\(\frac{dC_{D}}{dt}=-k_{1f}C_{SM1}C_{D}+\frac{k_{1f}}{K_{\text{eq}}}C_{SM1D}+k_{2}C_{SM2}C_{SM1D}-k_{5}C_{D}C_{H_{2}O}\) |
(3.2) |
\(\frac{dC_{SM1D}}{dt}=k_{1f}C_{SM1}C_{D}-\frac{k_{1f}}{K_{\text{eq}}}C_{SM1D}-k_{2}C_{SM2}C_{SM1D}\) |
(3.3) |
\(\frac{dC_{SM2}}{dt}={-k}_{2}C_{SM2}C_{SM1D}-k_{3}C_{SM2}C_{P}\) |
(3.4) |
\(\frac{dC_{P}}{dt}=k_{2}C_{SM2}C_{SM1D}-k_{3}C_{SM2}C_{P}-k_{6}C_{P}\) |
(3.5) |
\(\frac{dC_{H_{2}O}}{dt}=-k_{4}C_{SM1}C_{H_{2}O}-k_{5}C_{D}C_{H_{2}O}\) |
(3.6) |
\(\frac{dC_{I1}}{dt}=k_{3}C_{SM2}C_{P}\) |
(3.7) |
\(\frac{dC_{I2}}{dt}=k_{4}C_{SM1}C_{H_{2}O}\) |
(3.8) |
\(\frac{dC_{I3}}{dt}=k_{5}C_{D}C_{H_{2}O}\) |
(3.9) |
\(\frac{dC_{I4}}{dt}=k_{6}C_{P}\) |
(3.10) |
\(y_{SM1}=C_{SM1}+\varepsilon_{SM1}\) |
(3.11) |
\(y_{D}=C_{D}+\varepsilon_{D}\) |
(3.12) |
\(y_{SM2}=C_{SM2}+\varepsilon_{SM2}\) |
(3.13) |
\(y_{P}=C_{P}+\varepsilon_{P}\) |
(3.14) |