References

1. Okino MS, Mavrovouniotis ML. Simplification of mathematical models of chemical reaction systems. Chem Rev . 1998. doi:10.1021/cr950223l
2. Dobre TG, Sanchez Marcano JG. Chemical Engineering: Modelling, Simulation and Similitude .; 2007. doi:10.1002/9783527611096
3. Birtwistle MR, Mager DE, Gallo JM. Mechanistic Vs. empirical network models of drug action. CPT Pharmacometrics Syst Pharmacol . 2013. doi:10.1038/psp.2013.51
4. Gernaey K V., Lantz AE, Tufvesson P, Woodley JM, Sin G. Application of mechanistic models to fermentation and biocatalysis for next-generation processes. Trends Biotechnol . 2010. doi:10.1016/j.tibtech.2010.03.006
5. Boukouvala F, Muzzio FJ, Ierapetritou MG. Dynamic data-driven modeling of pharmaceutical processes. Ind Eng Chem Res . 2011. doi:10.1021/ie102305a
6. Domagalski NR, Mack BC, Tabora JE. Analysis of Design of Experiments with Dynamic Responses. Org Process Res Dev . 2015. doi:10.1021/acs.oprd.5b00143
7. Feng AL, Boraey MA, Gwin MA, Finlay PR, Kuehl PJ, Vehring R. Mechanistic models facilitate efficient development of leucine containing microparticles for pulmonary drug delivery. Int J Pharm . 2011. doi:10.1016/j.ijpharm.2011.02.049
8. Kourti T, Lepore J, Liesum L, et al. Scientific and Regulatory Considerations for Implementing Mathematical Models in the Quality by Design (QbD) Framework. Pharm Eng . 2015.
9. Karlsson S, Rasmuson A, Van WaChem B, Björn IN. CFD modeling of the wurster bed coater. AIChE J . 2009. doi:10.1002/aic.11847
10. Maria G. A review of algorithms and trends in kinetic model identification for chemical and biochemical systems. Chem Biochem Eng Q . 2004;18(3):195-222.
11. Atkinson AC. Developments in the Design of Experiments, Correspondent Paper. Int Stat Rev / Rev Int Stat . 1982;50(2):161-177. doi:10.2307/1402599
12. Liu S, Neudecker H. A V-optimal design for Scheffé’s polynomial model. Stat Probab Lett . 1995;23(3):253-258. doi:10.1016/0167-7152(94)00122-O
13. Chaloner K, Verdinelli I. Bayesian experimental design: A review.Stat Sci . 1995;10(3):273-304. doi:10.1214/ss/1177009939
14. Galvanin F, Barolo M, Bezzo F. Online model-based redesign of experiments for parameter estimation in dynamic systems. Ind Eng Chem Res . 2009;48(9):4415-4427. doi:10.1021/ie8018356
15. John RCS, Draper NR. D-Optimality for regression designs: A review.Technometrics . 1975;17(1):15-23. doi:10.1080/00401706.1975.10489266
16. Krafft O, Schaefer M. D-optimal designs for a multivariate regression model. J Multivar Anal . 1992;42(1):130-140. doi:10.1016/0047-259X(92)90083-R
17. Box GEP, Lucas HL. Design of Experiments in Non-Linear Situations . Vol 46. [Oxford University Press, Biometrika Trust]; 1959.
18. Wong WK. Comparing robust properties of A, D, E and G-optimal designs. Comput Stat Data Anal . 1994. doi:10.1016/0167-9473(94)90161-9
19. Stigler SM. Optimal experimental design for polynomial regression.J Am Stat Assoc . 1971;66(334):311-318.
20. Shahmohammadi A. Model-based optimal design of experiments with noninvertible fisher information matrix. 2019.
21. Shahmohammadi A, McAuley KB. Sequential Model-Based A- and V-Optimal Design of Experiments for Building Fundamental Models of Pharmaceutical Production Processes. Comput Chem Eng . 2019.
22. Franceschini G, Macchietto S. Model-based design of experiments for parameter precision: State of the art. Chem Eng Sci . 2008. doi:10.1016/j.ces.2007.11.034
23. López DC, Barz T, Peñuela M, Villegas A, Ochoa S, Wozny G. Model-based identifiable parameter determination applied to a simultaneous saccharification and fermentation process model for bio-ethanol production. Biotechnol Prog . 2013;29(4):1064-1082. doi:10.1002/btpr.1753
24. Walter E, Pronzato L. Qualitative and quantitative experiment design for phenomenological models-A survey. Automatica . 1990;26(2):195-213. doi:10.1016/0005-1098(90)90116-Y
25. Pinto JC, Lobão MW, Monteiro JL. Sequential experimental design for parameter estimation: a different approach. Chem Eng Sci . 1990;45(4):883-892. doi:http://dx.doi.org/10.1016/0009-2509(90)85010-B
26. Ford I, Silvey SD. A sequentially constructed design for estimating a nonlinear parametric function. Biometrika . 1980;67(2):381-388. doi:10.1093/biomet/67.2.381
27. Issanchou S, Cognet P, Cabassud M. Sequential experimental design strategy for rapid kinetic modeling of chemical synthesis. AIChE J . 2005;51(6):1773-1781. doi:10.1002/aic.10439
28. Bauer I, Bock HG, Körkel S, Schlöder JP. Numerical methods for optimum experimental design in DAE systems. J Comput Appl Math . 2000;120(1):1-25. doi:http://dx.doi.org/10.1016/S0377-0427(00)00300-9
29. López C. DC, Barz T, Körkel S, Wozny G. Nonlinear ill-posed problem analysis in model-based parameter estimation and experimental design.Comput Chem Eng . 2015;77:24-42. doi:10.1016/j.compchemeng.2015.03.002
30. Littlejohns J V, McAuley KB, Daugulis AJ. Model for a solid–liquid stirred tank two-phase partitioning bioscrubber for the treatment of BTEX. J Hazard Mater . 2010;175(1):872-882. doi:http://dx.doi.org/10.1016/j.jhazmat.2009.10.091
31. Ben-Zvi A, McAuley K, McLellan J. Identifiability study of a liquid-liquid phase-transfer catalyzed reaction system. AIChE J . 2004;50(10):2493-2501. doi:10.1002/aic.10202
32. Zhao YR, Arriola DJ, Puskas JE, McAuley KB. Applying multidimensional method of moments for modeling and estimating parameters for arborescent polyisobutylene production in batch reactor.Macromol Theory Simulations . 2017;26(1). doi:10.1002/mats.201600004
33. Issanchou S, Cognet P, Cabassud M. Precise parameter estimation for chemical batch reactions in heterogeneous medium. Chem Eng Sci . 2003;58(9):1805-1813. doi:10.1016/S0009-2509(03)00004-6
34. Cho KH, Shin SY, Kolch W, Wolkenhauer O. Experimental Design in Systems Biology, Based on Parameter Sensitivity Analysis Using a Monte Carlo Method: A Case Study for the TNF -Mediated NF-  B Signal Transduction Pathway. Simulation . 2003. doi:10.1177/0037549703040943
35. Thompson DE, McAuley KB, McLellan PJ. Design of optimal sequential experiments to improve model predictions from a polyethylene molecular weight distribution model. Macromol React Eng . 2010;4(1):73-85. doi:10.1002/mren.200900033
36. Greville TNE. The pseudoinverse of a rectangular or singular matrix and its application to the solution of systems of linear equations.SIAM Rev . 1959;1(1):38-43. doi:10.1137/1001003
37. Tibshirani R. Regression shrinkage and selection via the lasso: a retrospective. J R Stat Soc Ser B (Statistical Methodol . 2011;73(3):273-282. doi:10.1111/j.1467-9868.2011.00771.x
38. Johansen TA. On Tikhonov regularization, bias and variance in nonlinear system identification. Automatica . 1997;33(3):441-446. doi:http://dx.doi.org/10.1016/S0005-1098(96)00168-9
39. Tikhonov AN, Goncharsky A V., Stepanov V V., Yagola AG. Numerical methods for the solution of ill-posed problems. Math Comput . 1978;32(144):1320. doi:10.2307/2006360
40. Hoerl AE, Kennard RW. Ridge Regression: Biased estimation for nonorthogonal problems. Technometrics . 1970;12(1):55. doi:10.2307/1267351
41. Durán MA, White BS. Bayesian estimation applied to effective heat transfer coefficients in a packed bed. Chem Eng Sci . 1995;50(3):495-510. doi:http://dx.doi.org/10.1016/0009-2509(94)00260-X
42. Ruggoo A, Vandebroek M. Bayesian sequential script dsign optimal model-robust designs. Comput Stat Data Anal . 2004;47(4):655-673. doi:10.1016/j.csda.2003.09.014
43. Kravaris C, Hahn J, Chu Y. Advances and selected recent developments in state and parameter estimation. Comput Chem Eng . 2013;51:111-123. doi:10.1016/j.compchemeng.2012.06.001
44. Barz T, López Cárdenas DC, Arellano-Garcia H, Wozny G. Experimental evaluation of an approach to online redesign of experiments for parameter determination. AIChE J . 2013. doi:10.1002/aic.13957
45. Yao KZ, Shaw BM, Kou B, McAuley KB, Bacon DW. Modeling Ethylene/Butene copolymerization with multi‐site catalysts: parameter estimability and experimental design. Polym React Eng . 2003;11(3):563-588. doi:10.1081/PRE-120024426
46. Shahmohammadi A, McAuley KB. Sequential Model-Based A-Optimal Design of Experiments When the Fisher Information Matrix Is Noninvertible.Ind Eng Chem Res . 2019;58(3):1244-1261. doi:10.1021/acs.iecr.8b03047
47. Dubé MA, Penlidis A, Reilly PM. A systematic approach to the study of multicomponent polymerization kinetics: The butyl acrylate/methyl methacrylate/vinyl acetate example. IV. Optimal Bayesian design of emulsion terpolymerization experiments in a pilot plant reactor. J Polym Sci Part A Polym Chem . 1996. doi:10.1002/(SICI)1099-0518(19960415)34:5<811::AID-POLA11>3.3.CO;2-3
48. Hsu SH, Stamatis SD, Caruthers JM, et al. Bayesian framework for building kinetic models of catalytic systems. Ind Eng Chem Res . 2009. doi:10.1021/ie801651y
49. Han C, Chaloner K. Bayesian Experimental Design for Nonlinear Mixed-Effects Models with Application to HIV Dynamics.Biometrics . 2004. doi:10.1111/j.0006-341X.2004.00148.x
50. Van Den Berg J, Curtis A, Trampert J. Optimal nonlinear Bayesian experimental design: An application to amplitude versus offset experiments. Geophys J Int . 2003. doi:10.1046/j.1365-246X.2003.02048.x
51. Jaakkola TS, Jordan MI. Bayesian parameter estimation via variational methods. Stat Comput . 2000. doi:10.1023/A:1008932416310
52. Lehninger. Principles of Biochemistry, 6th Ed. ; 2009. doi:10.1017/CBO9781107415324.004
53. Petersen B, Gernaey K, Vanrolleghem PA. Practical identifiability of model parameters by combined respirometric-titrimetric measurements. In:Water Science and Technology . ; 2001.
54. Thompson DE, McAuley KB, McLellan PJ. Parameter estimation in a simplified MWD model for HDPE produced by a ziegler-natta catalyst.Macromol React Eng . 2009;3(4):160-177. doi:10.1002/mren.200800052
55. Lin W, Biegler LT, Jacobson AM. Modeling and optimization of a seeded suspension polymerization process. Chem Eng Sci . 2010;65(15):4350-4362. doi:10.1016/j.ces.2010.03.052
56. Wu S, McLean K a. P, Harris TJ, McAuley KB. Selection of optimal parameter set using estimability analysis and MSE-based model-selection criterion. Int J Adv Mechatron Syst . 2011;3(3):188. doi:10.1504/IJAMECHS.2011.042615
57. Mclean KAP, Mcauley KB. Mathematical modelling of chemical processes-obtaining the best model predictions and parameter estimates using identifiability and estimability procedures. Can J Chem Eng . 2012;90(2):351-366. doi:10.1002/cjce.20660
58. Wu S, Mcauley KB, Harris TJ. Selection of simplified models: II. Development of a model selection criterion based on mean squared error.Can J Chem Eng . 2011;89(2):325-336. doi:10.1002/cjce.20479
59. Chu Y, Hahn J. Parameter set selection via clustering of parameters into pairwise indistinguishable groups of parameters. Ind Eng Chem Res . 2009. doi:10.1021/ie800432s
60. LORD FM. MAXIMUM LIKELIHOOD AND BAYESIAN PARAMETER ESTIMATION IN ITEM RESPONSE THEORY. J Educ Meas . 1986. doi:10.1111/j.1745-3984.1986.tb00241.x
61. Bates DM, Watts DG. Review of Linear Regression. Nonlinear Regres Anal Its Appl . 1988:1-31. doi:10.1002/9780470316757.ch1
62. Fabian B, Bernd H. Uncertainty estimation for linearised inverse problems comparing Bayesian inference and a pseudoinverse approach for acoustic transmission measurements. tm - Tech Mess . 2017;84:217. doi:10.1515/teme-2016-0022
63. Englezos P, Kalogerakis N. Applied Parameter Estimation for Chemical Engineers . Vol 53.; 1989. doi:10.1017/CBO9781107415324.004
64. Bard Y. Nonlinear Parameter Estimation. Oper Res Q 19701977 . 1974;49(3):341.
65. Ryan KJ. Estimating Expected Information Gains for Experimental Designs with Application to the Random Fatigue-Limit Model. J Comput Graph Stat . 2003. doi:10.1198/1061860032012
66. Cox DR, Reid N. The Theory of the Design of Experiments . Chapman and Hall/CRC; 2000.
67. DuMouchel W, Jones B. A simple bayesian modification of d-optimal designs to reduce dependence on an assumed model. Technometrics . 1994. doi:10.1080/00401706.1994.10485399
68. Vivaldo-Lima E, Penlidis A, Wood PE, Hamielec AE. Determination of the relative importance of process factors on particle size distribution in suspension polymerization using a bayesian experimental design technique. J Appl Polym Sci . 2006. doi:10.1002/app.24889
69. Lindley D V. On a Measure of the Information Provided by an Experiment. Ann Math Stat . 1956;27(4):986-1005. doi:10.1214/aoms/1177728069
70. Papadimitriou C, Argyris C. Bayesian optimal experimental design for parameter estimation and response predictions in complex dynamical systems. In: Procedia Engineering . ; 2017. doi:10.1016/j.proeng.2017.09.205
71. Alexanderian A, Gloor PJ, Ghattas O. On Bayesian A- and D-optimal experimental designs in infinite dimensions. Bayesian Anal . 2016. doi:10.1214/15-BA969
72. Papadimitriou C, Beck JL, Au SK. Entropy-based optimal sensor location for structural model updating. JVC/Journal Vib Control . 2000. doi:10.1177/107754630000600508
73. Sacks J, Welch WJ, Mitchell TJ, Wynn HP. Design and Analysis of Computer Experiments. Stat Sci . 1989;4(4):409-423.