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Abstract. In this paper, we investigate the Ulam-Hyers-Rassias stability
for the Drygas functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y)

in the setting quasi-Banach spaces using the approach of Brzdek’s fixed
point theorem. Also, we gave a general result on the hyperstability of
Drygas functional equation. The results obtained in this paper extend
various previously known results to the setting of quasi-Banach space.

1. Introduction and Preliminaries

In the theory of Ulam’s stability, one can find the efficient tools to evaluate
the errors, that is to study the existence of an exact solution of the perturbed
functional equation which is not far from given function. In 1940, the stability
problem for the functional equations was first raised by S.M. Ulam [30]. Hyers
[16] gave affirmative partial answer to the of Ulam in Banach space. After
that Aoki [2] and Rassias [25] generalized Hyers theorem for additive and
linear mapping by considering an unbounded Cauchy difference. In 1994,
Găvruta [14] generalized Rassias’ theorem and discuss the stability of linear
functional equation.

A functional equation is hyperstable if a function satisfying this functional
equation approximately is a true solution of it. In 1949, D.G. Bourgin [5] gave
the first hyperstability result and concerned the ring homomorphisms. The
hyperstability results of the several functional equation in the literature have
been studied by many authors in recent years, (see, [3] , [10], [8], [9] [15], [18],
[24] and references cited therein).

Throughout this paper, we will denote the set of natural numbers by N, the
set of nonnegative integers by N0 = {0, 1, 2, 3....} and the set of all natural
numbers greater then or equal to the natural number m by Nm. Let R be set
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of real numbers and R+ = [0,∞) the set of nonnegative real numbers. We
write XY to mean the family of all functions mapping from a nonempty set
X into a nonempty set Y , and we denote Xn the n−ary Cartesian power of
X.

Definition 1. (see [4], [19]) A quasi-norm is a real-valued function on the
linear space X satisfying the following:

(1) ‖ x ‖ ≥ 0 for all x ∈ X and ‖ x ‖ = 0 if and only if x = 0 ;
(2) ‖ λx ‖ = | λ | . ‖ x ‖ for all λ ∈ R and all x ∈ X;
(3) There is a constant K ≥ 1 such that ‖ x+ y ‖ ≤ K(‖ x ‖ + ‖ y ‖) for

all x, y ∈ X.

The pair (X, ‖ . ‖,K) is called a quasi-normed space if ‖ . ‖ is a quasi-norm
on X. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm ‖ . ‖ is called p− norm (0 < p ≤ 1) if

‖ x+ y ‖p ≤‖ x ‖p + ‖ y ‖p

for all x, y ∈ X. In this case, a quasi-Banach space is called a p-Banach space.

The difference between a norm and quasi-norm is that the modulus of con-
cavity of a quasi-norm is greater then equal to 1, while that of a norm is
equal to 1. The quasi-norm is not continuous in general, while a norm is
always continuous. However, every p−norm is continuous quasi norm. By
the Aoki-Rolewicz theorem [19] (see also [4]), each quasi-norm is equivalent
to some p-norm. Firstly studied Stability in quasi-Banach spaces by Najati
and Moghimi [20] and Najati and Eskandani [21]. After that many authors
obtained very interesting results in the topic (see [1] , [12]).

Definition 2. (see [28]) Let X be a non empty set, Y be a normed space,
ε ∈ RXn

+ and V1,V2 be operators mapping from a non empty set D ⊂ Y X into

Y Xn
. We say that the operators equation

V1ϕ(x1, x2, ......xn) = V2ϕ(x1, x2, ......xn) (1.1)

for x1, x2, ......xn ∈ X is ε−hyperstable provided that every ϕ0 ∈ D which
satisfies

‖ V1ϕ(x1, x2, ......xn)− V2ϕ(x1, x2, ......xn) ‖ ≤ ε(x1, x2, ......xn)

fulfills the equation (1.1).

Using the concept of Brzdek [6], Dung et al. [12] proved the following result.

Theorem 1. [12] Let X be a non empty set, Y be a quasi-Banach space.
f1, f2......fk : X → X and l1, l2....lk : X → R+ be given mapping.
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Suppose that T : Y X → Y X is an operator satisfies the inequality

‖ T ξ(x)− T µ(x) ‖≤
k∑
i=1

li(x) ‖ (ξ − µ)fi(x) ‖ (1.2)

for all ξ, µ ∈ Y X , and for all x ∈ X and assume that the function ε : X → R+

and a mapping ϕ : X → Y satisfies conditions

‖ T ϕ(x)− ϕ(x) ‖Y≤ ε(x) (1.3)

for every x ∈ X and θ = log2K2,

ε∗(x) =
∞∑
n=0

(Λnε)θ (x) <∞ (1.4)

where Λ : RX+ → RX+ be a linear operator defined by

Λδ(x) :=
k∑
i=1

li(x)δ(fi(x)), (1.5)

for δ ∈ RX+ and x ∈ X.
Then we have

(1) For every x ∈ X, the limit

lim
n→∞

T nϕ(x) = ψ(x) (1.6)

there exists a fixed point ψ of T with

‖ ϕ(x)− ψ(x) ‖θ≤ 4ε∗(x) (1.7)

for all x ∈ X.
(2) For every x ∈ X , if

ε∗(x) ≤

(
M

∞∑
n=0

(Λnε) (x)

)θ
<∞, (1.8)

for some positive real number M , then the fixed point of T is unique.

Characterizing quasi-inner product spaces, Drygas [11] consider the follow-
ing functional equation

f(x) + f(y) = f(x− y) + {f(
x+ y

2
)− f(

x− y
2

)}, (1.9)

for all x, y ∈ R, which can be reduced to the following equation (see, [26],
Remark 9.2, pp. 131)

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y), (1.10)
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for all x, y ∈ R. This equation is known in the literature as Drygas equation
and is a generalization of the quadratic functional equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y), (1.11)

for all x, y ∈ R.
The general solution of Drygas equation was given by Ebanks et al. [13]. It

has the form f(x) = A(x)+Q(y) for all x ∈ R, where A : R→ R is an additive
function and Q : R → R is a quadratic function (see also [17]). A set-valued
version of Drygas equation was considered by Smajdor [29]. Recently, the
hyperstability of the Drygas functional equation has been studied by various
authors see [23], [28] and [27]. In this paper, we discuss the generalized Hyers-
Ulam-Rassias stability problem for the Drygas functional equation (1.10) in
Banach spaces by using Theorem 1. Also, we obtain some hyperstability
results for this equation.

2. Main Result

Throughout in this section X is a non empty set , we write X0 := X −{0},
and we denoted by Aut(X) for the family of all automorphisms of X. The
identity function on X will be denoted by IdX , and for each u ∈ XX we write
ux = u(x) for x ∈ Xand we defined −u by −ux := −u(x), 2ux = ux+ ux and
u′ = u′x := (IdX − u)x = x− ux for x ∈ X.

Theorem 2. Let X be a quasi-normed space with norm ‖ · ‖X and Y be quasi-
Banach space with the norm ‖ · ‖ . Let ε : X0 × X0 → [0,∞] be a function
and

l(X) := {u ∈ Aut(X) : −u, u′, (IdX − 2u) ∈ Aut(X), αu < 1} (2.1)

be an infinite set, where

αu := λ(u′) + λ(u) + λ(−u) + λ(IdX − 2u),

λ(u) := inf{t ∈ R+ : ε(ux, uy) ≤ tε(x, y)∀x, y ∈ X0},
for u ∈ Aut(X). Assume that f : X → Y be a mapping such that

||f(x+ y) + f(x− y)− 2 f(x)− f(y)− f(−y)|| ≤ ε(x, y), (2.2)

for all x, y ∈ X0 such that x+ y 6= 0 and x− y 6= 0. Then, for each nonempty
subset U ⊂ l(X) such that

u ◦ v = v ◦ u, (u, v ∈ U), (2.3)

there exists a unique function D : X → Y satisfying (1.10) and

‖ D(x)− f(x) ‖θ≤ 4ε∗(x), (2.4)

for all x ∈ X0, where θ = log2K 2 and ε∗(x) := inf
{
εθ(u′x,ux)

1−αθu
: u ∈ U

}
.
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Proof. Fix u ∈ U . Replacing x by u′x and y by ux in (2.2), we have

‖f(x) + f((IdX − 2u)x)− 2f(u′x)− f(ux)− f(−ux)‖Y ≤ ε(u′x, ux) := εu(x),
(2.5)

for all x ∈ X0. We define the operators Tu : Y X0 → Y X0 and Λu : RX0
+ → RX0

+

by

Tuξ(x) := 2ξ(u′x) + ξ(ux) + ξ(−ux)− ξ((Idx − 2u)x)

Λuδ(x) := K
(
2δ(u′x) + δ(ux) + δ(−ux) + δ((IdX − 2u)x)

)
,

(2.6)

for all x ∈ X0, ξ ∈ Y X0 and δ ∈ RX0
+ .

Then (2.5) becomes ‖f(x)−Tuf(x)‖Y ≤ εu(x), for all x ∈ X0. The operator Λu
has the form given by (1.5) with s = 4 and f1(x) = u′x, f2(x) = ux, f3(x) =
−ux, f4(x) = (IdX − 2u)x, l1(x) = 2K, l2(x) = l3(x) = l4(x) = K for all
x ∈ X0. Further, we have

‖Tuξ(x)− Tuµ(x)‖Y
= ‖2ξ(u′x) + ξ(ux) + ξ(−ux)− ξ((idX − 2u)x)− 2µ(u′x)− µ(ux)− µ(−ux)+

µ((idX − 2u)x)‖
≤ K[2‖ξ(u′x)− µ(u′x)‖Y + ‖ξ(ux)− µ(ux)‖Y + ‖ξ(−ux)− µ(−ux)‖Y

+ ‖ξ((IdX − 2u)x)− µ((IdX − 2u)x)‖Y ],

=
4∑
r=0

li(x) ‖ ξ(fi(x))− µ(fi(x)) ‖,

for all x ∈ X0 and ξ, µ ∈ Y X0 . Using the definition of λ(u), ε(ux, uy) ≤
λ(u)ε(u′x, ux) for all x, y ∈ X0 we have to show that Λruεu(x) ≤ Krαruε(u

′x, ux)
for all x ∈ X0, where αu = 2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u).

If r = 0, then εu(x) = ε(u′x, ux). If r = 1, we have

Λuε(x) = K
(
2εu(u′x) + εu(ux) + εu(−ux) + εu((idX − 2u)x)

)
= 2Kε

(
u′(u′x), u(u′x)

)
+Kε

(
u′(ux), u(ux)

)
+Kε

(
u′(−ux, u(−ux)

)
+Kε

(
u′((IdX − 2u)x), u((IdX − 2u)x)

)
= 2Kε

(
u′(u′x), u′(ux)

)
+Kε

(
u(u′x), u(ux)

)
+Kε

(
−u(u′x),−u(ux)

)
+Kε

(
(IdX − 2u)(u′(x), (IdX − 2u)(ux)

)
≤ 2Kλ(u′)ε(u′x, ux) +Kλ(u)ε(u′x, ux) +Kλ(−u)ε(u′x, ux)

+Kλ(IdX − 2u)ε(u′x, ux)

= K
(
2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u)

)
ε(u′x, ux)

= Kαuε(u
′x, ux)
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Now, further, if r = 2, we have

Λ2εu(x) = Λ [Λεu(x)]

= K
[
2Λuεu(u′x) + Λuεu(ux) + Λuεu(−ux) + Λuεu((Idx − 2u)x)

]
= 2K2αuε

(
u′(u′x), u(u′x)

)
+K2αuε

(
u′(ux), u(ux)

)
+K2αuε

(
u′(−ux, u(−ux)

)
+K2ε

(
u′((IdX − 2u)x), u((IdX − 2u)x)

)
= 2K2αuε

(
u′(u′x), u′(ux)

)
+K2αuε

(
u(u′x), u(ux)

)
+K2αuε

(
−u(u′x),−u(ux)

)
+K2αuε

(
(IdX − 2u)(u′x), (IdX − 2u)(ux)

)
≤ 2K2αuλ(u′)ε(u′x, ux) +K2αuλ(u)ε(u′x, ux) +K2αuλ(−u)ε(u′x, ux)

+Kλ(IdX − 2u)ε(u′x, ux)

= K2αu
(
2λ(u′) + λ(u) + λ(−u) + λ(idX − 2u)

)
ε(u′x, ux)

= K2α2
uε(u

′x, ux).

Proceeding on the similar lines, we get Λruεu(x) ≤ Krαruε(u
′x, ux) for all

x ∈ X0 and r ∈ N0. Hence

ε∗(x) =
∞∑
r=0

(Λruεu)θ (x) ≤ εθ(u′x, ux)
∞∑
r=0

Krθαrθu =
εθ(u′x, ux)

1−Kθαθu
<∞,

for all x ∈ X0. Therefore by the Theorem 1 there exists a unique solution
Du : X → Y of the equation

Du(x) = 2Du(u′x) +Du(ux) +Du(−ux)−Du((Idx − 2u)x), (2.7)

for all x ∈ X0, which is a fixed point of Tu such that

‖Du(x)− f(x)‖θY ≤ 4ε∗(x), (2.8)

for all x ∈ X0. Moreover, Du(x) = lim
r→∞

T ru f(x) for all x ∈ X0.

Now, to prove that Du satisfies the functional equation (1.10) on x0, we
have to prove the following inequality

‖ T ru f(x+ y) + T ru f(x− y)− 2T ru f(x)− T ru f(y)− T ru f(−y) ‖Y
≤ Krθαrθu ε

θ(x, y),
(2.9)

for all x, y ∈ X0 such that x + y 6= 0, x − y 6= 0, and r ∈ N0. Indeed if
r = 0 then (2.9) is simply (2.2). So we suppose that (2.9) holds for r ∈ N and
x, y ∈ X0. Then from (2.6) and the triangle inequality, we get

‖ T r+1
u f(x+ y) + T r+1

u f(x− y)− 2T r+1
u f(x)− T r+1

u f(y)− T r+1
u f(−y) ‖Y
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=‖ 2T ru f(u′(x+ y)) + T ru f(u(x+ y)) + T ru f(−u(x+ y))− T ru f((IdX − 2u)(x+ y))

+ 2T ru f(u′(x− y)) + T ru f(u(x− y)) + T ru f(−u(x− y))− T ru f((IdX − 2u)(x− y))

− 4T ru f(u′(x))− 2T ru f(u(x))− 2T ru f(−u(x)) + T ru f((IdX − 2u)(x))

− 2T ru f(u′(y))− T ru f(u(y))− 2T ru f(−u(y)) + T ru f((IdX − 2u)(y))

+ 2T ru f(u′(−y)) + T ru f(u(−y)) + 2T ru f(−u(−y)) + T ru f((IdX − 2u)(−y)) ‖Y
≤ 2K ‖ T ru f(u′(x+ y)) + T ru f(u′(x− y))− 2T ru f(u′(x))− T ru f(u′(y))− T ru f(u′(−y)) ‖Y
+K ‖ T ru f(u(x+ y)) + T ru f(u(x− y))− 2T ru f(u(x))− T ru f(u(y))− T ru f(u(−y) ‖Y
+K ‖ T ru f(−u(x+ y)) + T ru f(−u(x− y))− 2T ru f(−u(x))− T ru f(−u(y))− T ru f(−u(−y) ‖Y
+K ‖ T ru f((IdX − 2u)(x+ y)) + T ru f((IdX − 2u)(x− y))− 2T ru f((IdX − 2u)(x))

− T ru f((IdX − 2u)(y))− T ru f((IdX − 2u)(−y) ‖Y
≤ Kr+1αru

[
2ε(u′x, u′y) + ε(ux, uy) + ε(−ux,−uy) + ε((IdX − 2u)x, (IdX − 2u)y)

]
≤ Kr+1αru[2λ(u′) + λ(u) + λ(−u) + λ(Idx − 2u)]ε(x, y)

≤ Kr+1αr+1
u ε(x, y).

Therefore, we have

‖ T r+1
u f(x+ y) + T r+1

u f(x− y)− 2T r+1
u f(x)− T r+1

u f(y)− T r+1
u f(−y) ‖

≤‖ T r+1
u f(x+ y) + T r+1

u f(x− y)− 2T r+1
u f(x)− T r+1

u f(y)− T r+1
u f(−y) ‖θY

≤ K(r+1)θα(r+1)θ
u εθ(x, y).

By induction, we have shown that (2.9) holds for all x, y ∈ X0 such that
x+ y 6= 0, x− y 6= 0. Letting r →∞ in (2.9), we get

Du(x+ y) +Du(x− y) = 2Du(x) +Du(y) +Du(−y), (2.10)

for all x, y ∈ X. Thus we have prove that for every for u ∈ U there exists a
function Du : X0 → Y which is the solution of functional equation (1.10) on
X0 and satisfies

‖f(x)−Du(x)‖θY ≤ 4

(
εθ(u′x, ux)

1−Kθαθu

)
= 4ε∗(x),

for all x ∈ X0. Now we prove that each solution D : X0 → Y of (1.10)
satisfying the inequality

‖f(x)−D(x)‖Y ≤Mεθ(v′x, vx), (2.11)

for all x ∈ X0 with some M > 0 and v ∈ U , is equal to Dw for each w ∈ U .
So, fix v, w ∈ U ,M > 0 and D : X0 → Y which is the solution of functional
equation (1.10) on X0 and satisfies (2.11). Note that, by (2.8) and (2.11),
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there is a M0 > 0 such that

‖ D(x)−Dw(x) ‖Y ≤ [K ‖ D(x)− f(x) ‖Y +K ‖ f(x)−Dw(x) ‖Y ]

≤ M0

(
εθ(v′x, vx) + εθ(w′x,wx)

)
.
∞∑
r=0

Krθαrθw ,

for all x ∈ X0. On the other side, D and Dw are solutions of (2.7) because
they satisfy (1.10). We show that, for each j ∈ N and there is M1 > 0 such
that

‖ D(x)−Dw(x) ‖Y≤

M1

(
εθ(v′x, vx) + εθ(w′x,wx)

)
.
∞∑
r=j

Krθαrθw

θ

.(2.12)

For j = 0, it is exactly (2.12). So fix γ ∈ N0 and assume that ( 2.12) satisfies
for j = γ. Then, in the view of definition of λ(u),

‖ D(x)−Dw(x) ‖Y
=‖ 2D(w′x) +D(wx) +D(−wx)−D((IdX − 2w)x)

− 2Dw(w′x)−Dw(wx)−Dw(−wx) +Dw((IdX − 2w)x) ‖Y
≤ 2K‖D(w′x)−Dw(w′x)‖Y +K‖D(wx)−Dw(wx)‖Y +K‖D(−wx)−Dw(−wx)‖Y

+K ‖ D((IdX − 2w)x)−Dw((IdX − 2w)x) ‖Y

≤ 2M0K
(
εθ(w′v′x,w′vx) + εθ(w′w′x,w′wx)

)
.
∞∑
r=γ

Krθαrθw

+M0K
(
εθ(wv′x,wvx) + εθ(ww′x,wwx)

)
.
∞∑
r=γ

Krθαrθw

+M0K
(
εθ(−wv′x,−wvx) + εθ(−ww′x,−wwx)

)
.
∞∑
r=γ

Krθαrθw

+M0K
(
εθ((IdX − 2w)v′x, (IdX − 2w)vx) + εθ((IdX − 2w)w′x, (IdX − 2w)wx)

)
.

∞∑
r=γ

Krθαrθw

≤M0K
(
εθ(v′x, vx) + εθ(w′x,wx)

)(
2λθ(w′) + λθ(w) + λθ(−w) + λθ(Idx − 2w)

)
.

∞∑
r=j

Krθαrθw

≤M0K
(
εθ(v′x, vx) + εθ(w′x,wx)

) (
2λ(w′) + λ(w) + λ(−w) + λ(Idx − 2w)

)θ
.

∞∑
r=j

Krθαrθw

= M0K(εθ(v′x, vx) + εθ(w′x,wx).

∞∑
r=γ+1

Krθαrθw .
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So we have

‖ D(x)−Dw(x) ‖ ≤‖ D(x)−Dw(x) ‖θY

≤

M1

(
εθ(v′x, vx) + εθ(w′x,wx)

)
.
∞∑

r=γ+1

αrθw

θ

.

Hence we have (2.12). Now taking j →∞ in (2.12), we get

D(x) = Dw(x), (2.13)

for all x ∈ X0. Similarly, one can also prove that Du = Dw for each u ∈ U ,
which yields

‖f(x)−Dw(x)‖θY ≤ 4
εθ(u′x, ux)

1−Kθαθu

for all x ∈ X0 and u ∈ U . This implies (1.10) with D = Dw and the uniqueness
of D is given by (2.13). �

In the following theorem, we prove the hyperstability of the equation(1.11)
in the Banach spaces.

Theorem 3. Let X be a quasi-normed space and Y be a quasi-Banach space
and ε be as in the above Theorem 2. Suppose that there exists a non empty
set U ∈ l(X) such that u o v = v o u for all u, v ∈ U and inf

u∈U
εθ(u′x, ux) = 0

sup
u∈U

αu < 1.
(2.14)

x ∈ X0, then every f : X → Y satisfying (2.2) is a solution of (1.10) on X0.

Proof. Suppose that f : X → Y be a mapping which is satisfying (2.2). Then
, by the Theorem 2, there exists a mapping D : X → Y, which satisfy (1.10)
and ‖ f(x)−D(x) ‖θY≤ ε∗(x) for all x ∈ X0. Since, from (2.14), ε∗(x) = 0 for
all x ∈ X0. This implies that f(x) = D(x) for all x ∈ X0, where

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y),

for all x, y ∈ X. Which is satisfies the functional equation (1.10) on X0. �

From Theorem (2) and (3), we can obtain the following corollaries as natural
results.

Corollary 1. Let X be a quasi-normed space and Y be a quasi-Banach space
and let p, q ∈ R, p < 0, q < 0 and ϕ be a positive number. If f : X → Y
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satisfies

‖ f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) ‖Y
≤ ϕθ

(
‖ x ‖pX + ‖ X ‖qX

)θ (2.15)

for all x, y ∈ X0, then f satisfies the functional equation (1.10) on X0.

Proof. The proof follows from the above Theorem 3 by taking εθ(x, y) = ϕθ(
‖ x ‖pX + ‖ y ‖qX

)θ
for all x, y ∈ X0 with some real numbers ϕ > 0, p < 0 and

q < 0. For each m ∈ N, define um: X0 → X0 by umx := um(x) = −mx and
u′m:X0 → X0 by u′mx := u′m(x) = (1 +m)x. Then

εθ(umx, uky) = εθ(−mx,−ky)

=
[
ϕ
(
‖ −mx ‖pX + ‖ −ky ‖qX

)]θ
=
[
ϕmp ‖ x ‖pX +ϕkq ‖ y ‖qX

]θ
=
[
(mp + kq)ϕ(‖ x ‖pX + ‖ y ‖qX)

]θ
= (mp + kq)θεθ(x, y)

for all x, y ∈ X0 and k,m ∈ N. Hence

lim
m→∞

εθ(u′mx, umy) ≤ lim
m→∞

((1 +m)p +mq))θ εθ(x, y) = 0

for all x, y ∈ X0 and k,m ∈ N. Then (2.14) is valid with λ(um) = mp +mq for
m ∈ N, and there exists n0 ∈ N such that m ≥ n0 and

αum = 2 ((1 +m)p + (1 +m)q) + 2(mp +mq) + (1 + 2m)p + (1 + 2m)q < 1.

Therefore we can say that (2.1) is satisfies with U := {um ∈ Aut(X) : m ∈
Nn0}. Hence, by the Theorem 3, every f : X → Y satisfying (2.15) is a
solution of the functional equation (1.10) on X0. �

Now, we extend the main result of Piszczek et al. [23] (Theorem 2) in the
framework of quasi-Banach space.

Corollary 2. Let X be a quasi-normed space and Y be a quasi-Banach space
and let p ∈ R, p < 0 and ϕ be a positive number. If f : X → Y satisfies

‖ f(x+ y) + f(x− y)− 2f(x)− f(y)− (f − y) ‖Y
≤ ϕθ

(
‖ x ‖pX + ‖ y ‖pX

)θ (2.16)

for all x, y ∈ X0, then f satisfies the functional equation (1.10) on X0.

Proof. It is easily seen that the function ε given by

εθ(x, y) =
[
ϕ
(
‖ x ‖pX + ‖ y ‖pX

)]θ
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for all x, y ∈ X0 satisfies (2.14), since

εθ(mx, ky) =
[
ϕ ‖ mx ‖pX +ϕ ‖ ky ‖pX

]θ ≤ [ϕ(mp + kp)
(
‖ x ‖pY + ‖ y ‖pY

)]θ
= (mp + kp)θεθ(x, y)

foe all x, y ∈ X0, k,m ∈ N and km 6= 0. The remaining part of the proof is
similar to the Corollary 1. �

Remark 1. Piszczek et al. [23] obtained Corollary 2 in the setting of a Banach
space.

If X is a normed space and f : X → Y satisfies (2.16) for x, y ∈ X0, with
p < 0, then by the Theorem 3 we know that f satisfies the Drygas functional
equation on X0. It is easy to see that if f(0) = 0, then f satisfies the Drygas
functional equation on X. So we have the following corollary.

Corollary 3. Let X be a quasi-normed space and Y be a quasi-Banach space
and let p ∈ R, p < 0 and ϕ be a positive number. If f : X → Y satisfies
f(0) = 0 and inequality

‖ f(x+ y) + f(x− y − 2f(x)− f(y)− f(−y) ‖Y
≤ ϕθ

(
‖ x ‖pX + ‖ y ‖pX

)θ (2.17)

for all x, y ∈ X0, then f satisfies the functional equation (1.10) on X0.

Corollary 4. Let X be a quasi-normed space and Y be a quasi-Banach space
and let p, q ∈ R, p+ q < 0 and ϕ be a positive number. If f : X → Y satisfies

‖ f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) ‖Y
≤ ϕθ

(
‖ x ‖pX‖ y ‖

q
X

)θ (2.18)

for all x, y ∈ X0, then f satisfies the functional equation (1.10) on X0.

Proof. It is easily seen that the function ε given by

εθ(x, y) =
(
ϕ
(
‖ x ‖pX‖ y ‖

q
X

))θ
for all x, y ∈ X0 satisfies (2.12), since

εθ(mx, ky) = ϕθ
(
‖ mx ‖pX‖ ky ‖

q
X

)θ ≤ ϕθ(mpkq)θ
(
‖ x ‖pX‖ y ‖

q
X

)θ
= (mpkq)θεθ(x, y)

for all x, y ∈ X0, k,m ∈ N and km 6= 0. The remainder of the proof is similar
to the Corollary 1. �

By an analogous conclusion, the function ε given by

εθ(x, y) = ϕθ
(
‖ x ‖pX + ‖ y ‖qX + ‖ x ‖pX‖ y ‖

q
X

)θ
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for all x, y ∈ X0 satisfies (2.12), since

εθ(mx, ky) = ϕθ
(
‖ mx ‖pX + ‖ ky ‖qX + ‖ mx ‖pX‖ ky ‖

q
X

)θ
= ϕθ

(
mp ‖ x ‖pX +kq ‖ y ‖qX +mpkq ‖ x ‖pX‖ y ‖

q
X

)θ
≤ (mp + kq +mpkq)θ εθ(x, y)

for all x, y ∈ X0, k,m ∈ N and km 6= 0. So we have the following corollary.

Corollary 5. Let X be a complex quasi-normed space and Y be a quasi-
Banach space and let p, q ∈ R, p < 0, q < 0, p + q < 0 and ϕ be a positive
number. If f : X → Y satisfies

‖ f(x+ y) + f(x− y)− 2f(x)− f(y)− f(−y) ‖Y
≤ ϕθ

(
‖ x ‖pX + ‖ y ‖qX + ‖ x ‖pX‖ y ‖

q
X

)θ (2.19)

for all x, y ∈ X0, then f satisfies the functional equation (1.10) on X0.

The following result corresponds to the results on the nonhomogeneous
Drygas functional equation (2.20).

Corollary 6. Let X be a quasi-normed space and Y be a quasi-Banach space
and ε as in Theorem 2 and H : X2 → Y. Suppose that ‖ H(x, y) ‖θY≤ εθ(x, y)
for all x, y ∈ X0, where H(x0, y0) 6= 0 for some x0, y0 ∈ X0, and there exists
a nonempty U ∈ l(X) such that (2.3) and (2.14) satisfies. Then the non
homogeneous equation

f(x+ y) + f(x− y) = 2f(x) + 2f(y) + f(−y) +H(x, y) (2.20)

for all x, y ∈ X0, has no solution in the class of functions f : X → Y.

Proof. Let us assume the f : X → Y is a solution to (2.20). Then

‖ f(x+ y) + f(x− y)− 2f(x)− 2f(y)− f(−y) ‖θY
=‖ 2f(x) + f(y) + f(−y) +H(x, y)− 2f(x)− f(y)− f(−y) ‖θY
=‖ H(x, y) ‖θY
≤ εθ(x, y),

for all x, y ∈ X0. Consequently, by Theorem 3, f is a solution of (1.10).
Therefore, we have

H(x0, y0) = f(x0 + y0) + f(x0 − y0)− 2f(x0) + f(y0)− f(−y0) = 0,

which is contradiction. Hence the result. �

Remark 2. If X is normed space and Y is Banach space and K = 1 in Theorem
2, we obtain the corresponding results of Sirouni et al. [28].
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Question. Prove or disprove the conclusion of Theorem 2 in the case Y is
a normed space.
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