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Summary

Method of collocation is established for getting solution of the Gardner equation
(GE). The GE is fully integrated by way of the Crank-Nicolson method for time
variable and collocation method for spatial variable. Trial function of the colloca-
tion method is set up using combination of quartic trigonometric tension (QTT)
B-splines. Convergence analysis of suggested method is investigated. Performance
of the quartic trigonometric tension B-splines is searched by studying three test prob-
lems; propagation of bell shape solitary wave, interaction of two positive bell shape
solitary wave and wave generation.
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1 INTRODUCTION

Numerical methods are powerful tools for solving partial differential equations(PDEs). With advent of computer technology,
variants of the finite element codes have been developed to solve PDEs irrespective of the shape of the problem domain and
types of the boundary conditions(BCs). Accuracy of the finite element formulation is increased by a suitable mesh refinement
and selection of the basis functions. The finite element method based on spline functions are applied to so many differential
equations and high accuracy have been obtained. In the finite element method, the unknown function of differential equations
and its derivatives over each elements is represented as linear combination of both undetermined time parameters and spline
functions. The B-splines are popularly applied in solving the differential equations. To beat the limitation of the B-splines
especially for constructing curve and surfaces discussed in1, useful non-polynomial B-splines, such as exponential B-splines,
trigonometric B-splines, hyperbolic B-splines and etc.1 have bee proposed. The trigonometric quartic B-splines is type of non-
polynomial splines which are used to construct a finite element code for solving the GE. In this study, the unknown variables
are approximated by a linear combination of the trigonometric tension B-spline functions, which are a variant of polynomial
B-spline basis functions. Thus finite element method accommodated the QTT B-spline is built up for the GE. Performance of
the QTT B-spline finite element method will be evaluated for the GE. Combination of the KDV equation and Modified KDV
equation GE which has the following form

ut + �1uux + �2u2ux + �3uxxx = 0 (1)
in which there exist evolution term ut,two nonlinear terms uux and u2ux and third order dissipative term uxxx. The initial condition
(IC)

u(x, 0) = u0(x) (2)

0Abbreviations: GE, Gardner equation; QTT, Quartic Trigonometric tension; IC, initial condition; BC, Boundary condition; ARC, Absolute relative changes
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and the homogen Dirichlet and Neumann conditions at both end of the interval [a, b] for the mathematical representation of the
initial boundary value problem. The competition of three spatial derivative terms and their constant constitutes main interest of
solution behaviour of GE for scientist. Thus Selection of constants �1, �2 and �3, and terms specifies some significant modes
of internal waves with large amplitudes and weakly nonlinear dispersive waves, undular bore in the bright and dark cnoidals,
trigonometric bores, kinks2, negative ion-acoustic plasma waves3, occurrence of large ocean waves in unexpected meaning and
determination of the modulational instability in same cases4.
Analytical and semi-analytical solutions are restricted for GE. Analytical methods with is special solutions have been given

in some papers, for instance transcritical flow of a fluid passing a local topographical obstacle5, collision of a large amplitude
solution with a limiting soliton6, a large class of interaction solutions of solitons with cnoidal and periodic waves7, some
collusion models of cnoidal wave to soliton8, some hyperbolic type solitary wave and periodic solutions expressed in the finite
series form9 and a bunch of traveling wave type exact solutions10.
Numerical methods are also obtained both to affirm analytical behaviors and to provide non-analytical solution of GE with

some ICs and BCs. A multi-symplectic method11 and a multi-symplectic Fourier pseudospectral scheme12 are developed for
the GE respectively. The finite difference and restrictive Taylor’s approximation are constructed to determine the numerical
solutions to the GE13,14. Linear conservative finite volume element schemes is applied for solving the GE. Quintic B-spline
differential quadrature method has been used to obtain the numerical approximation of the GE15. Collocation method based on
quintic, exponential and extended cubic B-splines are set up for solving the GE in the studies16,17,18. Solutions of the fractional
GE with collocation method using radial basis function is given in the work19.
There are few numerical method build up using the trigonometric tension spline for solving differential equations. The tension

B-spline collocationmethod is used for finding the solutions of IBVPs in study20 and the technique is applied for finding solutions
of Burgers-Huxley equation21. In the present study, the construction of QTT B-spline collocation algorithms to the GE is done.
The convergence analysis is discussed. Some test problems including bell shape solitary wave, interaction of two positive bell
shape solitary wave and wave generation are studied.

2 QTT B-SPLINE COLLOCATION METHOD

A nonpolynomial spline possesses smootness depending on the its degree over the interval. The uniform partition of the interval
[a, b] is considered by knots xi = a + iℎ, where a = x0, b = xN and ℎ = (b − a)∕N. The knots and additional fictitious
knots x−4, x−3, x−2, x1, xn+1, xn+1, xn+2, xn+3 outside the interval to have a basis of QTT B-spline over the interval the interval
is needed. Thus QTT B-splines have the following form:

Ti,5(x) = r

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

�2(−Di−2)2+2Ci−2−2
2�2

,
[

xi−2, xi−1
]

,
− �2(3ℎ2+6ℎDi−2+2(−Di−2)2)+2M1(�2(Di−1)2−2)−(6Ci−1+2Ci−4)

2�2
,

[

xi−1, xi
]

,
�2(13ℎ2+10ℎDi−2+2(−Di−2)2)+M1(2�2(11ℎ2+10ℎD(i−2))+4M1�2(−Di−2)2−8M1+6Ci+1−4)

2�2
,
[

xi, xi+1
]

,

− �2(23ℎ2+14ℎ(Di−2)+2(−Di−2)2)+2M1(�2(Di+2)2−2)−(2Ci+1+6Ci+2−4)
2�2

,
[

xi+1, xi+2
]

,
�2(Di+3)2+2Ci+3−2

2�2
,

[

xi+2, xi+3
]

,
0, otherwise.

(3)

where r = 1
2ℎ2(1−M1)

, Ci+j = cos(�(xi+j −x)), Di+j = (xi+j −x), M1 = cos(�ℎ), M2 = sin(�ℎ), which was suggested as a variant
of UE splines in the work22 in which UE-spline basis functions of order k = 2 and derivation of high order UE-splines, when
degree k ≥ 2, are introduced. It is a piecewise non-polynomial bell-shape function whose values at the connecting point can be
calculated as Table 1.

The shape of QTT B-spline can be changed by varying the free parameter � and when � = 5, graph of the QTT B-spline is
depicted in Figure 1.
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TABLE 1 Ti(x) and its derivatives

xi−2 xi−1 xi xi+1 xi+2 xi+3
Ti,5 0 r

(

ℎ2�2+2M1−2
2�2

)

r
(

ℎ2�2−2M1(ℎ2�2+1)+2
2�2

)

r
(

ℎ2�2−2M1(ℎ2�2+1)+2
2�2

)

r
(

ℎ2�2+2M1−2
2�2

)

0

T ′i,5 0 r
(

ℎ�−M2

�

)

−r
(

ℎ�−3M2+2M1ℎ�
�

)

r
(

ℎ�−3M2+2M1ℎ�
�

)

−r
(

ℎ�−M2

�

)

0
T ′′i,5 0 r(1 −M1) r(−1 +M1) r(−1 +M1) r(1 −M1) 0
T ′′′i,5 0 r(�M2) −r(3�M2) r(3�M2) −r(�M2) 0

FIGURE 1 QTT B-splines over the interval [−1, 1] for � = 5

Since Ti,5(x) are the basis function for space
{

cos(�x), sin(�x), xk−3,… , x, 1
}

of the trigonometric and polynomial functions,
approximate the unknown function u and its derivatives ut, uxx, uxxx with and its derivatives Ut, Ux, Uxxx respectively consisting
of combination of QTT B-splines as

U (x, t) =
N+1
∑

i=−2
ci(t)Ti(x) (4)

where ci(t) represent time-dependent quantities which will be calculated by using collocation method.
U and its first three derivatives at the connecting points can be computed using QTT B-splines21 and approximation (4)

u(xi, tn) ≈ U n
i = v1ci+1 + v2ci + v2ci−1 + v1ci−2,

ux(xi, tn) ≈ (U ′)ni = z1ci+1 + z2ci − z2ci−1 − z1ci−2,
uxx(xi, tn) ≈ (U ′′)ni = w1ci+1 +w2ci +w2ci−1 +w1ci−2
uxxx(xi, tn) ≈ (U ′′′)ni = y1ci+1 + y2ci + y2ci−1 + y1ci−2

(5)

with

v1 = r
(

ℎ2�2 + 2M1 − 2
2�2

)

, v2 = r

(

ℎ2�2 − 2M1
(

ℎ2�2 + 1
)

+ 2
2�2

)

z1 = r
(

ℎ� −M2

�

)

, z2 = −r
(

ℎ� − 3M2 + 2M1ℎ�
�

)

w1 = r(1 −M1), w1 = r(−1 +M1),
y1 = r(�M2), y2 = −r(3�M2),
M1 = cos(�ℎ), M2 = sin(�ℎ)
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Time integration of the GE (1) can be managed by employing using Crank-Nicolson method, and obtain semi-integrated the GE
of the form:

U n+1 − U n

Δt
+ �1

(UUx)n+1 + (UUx)n

2
+ �2

(U 2Ux)n+1 + (U 2Ux)n

2
+ �3

U n+1
xxx + U

n
xxx

2
= 0 (6)

where tn = tn−1 + Δt and Δt is the time step, for approximate solution U n = U (x, tn) at the nth time level.
Before applying the collocation method, linearization

(UUx)n+1 = U nU n+1
x + U n

xU
n+1 − U nU n

x

and
(U 2Ux)n+1 = 2U nU n

xU
n+1 + (U n)2U n+1

x − 2U n
x (U

n)2

which are obtained from the Taylor expansion, is applied to Eq. (6) to obtain

(

1 + �1
Δt
2
U n
x + �1ΔtU

nU n
x

)

U n+1 + Δt
2

(

�1U
n + �2(U n)2

)

U n+1
x + �3

Δt
2
U n+1
xxx

= U n + �2
Δt
2
(U n)2U n

x − �3
Δt
2
U n
xxx (7)

By substituting approximations in(5) into (7),the fully-integrated equation with the unknown coefficients ci, i = −2,⋯ , N + 1,
is obtained

a1c
n+1
i−2 + a2c

n+1
i−1 + a3c

n+1
i + a4cn+1i+1 = Bni , i = 0, 1,⋯ , N (8)

where
Bni = U

n
i + �2

Δt
2
(U n

i )
2 (U ′)n

i − �3
Δt
2

(

U ′′′)n
i , i = −2,−1,⋯ , N + 1 (9)

and

a1 = b1v1 − b2z1 + b3y1, a2 = b1v2 − b2z2 + b3y2 (10)
a3 = b1v2 + b2z2 + b3y2, a4 = b1v1 + b2z1 + b3y1

with

b1 = 1 + �1
Δt
2
U n
x + �1ΔtU

nU n
x ,

b2 =
Δt
2

(

�1U
n + �2(U n)2

)

,

b3 = �3
Δt
2
.

Finally, (N+1) linear algebraic equations in (N + 4) unknown are derived. Elimination of unknown parameters cn+1−2 , c
n+1
−1 and

cn+1n+4 using the BCs u(a, t) = ux(a, t) = 0 and u(b, t) = 0, to get additional three equations

u(a, tn) ≈ U n
0 = v1c

n
1 + v2c

n
0 + v2c

n
−1 + v1c

n
−2 = 0,

ux(a, tn) ≈ (U ′)n0 = −z1c1 − z2c0 + z2c−1 + z1c−2 = 0,
u(b, tn) ≈ U n

0 = v1c1 + v2c0 + v2c−1 + v1c−2 = 0,
(11)

leads to (N + 1)× (N + 1) solvable system as
Ax = B (12)

where

A =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

v1 v2 v2 v1
−z1 −z2 z2 z1

a1 a2 a3 a4
⋱ ⋱ ⋱ ⋱

a1 a2 a3 a4
v1 v2 v2 v1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

x =
(

cn+1−2 , c
n+1
−1 ,⋯ , cn+1N+1

)

and
B =

(

0, 0,bn−2,b
n
−1,⋯ ,bnN+1, 0

)T .
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3 CONVERGENCE ANALYSIS

Lemma: If {T−2, T−1,⋯ , TN+1, } is QTT B-Splines, then
N+1
∑

i=−2

|

|

Ti(x)|| ≤
35
24
, a ≤ x ≤ b. (13)

Proof See reference21.
Theorem: If Y (x) ∈ C5[a, b], then constants ki, exists independent of ℎ in such a way that

‖

‖

Diy −DiY ‖
‖∞ ≤ kiℎ

5−i, i = 0, 1, 2, 3. (14)

Proof See reference23.
Theorem: If u(x, t) be the exact solution of (2) and u(x, t) ∈ C5[a, b] also |

|

|

)5u(x,t)
)x5

|

|

|

≤ L and U (x, t) be the numerical
approximation by present method, then

‖U (x, t) − u(x, t)‖∞ ≤ O(ℎ3 + Δt). (15)
Proof At the (n + 1)tℎ time step, let S∗ be the unique spline interpolate to the exact solution u of (1)-(2) as follows

S∗(x) =
N+1
∑

i=−2
c∗Ti(x) (16)

Matrix A is regarded as a strictly diagonally dominant matrix. Let �i (1 ≤ i ≤ N + 1) be the summation of the itℎ row of the
matrix A. Let a−1ki be the elements of A−1, then following equation can be written using theory of matrices:

N+1
∑

i=1
a−1ki �i = 1. (17)

Therefore, it can be find that
‖

‖

‖

A−1‖‖
‖∞

=
N+1
∑

i=1

|

|

|

a−1ki
|

|

|

≤ 1
min1≤i≤N+1 �i

≤ 1
K

(18)

where K is constant. By changing S∗(x) in (6), it can be obtained

Ax∗= B∗. (19)

Subtracting (12), (19) and infinity norm is applied, the following equation is provided

‖x∗ − x‖∞ ≤ ‖

‖

‖

A−1‖‖
‖∞

‖B∗ − B‖∞ . (20)

By applying (8) and (14), it can be written
|

|

b∗i − bi|| ≤
|

|

|

b1
(

S∗(xi) − U (xi)
)

|

|

|

+ |

|

|

b2
(

S∗′(xi) − U ′(xi)
)

|

|

|

+ |

|

|

b3
(

S∗′′(xi) − U ′′(xi)
)

|

|

|

(21)

≤ |

|

b1|| k0ℎ
5 + |

|

b2|| k1ℎ
4 + |

|

b3|| k2ℎ
3.

From (21), it can be derived
‖B∗ − B‖∞ ≤ K1ℎ

3, (22)
whereK1 = |

|

b1|| k0ℎ
2+|

|

b2|| k1ℎ+||b3|| k2. Therefore, by appliying norm and from Lemma 1, (18), (20) and (22), it can be written

‖S∗(x) − U (x)‖∞ =
‖

‖

‖

‖

‖

‖

N+2
∑

i=−2

(

c∗i − ci
)

Ti(x)
‖

‖

‖

‖

‖

‖∞

≤
|

|

|

|

|

|

N+2
∑

i=−2
Ti(x)

|

|

|

|

|

|

‖x∗ − x‖∞ ≤ 35
24
K2ℎ

2 (23)

where K2 =
K1
G

is constant. From Theorem 1, it can be obtained

|u(x) − S∗(x)| ≤ k0ℎ
5 (24)

and by using (23) and (24), it can be concluded that

‖U (x) − u(x)‖∞ ≤ ‖S∗(x) − U (x)‖∞ + ‖u(x) − S∗(x)‖∞ ≤ 35
24
K2ℎ

3 + k0ℎ5 = ℎ3 (25)

where  = 35
24
K2 + k0ℎ2.
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4 NUMERICAL EXAMPLES

Three test problems will be studied to see performance of the suggested algorithm and finding results are compared with those
obtained with the quintic B-spline collocation method 16 in terms of discrete maximum error norm:

L∞(t) = |U (x, t) − u(x, t)|∞ = maxi
|

|

U (xi, t) − u(xi, t)||
GE is shown to keep the lowest three conservation laws, the momentum (M), the energy (E) and the Hamiltonian (H)

described by

M =

∞

∫
−∞

udx ≈

b

∫
a

udx ≈ ℎ
N
∑

j=1
uj

E =

∞

∫
−∞

u2dx ≈

b

∫
a

u2dx ≈ ℎ
N
∑

j=1
u2j

H =

∞

∫
−∞

(

�1u3

3
+
�2u4

6
− �3(ux)

2
)

dx

≈

b

∫
a

(

�1u3

3
+
�2u4

6
− �3(ux)

2
)

dx

≈ ℎ
N
∑

j=1

(

�1u3j
3

+
�2u4j
6

− �3(ux)2j

)

(26)

Absolute relative changes (ARCs), C(Mt), C(Et) and C(Ht)

C(Mt) =
|

|

|

|

Mt −M0

M0

|

|

|

|

C(Et) =
|

|

|

|

Et − E0
E0

|

|

|

|

C(Ht) =
|

|

|

|

Ht −H0

H0

|

|

|

|

(27)

are computed to give conservation laws at time t, where subscripts 0 denotes conserved constant at t = 0.

4.1 Propagation of Bell Shape Solitary Wave
To be able to make comparison between numerical and analytical solutions, solitary wave solution of GE is studied to see
advance of wave during running time of the algorithm, which is defined analytically in some studies16,24 as

u(x, t) = S secℎ(k(x − x0 − ct)) (28)

k =
√

c
�3

and S = 6c

�1(1 +
√

1 + 6
�2c
�21
)

With parameters �1 = 1, �2 = 1, �3 = 5 and x0 = 0, initial profiles, having bell-type shape is locate along the x-axis centered
at x = 0 in the restricted region [−100, 100]. Three BCs are used to have solvable system of algebraic equations: two of them are
on left, u(−100, t) and ux(−100, t) and one is on the right, u(100, t) = 0 to have solvable with system of equation. The program
is run up to time t = 5 with time increment Δt = 0.01 and space increment ℎ = 0.1. The propagation of the waves is managed
without deforming the shape seen in the Figure 2 (a). Error distribution along problem domain is exhibited in Figure 2(b) in
which errors at some times can be observed and error variation remain almost constant, changes from 0.000175 at time t = 1 to
0.000911 at time t = 5 happens within difference 0.000736. Discrete maximum error norms at times t = 1, 2, 3, 4, 5 and ARCs
are documented in Table 2. Almost constant relative changes endorse lower increase of error during run of the algorithm. In the
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same table, numerical solution of the GE using quintic collocation methods is added to make comparison, from which suggested
method provide similar results with the quintic collocation method. Thus lower cost algorithm is our achievement for paper.
Approximate M , E and H at t = 0 is calculated as M0 = 3.497319, E0 = 0.192200 and H0 = 0.002578. Relative changes
C(E5) vary far less then C(M5) and C(H5).

(a) The numerical solution in 3D (b) The maximum error distribution

FIGURE 2 Propagation of the bell shape solitary and the discrete maximum error distributions at Δt = 0.01 with ℎ = 0.1

TABLE 2 The discrete maximum error norms and the ARCs for the propagation of the bell shape solitary wave

t L∞ Suggested Method Collocation method16 C(M5) C(E5) C(H5)
1 1.757302−4 2.537778 × 10−4 5.8992 × 10−6 1.76 × 10−8 4.604 × 10−7

2 3.538030−4 4.182652 × 10−4 9.6121 × 10−6 2.93 × 10−8 1.2881 × 10−6

3 5.352958−4 6.099896 × 10−4 1.28291 × 10−5 3.98 × 10−8 2.6151 × 10−6

4 7.209791−4 7.817635 × 10−4 1.56944 × 10−5 4.92 × 10−8 4.4206 × 10−6

5 9.116738−4 9.583943 × 10−4 1.84480 × 10−5 5.84 × 10−8 6.7084 × 10−6

4.2 Interaction of two Positive Bell Shape Solitaries
The interaction of two positive bell shape solitaries are also studied using IC16:

u(x, 0) = S1secℎ(k1(x − x1)) + S2secℎ(k2(x − x2)) (29)

ki =
√

ci
�3
, Si =

6ci

�1(1 +
√

1 + 6
�2ci
�21

)
, i = 1, 2.

This initial condition gives two positive bell shaped solitaries of heights0.26492 and 0.67377 positioned at x = −25 and x = 25,
respectively, at the beginning, Figure 3 (b). Both solitaries propagate to the left along the x -axis as time goes. The parameters
are selected as �1 = 1, �2 = 1 and �3 = 5 in the GE. The program is run up to the terminating time t = 400 with ℎ = 0.5 and
Δt = 0.25 in the finite problem interval [−750, 150] in Fig. 3 (a).
When the time reaches t = 100, it is observed that the interaction has started, Fig. 3 (c). The height of the higher solitary is

measured as 0.60134 and its peak is located as x = −0.5. The height of the lower is determined to be 0.24362 at vertex position.
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The height of the higher wave reaches 0.38327 as the height of the lower one 0.39385 at the time t = 200, in Fig. 3 (d). The
peaks of both the higher and the lower solitaries are located at x = −25 and x = −38.5, respectively. When the time reaches
t = 300, the solitaries begin to separate seen in Fig. 3 (e). The height of the higher one increases to 0.58285 and it is located
at x = −64.5. The peak of the lower one is positioned at x = −33 and the height of it decreased to 0.23526. At the end of
the simulation, it can be observed that both solitaries are separated and return to their original shapes and heights, Fig. 3 (f).
The heights of both solitaries are determined as 0.60839 and 0.23355 as the peaks reach x = −91 and x = −40 as keeping to
propagate on their own ways.

(a) Projected solutions on x − t-plane
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(c) t = 100
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(d) t = 200
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FIGURE 3 Interaction of two positive bell shape solitaries
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The conservation laws for the interaction of two positive bell shape solitaries are also computed during the simulations. The
values are computed asM0 = 14.520509, E0 = 4.706662 andH0 = 0.516125 initially. The conservation laws in terms of ARC
are documented in Table 3.

TABLE 3 The ARCs for the interaction of two positive bell shape solitaries

t C(Mt) C(Et) C(Ht)
0 − − −
100 4.4466 × 10−5 2.9766 × 10−4 3.7267 × 10−2

200 2.5543 × 10−4 9.9528 × 10−4 9.2225 × 10−2

300 4.3875 × 10−4 1.2589 × 10−3 5.1698 × 10−2

400 7.2637 × 10−4 1.7570 × 10−3 3.9055 × 10−2

4.3 Wave generation
For the last test method, the Maxwellian IC

u(x, 0) = e−x2 (30)
is used to see generation of waves from initial wave profile. Running of the algorithm with increments ℎ = 0.01 andΔt = 0.01

is carried out up to time t = 12.5 over interval [−15, 15] and solution behaviors are depicted in graphs of Figs. 4 (a)-(d). Effect
of the parameters �3 = 0.02, 0.01, 0.005, �1 = �2 = 1 is illustrated in Fig 3. Evolution of initial profile is demonstrated into
more sequent waves. More wave generation is produced with smaller �3. Their amplitudes are given in graphs at time t = 12.5
from which leading wave amplitude and subsequent ones are larger, when �3 is smaller. The conserved constantsM0, E0 and
H0 are calculated as 1.772453, 1.253314 and 0.463747. The conservation laws in terms of ARCs are tabularised in Table 4.

TABLE 4 The ARCs for the wave generation for �3 = 0.02

t C(Mt) C(Et) C(Ht)
2.5 9.7331 × 10−9 1.4812 × 10−4 4.8205 × 10−3

5 2.3957 × 10−8 1.0136 × 10−4 6.5932 × 10−4

7.5 2.5177 × 10−7 4.9941 × 10−5 7.9778 × 10−4

10 6.9634 × 10−7 1.7519 × 10−6 9.2994 × 10−4

12.5 9.4468 × 10−7 5.3053 × 10−5 1.0616 × 10−3

5 CONCLUSIONS

An alternative hybrid Crank-Nicolson-collocation method is constructed for getting numerical solution of the GE. A numerical
method using combination of the QTB B-spline in the method of collocation is presented. Achievement of the algorithm is
shown to run the program for exhibiting the progress of the propagation of bell shape solitary wave, interaction of two positive
bell shape solitary waves and wave generation. The first test problem is studied because analytical solution of wave propagation
exist for GE and L∞-error norm is computed to see maximum difference between analytical and numerical solutions with lower
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FIGURE 4 Evolution of wave generation with Maxwellian IC for different values of �3

cost. Thus similar results obtained by present Crank-Nicolson-collocation method are provided with quintic collocation method
provided in the study16. Simulation of interaction and wave generation is observed to see the conservations constants due to not
changing their forms. Very slight changes are recorded for amplitudes of both higher and smaller waves as 0.06538 and 0.03137
respectively, after interaction. Thus solitary waves are tried to be kept their shapes even for suggested numerical technique.
The relative variation for propagation is much smaller that those variation of the solitary wave interaction as expected. Result
of the test problems indicates the reliability of the method to get solutions of the GE. QTT B-spline collocation approach has
convergence order 3 in space and order 1 in time. So that nonpolynomial splines provides smooth solutions during run of the
program.
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