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Abstract

Space–time fractional forms of the modified Korteweg-de Vries equation, the
modified Equal Width equation and Benney-Luke equations are solved by using sim-
ple hyperbolic tangent ansatz approach. A simple compatible wave transformation
in one dimension is employed to reduce the governing equations to integer–ordered
ODEs. Then, the hyperbolic tangent ansatz is used to derive exact solutions. Some
illustrative examples are presented for some particular choices of parameters and
derivative orders.
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1 Introduction

Fractional calculus has been used in almost all fields of engineering, mathematics and
other natural sciences especially in fluid mechanics, plasma waves, plasma physics etc..
Recently, several mathematical methods have been applied to PDEs. Two-dimensional
differential transform method was implemented to obtain approximate analytical solu-
tions of fractional modified Korteweg-de Vries(fmKdV) equation [1]. Homotopy analysis
method and its modification were used to solve fmKdV equation [2]. Similarly the
homotopy-perturbation method was also capable of getting approximate analytical solu-
tion of fmKdV equation [3]. In [4], the travelling wave solutions were expressed in terms
of hyperbolic, trigonometric and rational functions. Then (G′/G)-expansion method
was applied for the analytical solutions of the fmKdV equations. Exact solutions of
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the fmKdV equation were investigated by the generalized Kudryashov method by Bu-
lut et al. [5]. In that paper, soliton solutions and hyperbolic function solutions were
constructed by using the properties of exponential functions.
The conformable fractional mKdV equation

Dα
t u(x, t) + pu2(x, t)Dβ

xu(x, t) + qD3β
x u(x, t) = 0, (1)

where u is defined for x > 0, t > 0 and the coefficients p, q ∈ R − {0}, is considered.

In this equation, the conformal derivative operators Dβ
x and Dα

t represent the β.th and
α.th order derivatives (β, α ∈ (0, 1]).
The fractional modified Equal Width (fmEW) equation in conformable fractional form
as

Dα
t u(x, t) + ru2(x, t)Dβ

xu(x, t) + sDββα
xxt u(x, t) = 0 (2)

is also regarded as the second equation to be solved exactly for x > 0, t > 0 and r, s
are parameters. The bright soliton solutions and singular solutions were obtained using
ansatz method when the derivatives are in sense of modified Riemann-Lioville derivative
[7]. Hosseini and Ayati derived exact solutions of fmEW equation via the Kudryashov
method. For this purpose, they introduced fractional complex transformation to reduce
it into the integer ordered ordinary differential equation. Korkmaz introduced some
more exact solutions in forms of various hyperbolic functions [6].
The space-time fractional Benney-Luke (fBL) equation in conformable fractional form
can be interpreted as

D2α
t u(x, t)−D2β

x u(x, t) + µD4β
x u(x, t)

−ηD2β2α
xt u(x, t) +Dα

t u(x, t)D2β
x u(x, t)

+2Dβ
xu(x, t)Dβα

xt u(x, t) = 0 (3)

is considered as the last equation to be solved exactly, where x > 0, t > 0 and µ and η
are positive parameters, linked to the inverse bond number, whose characteristics is to
capture the effects of surface tension and the gravity forces [12]. This equation describes
two-way water wave propogation in the presence of surface tension [9]. The existence
and analyticicity of lump solutions for generalized Benney-Luke equations was proved
by [8]. In [10], some travelling wave solutions of two well-known BL equations were
derived via tanh-coth method analytically. An expansion method was applied to the BL
equation for travelling wave solutions expressed by the trigonometric, hyperbolic and
rational functions in [11]. Also, Kudryashov method and the modified extended tanh
expansion were also applied for Benney-Luke equation [13].
This paper is organized as follows: In Section 2, preliminaries and essential tools are
given. In section 3, the ansatz method is mentioned briefly. Then, in Sections 4,5,6
the ansatz method is given for space–time fmKdV, fmEW and Benney–Luke equations,
respectively. In the last sections,the findings are summerized.
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2 Conformable Fractional Derivative and its Properties

Conformable fractional derivative of order αth (similarly βth) u is described as

Dα
t (u(t)) = lim

τ→0

u(t+ τt1−α)− u(t)

τ
, α ∈ (0, 1] (4)

in the positive half space for a function u : [0,∞) → R [14]. The αth conformable
derivative supports several properties given below.

Theorem 1 Let α ∈ (0, 1], and assume that u and v are α-differentiable in the positive
half plane (interval) t > 0. Then,

• Dα
t (au+ bv) = aDα

t (u) + bDα
t (v)

• Dα
t (tp) = ptp−α,∀p ∈ R

• Dα
t (λ) = 0, for all constant function u(t) = λ

• Dα
t (uv) = uDα

t (v) + vDα
t (u)

• Dα
t (uv ) =

vDα
t (u)− uDα

t (v)

v2

• Dα
t (u)(t) = t1−α dudt

for ∀a, b ∈ R [15–17].

The conformable fractional derivative supports many significant properties like Laplace
transform, Gronwall’s inequality, chain rule, various integration rules, exponential func-
tion, and Taylor series expansion [17].

Theorem 2 Let u be an α-differentiable function in conformable sense. Also suppose
that v is differentiable in classical sense and is defined in the range of u. Then,

Dα
t (u ◦ v)(t) = t1−αv′(t)u′(v(t)) (5)

3 Method of Solution

The implementation of the ansatz method can be achieved after reducing the fractional
PDE

P1(u,Dα
t u,D

β
xu,D

αα
tt u,D

ββ
xxu,D

αβ
tx u, ...) = 0 (6)

to an ODE of the form
P2(U,U ′, U ′′, . . .) = 0 (7)

by using a compatible wave transformation. In the present study, we choose the wave
transformation

u(x, t) = U(ξ), ξ = a(
xβ

β
− ν t

α

α
) (8)
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to satisfy the compatibility of the conformable derivative. The next step is determination
of the power B of the ansatz in the predicted solution

U(ξ) = A tanhB ξ, A 6= 0, B 6= 0 (9)

by substituting it into (7). Substituting the ansatz with determined the balance between
the non linear term and the derivative term with highest order, B, into (7) leads an alge-
braic system of equations to specify the relation among the parameters. The particular
goal is to determine the parameters A, a and ν in terms of the others. Once the relations
between the parameters are determined, the solution to (7) can be expressed explicitly.
The particular goal is to determine the parameters in PDEs in terms of the original
variables.

4 The solutions of the conformable fmKdV Equation

The wave transformation (8) reduces the fmKdV equation (1)

−aν d

dξ
U (ξ) + paU (ξ)2 d

dξ
U (ξ) + qa3 d3

dξ3
U (ξ) = 0 (10)

Integrating this equation once gives

−aνU (ξ) +
1

3
paU (ξ)3 + qa3 d2

dξ2
U (ξ) = K (11)

where K is the constant of integration. Substituting the predicted solution (9) into (11)
results in

−avA (tanh (ξ))B + 1/3 paA3
(

(tanh (ξ))B
)3

+
qa3A (tanh (ξ))B B2

(
1− (tanh (ξ))2

)2

(tanh (ξ))2

−2 qa3A (tanh (ξ))B B
(

1− (tanh (ξ))2
)
−
qa3A (tanh (ξ))B B

(
1− (tanh (ξ))2

)2

(tanh (ξ))2 = K

B is determined as 1 by balancing U3 and U
′′
. Thus, the predicted solution is set as(

1

3
paA3 + 2 qa3A

)
(tanh ξ)3 +

(
−avA− 2 qa3A

)
tanh (ξ) = K

Since the predicted solution is different from zero, the last equation is satisfied if only
the coefficients of powers of the hyperbolic tangent function are zero. Thus,

1

3
paA3 + 2 qa3A = 0 (12)

−avA− 2 qa3A = 0 (13)

K = 0 (14)
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Solution of this algebraic system for A, a and ν gives

A = ±
√
−6

q

p

v = −2qa2

for nonzero p, q and arbitrarily chosen a. Using these data, one can write the solution
of (7) as

u1,2(ξ) = ±
√
−6

q

p
tanh (ξ)

Returning the original variables gives the solution to the fmKdV(1) as

u1,2(x, t) = ±
√
−6

q

p
tanh

(
a

(
xβ

β
+ 2

qa2tα

α

))
(15)

for nonzero p, q. This solution is the general form of hyperbolic tangent function type
solution family. Choosing the parameters properly, many solutions in different charac-
teristics covering complex ones can be generated.
Some real solutions are illustrated for particular choices of the parameters. The effect
of the derivative order α and β to the solution is indicated in the following figures. The
solution (15) is chosen to demonstrate a particular solution by choosing the parameters
as p = 2, q = −1 and a = 1. The solutions are plotted on xtu−space for various values
of α and β. Thus, the solution is reduced to

u(x, t) =
√

6 tanh

(
xβ

β
− 2

tα

α

)
(16)

When the derivative order α and β are both chosen as 0.5, the wave profile determined
in the solution (16) moves towards to the left with a variable velocity depending on time
variable t, Fig 1(a). The increase the β value to 1, makes the shape of the wave sharper
slightly, Fig 1(b). Moreover, the velocity of the wave also increases. In the plot Fig
2(a) and Fig 2(b), the order parameters are chosen as α = 1 while β = 0.5 and β = 0.1
respectively. The wave profile travels to the left along the x-axis with a constant velocity
as time proceeds. When β is chosen as 1, the wave becomes sharper besides its velocity
increases but still constant.

5 The solutions of the conformable fmEW Equation

The solution algorithm starts by transforming the fmEW to an ODE by using the com-
patible wave transformation (8) . Thus, u(x, t) → U(ξ). This transformation reduces
the fmEW (2) to

−aν d

dξ
U (ξ) + raU (ξ)2 d

dξ
U (ξ)− sa3v

d3

dξ3
U (ξ) = 0 (17)
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(a) (b)

Figure 1: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1

(a) (b)

Figure 2: (a) α = 1, β = 0.5 (b) α = 1, β = 1

Integrating both sides of the equation gives

−avU (ξ) +
1

3
ra (U (ξ))3 − sa3v

d2

dξ2
U (ξ) = K (18)

where K is the constant of integration. Assume that (18) has a solution of the form (9)
where A is a nonzero real and B is positive integer. Substituting the predicted solution
and its derivatives into the equation (18) gives
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−avA (tanh (ξ))B +
1

3
raA3

(
(tanh (ξ))B

)3
−
sa3vA (tanh (ξ))B B2

(
1− (tanh (ξ))2

)2

(tanh (ξ))2

+2 sa3vA (tanh (ξ))B B
(

1− (tanh (ξ))2
)

+
sa3vA (tanh (ξ))B B

(
1− (tanh (ξ))2

)2

(tanh (ξ))2 = K

(19)
B is obtained as 1 by balancing U3 and U

′′
. Thus, the following solution is determined

as

(
1

3
raA3 − 2 sa3vA

)
(tanh (ξ))3 +

(
−avA+ 2 sa3vA

)
tanh (ξ) = K (20)

Collecting the coefficients of powers of the tanh function yields to a system of algebraic
equations in r, s, A, v, a,K of the form

1

3
raA3 − 2 sa3vA = 0 (21)

−avA+ 2 sa3vA = 0 (22)

K = 0 (23)

is obtained. Solving the resultant system (21-23) for {A, a, v,K}, the relation among
these parameters are stated as

a = ± 1√
2s

(24)

v =
1

3
rA2 (25)

for arbitrarily chosen r, s. Thus, the solution to the equation (7) is determined as

u3,4(ξ) = A tanh (ξ) (26)

Returning the original variables (x, t) from ξ gives the solution to the EW(2) as

u3,4(x, t) = ±A tanh

(
1√
2s

(
xβ

β
− rA2tα

3α

))
(27)

The plots of the solutions for some fixed values of the parameters (A = 5, r = 1, s = 1)

U(x, t) = tanh

(
1

2

√
2

√
1

s

(
x− 25

3
rt

))
(28)

The particular solutions determined by choosing some the independent parameters as
A = 1 and r = s = 1 are depicted for some selections of derivative orders. This solution

7



represents a classical front wave profile propagating to the left, Fig 3 (a),(b) - Fig 4(a),(b)
for all choices of order parameters α and β. When both order parameters are 0.5, the
wave has a slightly bending shape, Fig 3(a). Fixing α = 0.5 but increasing β to 1 causes
the shape of the wave to become sharper and the velocity becomes larger, but still non
linear Fig 3 (b). To fix the velocity order parameter α = 1 causes a linear propagation
of the wave. Increasing β from 0.5 to 1, its shape becomes sharper and its velocity also
increases Fig 4(a),(b).

(a) (b)

Figure 3: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1

(a) (b)

Figure 4: (a) α = 1, β = 0.5 (b) α = 1, β = 1
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6 The solutions of the conformable fBL Equation

The wave transformation (8) reduces the fBL equation (3)

a2(ν2 − 1)
d2

dξ2
U (ξ) + a4(µ− ηv2)

d4

dξ4
U (ξ)− 3a3v

d

dξ
U (ξ)

d2

dξ2
U (ξ) = 0 (29)

Integrating this equation once gives

a2(ν2 − 1)
d

dξ
U (ξ) + a4(µ− ηv2)

d3

dξ3
U (ξ)− 3

2
a3v(

d

dξ
U (ξ))2 = K

where K is the constant of integration. Substituting the predicted solution (9) into (3)
results in

a2A tanh(ξ)BBv2

tanh(ξ)
− a2v tanh(ξ)BB tanh(ξ)v2 − a2A tanh(ξ)BB

tanh(ξ)

+a2A tanh(ξ)BB tanh(ξ) +
a4µA tanh(ξ)BB3(1− tanh(ξ)2)3

tanh(ξ)3

−6a4µA tanh(ξ)BB2(1− tanh(ξ)2)2

tanh(ξ)
− 3a4µA tanh(ξ)BB2(1− tanh(ξ)2)3

tanh(ξ)3

+4a4µA tanh(ξ)BB tanh(ξ)(1− tanh(ξ)2) +
4a4µA tanh(ξ)BB(1− tanh(ξ)2)2

tanh(ξ)

+
2a4µA tanh(ξ)BB(1− tanh(ξ)2)3

tanh(ξ)3
− a4ηv2A tanh(ξ)BB3(1− tanh(ξ)2)3

tanh(ξ)

+
6a4ηv2A tanh(ξ)BB2(1− tanh(ξ)2)2

tanh(ξ)
+

3a4ηv2A tanh(ξ)BB2(1− tanh(ξ)2)3

tanh(ξ)3

−4a4ηv2A tanh(ξ)BB tanh(ξ)(1− tanh(ξ)2)

−4a4ηv2A tanh(ξ)BB(1− tanh(ξ)2)

tanh(ξ)
− 2a4ηv2A tanh(ξ)BB(1− tanh(ξ)2)3

tanh(ξ)3

−3

2

a3vA2(tanh(ξ)B)2B2(1− tanh(ξ)2)2

tanh(ξ)2

= K

B is obtained as 1 by balancing U3 and U
′′
. Thus, the following solution is determined

as

(
−6a4µA+ 6a4ηv2A− 3

2
a3vA2

)
tanh(ξ)4

+
(
a2A− 8a4ηv2A+ 8a4µA− a2Av2 + 3a3vA2

)
tanh(ξ)2

+a2Av2 − 3

2
a3vA2 − a2A− 2a4µA+ 2a4ηv2A

= K
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Since the predicted solution is different from zero, the last equation is satisfied if only
the coefficients of powers of the hyperbolic tangent function are zero. Thus,

(
−6a4µA+ 6a4ηv2A− 3

2
a3vA2

)
= 0 (30)(

a2A− 8a4ηv2A+ 8a4µA− a2Av2 + 3a3vA2
)

= 0 (31)

a2Av2 − 3

2
a3vA2 − a2A− 2a4µA+ 2a4ηv2A−K = 0 (32)

Solution of this algebraic system for A, a and ν gives

A = ± 4(−µ+ η)a

(4a2η − 1)
√
−1−4a2µ

4a2η−1

(33)

v = ±

√
−1− 4a2µ

4a2η − 1
(34)

for nonzero µ, η and arbitrarily chosen a. Using these data, one can write the solution
of (7) as

u5,6,7,8(ξ) = ± 4(−µ+ η)a

(4a2η − 1)
√
−1−4a2µ

4a2η−1

tanh(ξ)

Returning the original variables gives the solution to the space-time fractional BL equa-
tion (3) ) as

u5,6,7,8(x, t) = ±
4(−µ+ η)a tanh(a

(
xβ

β ±
√
−1−4a2µ

4a2η−1
tα

α

)
)

(4a2η − 1)
√
−1−4a2µ

4a2η−1

(35)

This solution is the general form of hyperbolic tangent function type solution family.
Choosing the parameters properly, many solutions in different characteristics covering
complex ones can be generated.

u(x, t) = −
4(−µ+ η) tanh

(
x−

√
−1−4µ

4η−1 t
)

(4η − 1)
√
−1−4µ

4η−1

(36)

The plots of the solutions to xt plane for some fixed values of the parameters (µ = 5, η =
1
2 ,a = 1) . These particular solutions models a one dimensional wave propagation along
the space axis. When α and β both are 0.5, the shape of the wave is slightly soft, Fig 5
(a). When α = 0.5 and β = 1, the wave becomes sharper and faster, Fig 5 (b). When
α = 1, the wave is soft and slow for β = 0.5, Fig 6 (a) but it becomes sharper and faster
when β = 1, Fig 6 (b).
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(a) (b)

Figure 5: (a) α = 0.5, β = 0.5 (b) α = 0.5, β = 1

(a) (b)

Figure 6: (a) α = 1, β = 0.5 (b) α = 1, β = 1

7 Conclusion

Some conformable space–time fractional PDEs are solved by taking hyperbolic tangent
ansatz. FmKdV, fmEW and fBL equations are reduced to some nonlinear ODEs of
integer order by using compatible wave transformations. Substituting the solution into
the resultant ODEs and finding relations between the parameters of the equations give
the exact solutions of PDEs. The exact solutions are successfully found for particular
choices of the α and β and the other parameters.As a conclusion, the method is applicable
to PDEs in the theory of fractional calculus.
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