution N((x1 + x2)/2, σe) where x1 is a first number
of the mother gene, x2 is first number of the father gene. So, the number
x1 = (x1 + x1)/2 is mean phenotype size of all homozygous individuals AA
with gene A=(x1, y1, z1).

The parameter σg describes the size of the effect of one mutation to the
phenotype size. The parameter σe describes the size of the impact of non-
genetic (among others environmental) factors on the phenotype size. Values
of them are dependent on a unit that measures of the phenotype.

The probability of reproduction of an individual during some time-step
(generation) depends on its phenotype size and population density (classical
regulatory mechanisms). It is calculated by the function pr(N/V,Φ) where N
is a population size (number of individuals) and V is an area of the territory.
The offspring size (number of descendants of one individuals produced at the
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same time) is a random variable drawn from some discrete distribution Pλ(L),
whose expected number λ is calculated with the function Loff (N/V,Φ). The
probability of death of an individual during some time step depends on its
phenotype size and population density and it is calculated by the function
ps(N/V,Φ).

These assumptions allow to construct an algorithm of virtual population
changing in time by random events (Fig.1). The program simulating such
population can be written in many computer languages, but the simulations
are faster for non-interpreted languages. The program written using C++
was shown in the appendix 1, using Python - in appendix 2.

The model is characterized by three functions: Loff (N/V,Φ), pr(N/V,Φ)
and ps(N/V,Φ), the probability of mutation pmut and parameters σg and
σe. The effects of simulation dependent on used functions and values of
parameters but also on size and structure of an initial population.

2.2. Conditions for a long simulation

For many functions Loff (N/V,Φ), pr(N/V,Φ) and ps(N/V,Φ) the sim-
ulated population becomes extinct very fast or its density runs to infinity.
The conditions of long simulation are only well known for populations in
which these functions are not dependent on individual’s phenotype or the
phenotype does not change over time ( [37], [41]). Then the dynamics of
the population size is the same as realizations of simple stochastic process of
a population dynamics in discrete time generalized by the random offspring
sizes.

If Φ is constant and:

1. Loff (0,Φ)pr(0,Φ) > ps(0,Φ),

2. Loff (N/V,Φ)pr(N/V,Φ) < ps(N/V,Φ) for all great N ,

then the population stabilizes its own size as numbers fluctuating around the
NE (equilibrium number), such that:

Loff (NE/V,Φ)pr(NE/V,Φ) = ps(NE/V,Φ). (1)

Ecologists say the functions Loff (N/V,Φ), pr(N/V,Φ) and ps(N/V,Φ) cre-
ate a significant regulatory mechanism in the population. Populations with
significant regulatory mechanism can subsist for very long time ([37]).

If functions Loff (N/V,Φ), pr(N/V,Φ) and ps(N/V,Φ) significantly de-
pend on Φ, the equilibrium number NE does not exist. But the low prob-
ability of mutation does not cause major changes in the average phenotype
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Figure 1: The algorithm of the programme simulating a virtual population consisting
individuals having genotypes and phenotypes. The methods of programming the heredity,
mutations of the genes and selections among the phenotypes are shown.
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size from generation to generation, so a number NE being a solution of the
equation:

Loff (NE/V, Φ̄)pr(NE/V, Φ̄) = ps(NE/V, Φ̄). (2)

well characterizes population size (where Φ̄ is mean value of the sizes of the
phenotypes in given generation). The population fastly stabilizes its size as
fluctuations around such NE.

2.3. Non-linear functions

Probabilities have values between 0 and 1. This obvious fact is often
omitted when probabilities are a part of some model’s parameter that can
take any value. In the virtual population the functions: pr(N/V,Φ) and
ps(N/V,Φ) are only upper limits for numbers drawn from the interval [0, 1].
Even though pr(N/V,Φ) = arN/V + brΦ + cr this function is not linear. If
arN/V +brΦ+cr < 0 then the reproduction is impossible, so pr(N/V,Φ) = 0.
If arN/V +brΦ+cr > 1 then the reproduction always runs, so pr(N/V,Φ) = 1.
The probability of death also has these features.

Distribution of offspring size usually has its support consisting positive
or non-negative integers. Its expected value is positive. The draw an integer
from a non-existed distribution (of negative expected value) cannot takes
place for many algorithms. In my program if Loff (N/V,Φ) = aLN/V +
bLΦ + cL and aLN/V + bLΦ + cL ≤ 0, a number of descendants is equal
1. So, the function Loff (N/V,Φ) is not linear even though Loff (N/V,Φ) =
aLN/V + bLΦ + cL.

If population density and phenotype size changes in time, the linear
functions will take values greater than 1 or less than 0 after some gener-
ations. This usually results in a rapid extinction of the population or its
growth to infinity. To avoid these situations nonlinear formulas for functions
Loff (N/V,Φ), pr(N/V,Φ) and ps(N/V,Φ) should be used. The probabilities
should include on interval [0, 1] and expected value of the offspring size should
be positive. The nonlinearity of dependence of the probabilities of reproduc-
tion and death (also offspring size) on various environmental factors applies
to all object-oriented models of populations and to all real populations.

2.4. Adaptive and competitive natural selection

Only special phenotypes influence all: offspring size, probability of repro-
duction and probability of death. This article regards the phenotypes that
affect only one of these features. Moreover, the assumption was done that
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all functions Loff (N/V,Φ), pr(N/V,Φ) and ps(N/V,Φ) are monotone. The
functions Loff (N/V,Φ), pr(N/V,Φ) increase if Φ increases and they decrease
if N/V increases. The function ps(N/V,Φ) decreases if Φ increases and it
increases if N/V increase. This means a directional natural selection and
typical density-dependent regulatory mechanisms.

All dependences:

Loff (NE/V, Φ̄)pr(NE/V ) = ps(NE/V ), (3)

Loff (NE/V )pr(NE/V, Φ̄) = ps(NE/V ), (4)

Loff (NE/V )pr(NE/V ) = ps(NE/V, Φ̄), (5)

show that increase of the phenotype size causes increase of NE/V . Such
natural selection is typical for populations that adapt to an environment. It
is named adaptive natural selection ([34], [29]).

Many evolutionists imagine natural selection in another way. Between
individuals of any generations occurs the struggle for existence. The individ-
uals have different probabilities of death or reproduction, however the total
probability does not change in time (Fig.2).
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Figure 2: Dependence between phenotype size and probability of survival in successive
generations of the populations with adaptive and competitive natural selection.

This natural selection will be called competitive. It can be programmed
using functions:
Loff (N/V,Φ− Φ̄) for expected value of offspring size,
pr(N/V,Φ− Φ̄) for probability of reproduction,
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ps(N/V,Φ− Φ̄) for probability of death.
where Φ̄ is mean of the size of the individuals’ phenotypes in given generation.
Such formulas do not force population growth during simulation.

2.5. Survive and reproductive natural selection

In reality a given phenotype very rarely influences both: the probability
of death and the probability of reproduction. So, two kinds of natural selec-
tion will be considered: for br = 0 and bs < 0 (phenotype size influencing
mortality), and for br > 0 and bs = 0 (phenotype size influencing reproduc-
tion). The population size fluctuates around the NE but in populations with
adaptive natural selection this number NE increases during evolution (Fig.3).
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Figure 3: Regulatory mechanisms of modelled populations with adaptive natural selection.
Population density fluctuates over the intersection point of the curves: N → pr(N/V,Φ)
(dashed line) and N → ps(N/V,Φ) (solid line). If the phenotype size Φ increases, then
this intersection NE increases too.

The decrease of probability of death if phenotype size is increased are
named survive natural selection in life science ([1]). So, the increase of the
probability of reproduction due to increase of the phenotype size will be
named reproductive natural selection.

2.6. Used functions and parameters

In order to run the simulation all functions Loff (N/V,Φ), pr(N/V,Φ) and
ps(N/V,Φ) must be changed to adequate formulas. All non-linear functions of
values in interval [0, 1] can be approximated by functions 1/(1+exp(−w(x)))
where w(x) is some polynomial. All functions of positive values only can
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be approximated by functions log(1 + exp(w(x))). Such transformations of
polynomials keep their type of monotony on the same intervals and they have
the same places of local extremes.

In this article the constant value of 1 of offspring size was assumed because
evolution of an offspring size is important issue in biology worthy of a separate
article. For modelling adaptive natural selections the following formulas were
to be used:

pr(N/V,Φ) =
1

1 + exp(−(arN/V + brΦ + cr))
, (6)

ps(N/V,Φ) =
1

1 + exp(−(asN/V + bsΦ + cs))
. (7)

In models with competitive natural selections following formulas were used:

pr(N/V,Φ) =
1

1 + exp(−(arN/V + br(Φ− Φ̄) + cr))
, (8)

ps(N/V,Φ) =
1

1 + exp(−(asN/V + bs(Φ− Φ̄) + cs))
. (9)

The values of parameters ar, br, cr, as, bs and cs were selected in such a
way that the equilibrium number NE(Φ) is positive, where:

NE = −brΦ̄− bsΦ̄ + cr − cs
ar − as

V (10)

for adaptive natural selection and

NE = − cr − cs
ar − as

V (11)

for competitive natural selection.
Parameters σg and σe estimate the size of the impact of genotype and non-

genotype factors on the phenotype size. The values of these parameters de-
pend on the unit of phenotype size measurement. The ratio σg/(σg+σe)100%
determines the degree to which the variability of genotypes explains the vari-
ability of phenotype sizes. The relationship between the rate of evolution
and this ratio is quite unexpected and deserves a separate article. In this
paper it was assumed that σg = 1 and σe = 1.

Probability of mutation of any part of DNA is very small. It depends
on the type of mutation (duplication or reduction of a large part of DNA,
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transition, transversion, insertion or deletion) and probably - on the location
of this part in a nucleus. But first of all it depends on the length of it. The
rates of human genomic mutation have been estimated at pm,nuc = 2.5 ∗ 10−8

per nucleotide per generation [25]. Nowadays, using data available from the
whole genome sequencing, the human genome mutation rate is estimated to
be pm,nuc = 1.1 ∗ 10−8 per nucleotide per generation [30]. Average length of
the gene in eukaryotes is from L = 5 ∗ 103 to L = 50 ∗ 103 nucleotydes [47].
So, probability of mutation of the gene, equal pm = pn,nuc ∗L, is a number of
order 10−4. In this paper the probability of mutation is constant and equals
pm = 0.0001.

2.7. Analysis of results of the simulations

Object-oriented computer models allow calculating and analysing many
numerical variables. The program simulating population with heredity and
natural selection (Appendixes 1 and 2) writes to a text file for each gener-
ation: population size, number of mutation that have happened from ini-
tial generation, mean phenotype size (with standard deviation) and minimal
number of mutations on genes in each generation. In the other text file the
genetic structure in each generation can be recorded. The data in text files
can be analysed in the same way as data collected in population ecology
research.

To illustrate the relationship between molecular and morphological evo-
lution, the frequencies of all alleles in successive generations were recorded.
Such detail analyse was done for 10 thousand generations only and for one
exemplary simulation.

The morphological evolution was illustrated as the changes of mean phe-
notype size for successive generations. The molecular evolution was illus-
trated as minimal number of mutations accumulated on genes at each gen-
eration. The minimal number of the mutations on a gene corresponds to
a number of accepted alleles by a population during evolution. These alle-
les arose as a mutation happened on a gene of one distant ancestor of all
individuals and replaced previous such alleles.

Each simulation was done for 1000000 generations. For each set of param-
eters the simulations was repeated 1000 times. The results was elaborated
using primary statistical methods (calculation the means and standard de-
viations at each generation for all repetitions) without testing due to an
arbitrarily large number of repetitions of the simulations.
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3. Results

3.1. Molecular and morphological evolution

An initial population consisted of 500 individuals living on territory of
an area V = 5 units. Genotypes of all initial individuals were equal AA
where A = (0, 0, 0). The parameters of probability of reproduction and the
probability of death had following values: ar = −0.005, br = 0, cr = 0.5, as =
0.005, bs = −0.05, cs = −0.5. The probability of mutation of one gene was
equal to pmut = 0.0001. Both parameters σg and σe were equal 1. One
simulation was done. It was carried out for 10 000 generations.

During the simulation the 528 mutations happened, but most of them
(137) appeared on one individual, which died at the next generation with-
out descendants. Very often some allele appeared in a few individuals and
disappeared. Number of alleles fluctuated from 1 to 4 and for few time pe-
riods population was monomorphic. Only two new alleles dominated the
whole population and were accepted (Fig.4). In the last generation the genes
accumulated two mutations. It was only 0.4% of all mutations.
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Figure 4: The molecular evolution was illustrated as changes in time the genetic structure
of each generation (10000 bars for genetic structures of successive generations where dif-
ferent alleles was shown by different shades of grey colour). Morphological evolution was
illustrated as mean phenotype size of individuals of each generation by black curve.

Both accepted alleles caused the increase of the phenotype size of in-
dividuals, so they decreased the probability of their death. As result the
chart of changes of the phenotype size looked like a stair function, and par-
ticular steps were associated with the domination of a specific allele on the
genes of individuals. Only in periods of big genetic diversity, their shape was
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disturbed. Such images of the molecular and morphological evolution were
similar when the simulations were repeated.

3.2. Population size and rate of evolution

Systematic analysis of the impact of population size on the rate of evo-
lution was conducted for 4 variants of natural selection: adaptive and re-
productive, adaptive and survive, competitive and reproductive, competitive
and survive. The density of all initial populations were equal 100 individuals
per area unit. All their individuals had genotype AA where A = (0, 0, 0).
The initial probability of reproduction and the probability of death had the
same scale of values (around 0.5).

At the beginning all populations were the same. They were different
in size only due to the different sizes of their area: from V = 1 to V =
10. In each case the simulations were conducted for 1, 000, 000 generations
and repeated 1000 times. Then the mean characteristics of morphological
evolution and molecular evolution were calculated.

The morphological evolution was faster in great populations than in small
ones for all variants of natural selections (Fig. 5). But dependence V →
Φ̄(t+ 1)− Φ̄(t) where Φ̄(t) is the mean phenotype size at t-th generation was
nonlinear, convex upward function.

For the initial 50 thousand generations the fastest evolution appeared in
populations with survive and adaptive natural selection. But after this time
it was suddenly broken and in the last generation these populations had the
smalest mean phenotype size. The inhibition of the evolution was less severe
in the population with adaptive and reproductive natural selection. In the
population of competitive natural selection the rate of evolution was constant
(Fig. 5).

The molecular evolution was faster in great populations than in small
ones for all variants of natural selections (Fig. 6). The dependencies be-
tween evolution rate and kinds of the natural selections were the same as for
morphological evolution.

The population density increased during evolution for all variants of pop-
ulations of adaptive natural selection. For instance, for the variant of bigger
initial population (V = 10) it grew from 100N/V to over 1300N/V (re-
productive natural selection) and from 100N/V to over 1100N/V (survive
natural selection). But this increase was non-linear: fast at the beginning
and slow at the end. Only during initial 50 thousand generations this increase
had almost an exponential course.
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Figure 5: Morphological evolution (changes of the mean phenotype size of individuals
in time) for populations living on different area V. On little charts the changes in ini-
tial 50 thousand generations are shown. The results for one thousand repetitions of the
simulations of the gen-phen model.

4. Discussion

4.1. Gen-phen model and mathematical models of evolution

The object-oriented modeling is not only using an object-oriented ap-
proach to software development. It is the reproduction in the program of
these assumptions of the model, which are hidden behind a usually short
description of the real phenomena that are modelled ([15], [18], [8]). In my
model individuals are programmed as simple object-oriented structures hav-
ing identify number, pair of genes and phenotype. Additionally the genes are
programmed as object-oriented structures, although it is not necessary due
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Figure 6: Molecular evolution (changes in minimal number of mutations accumulated on
genes in time) for populations living on different area V. On little charts the changes in
initial 50 thousand generations are shown. The result of 1000 simulations of the gen-phen
model.

to the simple form of the gene (three numbers). But it simplifies to make
individuals with more complex genes.

Each individual is born, gives birth to new individuals and dies. These are
random events of the probability depending on the individual’s phenotype
size and state of a population at given time. If Loff (N/V,Φ) = 1 and the
functions pr(N/V,Φ) and ps(N/V,Φ) are dependent on population size only
(they are: pr(N/V ) and ps(N/V ) ), the dynamics of population size formed
by the gen-phen model are exactly the same as in Markov chains (Nt)t∈N
named as discrete time stochastic model of the population ([41]).

Heredity in gen-phen model is modelled according to Mendel’s rules, so
changes in genotypes of subsequent generations correspond to the assump-
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tions of the Wright-Fisher ([46]) and Moran ([24]) models. If in gen-phen
model a probability of mutation pmut = 0 and initial population includes a
few alleles of the genes then the dynamics of the frequency of each allele is
compatible with the genetic drift model. Write-Fisher model with selection
arises when ps = 1 and Loff (N/V,Φ)pr(N/V,Φ) = 1. Moran model with se-
lection arises for ps(N/V,Φ) < 1. So, the gen-phen model is a generalization
of Write-Fisher and Moran models by the use of the new assumptions: the
impact of the phenotype size on individuals’ fitness, a dependence between
genotype and phenotype and possibility of the mutations of the gene on the
individual level. Probably this is the simplest object-oriented model of the
populations with heredity, mutations, phenotypes and natural selection.

Nowadays classical population models are described using modern lan-
guage of mathematics ([13]). The gen-phen model should also be developed
in a similar way: as multivariable numerical Markov chain because only for
numeric Markov chains the expected values and other statistical character-
istics can be calculated. But after specify the values of parameters such
analysis should give the same results as they did in this article.

4.2. Population size and the rate of evolution

The rate of evolution has been interesting for scientists for many years.
For some of them this term means an increased number of species living in
a given territory [38], [26]. But in palaeontology it means an increasing or
decreasing rate of a selected phenotype size inside the one species [35], [11],
[38], [45], [31]. Geneticists define a rate of evolution as a number of muta-
tions (mainly substitutions) in genes in comparison to a common ancestor
of related species ([9]). For non-neutral genes (phenes) genetic and palaeon-
tological definitions are mutually dependent. It has been shown using my
model.

Haldane [11] has proposed a measure of the rate of evolution for loga-
rithmically transformed data. This rate would be measured in units called
“darwins”. If the phenotype size increases, then its variation increases and
according to Haldane the possibility to receive a larger phenotype by muta-
tion also increases. In the gen-phen model there is a possibility to make an
assumption that the variability of the phenotype size increases if the mean
value of the phenotype size increases (σg or/and σe can be functions of Φ).
But then the growth of the phenotype size would be inhibited very quickly.
Such inhibition of the evolution has been shown without this assumption.
Only at the beginning the rate of evolution increases in accordance with
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Haldane’s hypothesis, but for another reason (the increase of the population
size).

Because the genetic drift in small populations is faster than in the big
ones [16], [39], [40] many scientists have come to a conclusion that evolution
in small populations is faster than in the big ones ([10]), though there are
no experimental or palaeontological publications confirming this view to be
found. For evolution the vanishing rate of certain alleles does not matter but
what is important is the accumulation rate of new alleles on the genes. If the
drift rate is different in two populations of the same size, then evolution will
be faster in populations with a faster genetic drift. But in a big population the
mutations happen more frequently than in small ones and this fact accelerates
evolution more than slower genetic drift slows down it.

There are very few mathematical papers analysing the impact of popu-
lation size on the rate of evolution. I found only one such paper ([36]) from
which it also follows that evolution is faster in larger populations and this
relationship is not linear. Some experimental research shows, that evolution
in bigger populations is faster ([19]). In fields of science in which the term
evolution has been extended to the appearance and consolidation of non-
genetics-related phenomena (evolution of human behaviour or culture), the
phenomenon of an increase in the rate of evolution along with the increase in
population size is better researched ([4]). The described relationships in this
work confirm this thesis, although they are not proof that for all parameters
and types of natural selection, the evolution of a larger population is faster
than the smaller one.

In this article only for a few values of parameters has it been shown
that evolution is faster in a larger population than in a smaller one. But
simulations of the gen-phen model had been done for many different values
of the parameters and this regularity was repeated. Only for bs = 0 and
br = 0, e.g. for neutral genes accumulating random mutations, the rate of
evolution did not depend on the size of the population.

The increase in the rate of evolution with the increase in the population
size is a fact of fundamental importance for the theory of evolution. It
can explain why local populations living on islands lose in competition with
related species originating from continents although the insular populations
have adapted better to the local environment.
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4.3. Types of natural selections and a rate of evolution

The sample simulations were done for exactly symmetrical functions for
probability of reproduction 1/(1 + exp(−(−0.005N/V + 0.5Φ + 0.5))) and
probability of death 1/(1 + exp(−(0.005N/V − 0.5Φ− 0.5))). The probabil-
ity of survival 1− ps(N/V,Φ) is exactly the same as probability of birth new
individual pr(N/V,Φ). It would seem that the rate of evolution caused by
reproductive and survive selection with used parameters will be the same.
Meanwhile, the phenotype reducing the probability of death caused twice
faster evolution than the phenotype increasing the probability of reproduc-
tion.

Responsible for this is the fact that it’s omitted in some of the articles
on the Moran model with natural selection, namely that the directed genetic
drift caused by decrease in mortality of individuals with a given genotype is
much faster than the genetic drift caused by increase of the reproduction of
individuals with a given genotype (Fig. 7).
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Figure 7: Ten realizations of the directional genetic drift formed by gen-phen model with
probability of mutation pmut = 0 and initial population consisted N0 = 100 individuals
with genes of alleles A and B such that Φ(AA) = 5, Φ(AB) = 2.5 and Φ(BB) = 0. The
natural selection caused by pr = 1/(1 + exp(−(−0.005N/V + 0.05Φ + 0.5))) (left chart) or
ps = 1/(1 + exp(−(0.005N/V − 0.05Φ− 0.5))) (right chart). The black, thick curve shows
the predicted course of changes in the allele A fraction calculated using the formulas (12)
and (13).

Realizations of the Markov chains fluctuate over the conditional expected
values forming recursive sequences. For the first population the expected
numbers of individuals at time t+1 on condition that at time t it was equal
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NAA,t, NAB,t and NBB,t) are equal:
NAA,t+1 = NAA,t(1− ps) + pr,AANAA,txA,t + 0.5pr,ABNAB,txA,t
NAB,t+1 = NAB,t(1− ps) + pr,AANAA,txB,t + 0.5pr,ABNAB,t + pr,BBNBB,txA,t
NBB,t+1 = NBB,t(1− ps) + 0.5pr,ABNAB,t + pr,BBNBB,txB,t
xA,t+1 =

NAA,t+1+0.5NAB,t+1

NAA,t+NAB,t+NBB,t

xB,t+1 = 1− xA,t+1

(12)
where ps = ps(Nt/V ) is a probability of death of individuals, pr,AA = pr(Nt/V,Φ(AA)),
pr,AB = pr(Nt/V,Φ(AB)), pr,BB = pr(Nt/V,Φ(BB)) are probabilities of re-
production of individuals with genotypes AA, AB and BB and with pheno-
types Φ(AA), Φ(AB), Φ(BB) respectively.

In populations with the impact of the phenotype size on probability of
death the conditional expected numbers of individuals at time t+1 are equal:

NAA,t+1 = NAA,t(1− ps,AA) + prNtx
2
A,t

NAB,t+1 = NAB,t(1− ps,AB) + 2prNtxA,txB,t
NBB,t+1 = NBB,t(1− ps,BB) + prNtx

2
B,t

Nt+1 = NAA,t+1 +NAB,t+1 +NBB,t+1

xA,t+1 =
NAA,t+1+0.5NAB,t+1

Nt+1

xB,t+1 = 1− xA,t+1

(13)

where ps,AA = ps(Nt/V,Φ(AA)), ps,AB = ps(Nt/V,Φ(AB)), ps,BB = pr(Nt/V,Φ(BB))
are probabilities of death of individuals with genotypes AA, AB and BB
and with phenotypes Φ(AA), Φ(AB), Φ(BB) respectively, pr = pr(N/V ) is
a probability of reproduction.

The impact of phenotype size on the probability of reproduction causes
that among the descendants there are many individuals with unfavourable
genes, because the choice of father for a descendant’s gene has the proba-
bility independent of his phenotype size. In virtual populations, just like in
real ones, the events: ”to become a mother” and ”to become a father” are
independent of each other and they are usually dependent on other pheno-
types. Selection by phenotype size influencing the probability of death is
more effective.

The dependence between the rate of evolution and types of natural se-
lection (adaptive or competitive) is an effect of nonlinear formulas of the
probability of death and probability of reproduction. In models with adap-
tive natural selection if the increase of probability of reproduction or death
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are almost linear, then the population size linearly increases. But nonlin-
ear functions for probabilities bend when they reach values close to 1 or 0.
An intensity of natural selection (that can be calculated as ∂p(N/V.Φ)

∂Φ
(Φ̄)) de-

creases to 0, and this is a factor which affects evolution rate the most. As
a result the evolution of the population with the adaptive natural selection
is faster at the beginning and slower after some generation then evolution
of the population with competitive natural selection. Biologists explain this
fact as an adaptation of the population to the environment and an increase
in the importance of other factors regulating the population than the size of
the analysed phenotype.

Competitive natural selection does not have such restrictions. Theoret-
ically, if the phenotype increases the chances of survival or reproduction in
comparison to individuals having this phenotype of smaller-size, it can grow
to infinity. In practice, the energetic costs of having enlarged parts of the
body part may affect the condition of the individuals. But described effect
can explain why phenotypes related with intraspecific competition are usu-
ally bigger and better visible than phenotypes related with adaptation to the
environmental.

5. Conclussions

1. Regardless of the type of directional natural selection, the increase in
the size of the population has always caused the increase in the rate of
the evolution.

2. An adaptive natural selection caused a non-linear changes in the rate
of the evolution. At the beginning of the simulation the evolution were
increasing according to the Haldane’s hypothesis. After long time this
increase was inhibited.

3. A competitive natural selection caused a linear evolution.
4. A survive natural selection caused faster rate of the evolution than a

reproductive natural selection.
5. If natural selection did not directly or indirectly affected a gene (neutral

gene) then the population size didn’t influence the rate of accumulation
of mutations on the gene. But this observation done for object-oriented
models should be proved with mathematical precision.
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