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Abstract

In this work, we introduce an efficient meshless technique for solving the two-dimensional variable-order

time-fractional mobile/immobile advection-diffusion model with Dirichlet boundary conditions. The main

advantage of this scheme is to obtain a global approximation for this problem which reduces such problems

to a system of algebraic equations. To approximate the first and fractional variable-order against the time, we

use the finite difference relations. The proposed method is based on the Moving Kriging (MK) interpolation

shape functions. To discretization this model in space variables, we use the MK interpolation. Duo to the fact

that the shape functions of MK have Kronecker’s delta property, boundary conditions are imposed directly

and easily. To illustrate the capability of the proposed technique on regular and irregular domains, several

examples are presented in different kinds of domains and with uniform and nonuniform nodes. Also, we use

this scheme to simulating anomalous contaminant diffusion in underground reservoirs.

Keywords: Meshless local Petrov-Galerkin (MLPG) method, variable-order fractional derivative, Moving

Kriging (MK) interpolation.
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1. Introduction

In the past two decades, fractional calculus has demonstrated its capability in modeling unusual behav-

iors perceived in different kinds of engineering and science [1, 2, 3, 4]. So, their computations have been

the focus of interest for many researchers. Therefore, applications and theory of fractional calculus quickly

expanded [5, 6]. It is very difficult or impossible to find the analytical solution for fractional differential
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equations (FDEs), thus numerical methods are mostly used to solve them. In recent years many different

numerical methods have been applied for FDEs e.g. [7, 8, 9, 10, 8, 11] and references therein. We recall that

the fractional partial differential equations (FPDEs) are extensions of classical partial differential equations

(PDEs). Since the order of fractional derivatives and integrals can have any arbitrary values, various de-

velopments are considered in this concept. Unlike the classical fractional calculus, we consider the order of

fractional derivatives/integrals be a known function of space and/or time variable(s). This is a generalization

of classical fractional derivatives/integrals as variable-order (V-O) fractional derivatives/integrals [12, 13, 14].

V-O fractional calculus is suitable for developing the feature memory which varies with location or time.

Applications of the V-O opinion have been expanded by many researchers, e.g. [15, 16, 17, 18, 19, 20].

Advection-dispersion equation and its generalization (e.g. the mobile/immobile equation) are a composi-

tion of advection and diffusion equations. These equations are applied to model many problems in chemicals,

physical engineering, sciences of the earth [21], energy, transformation of contaminants, deeper river stream

and groundwater [22, 23, 24, 25, 26].

Recently, mobile/immobile fractional differential equation has attracted attentions of many interested

researchers. In this study, we consider the following fractional mobile/immobile advection-diffusion model in

two dimensional as

∂Ψ(x, t)

∂t
+ λ1

∂α(x,t)Ψ(x, t)

∂tα(x,t)
= λ2

∂2Ψ(x, t)

∂x2
+ λ3

∂2Ψ(x, t)

∂y2
+ λ4

∂Ψ(x, t)

∂x
+ λ5

∂Ψ(x, t)

∂y
+ f(x, t), (1.1)

subject to the initial and boundary conditions

Ψ(x, 0) = g(x, t), x = (x, y) ∈ Ω ⊂ R2,

Ψ(x, t) = h(x, t), x ∈ ∂Ω, t ∈ [0, T ], (1.2)

where ∂α(x,t)

∂tα(x,t) is the fractional differential operator with respect to t in the Caputo type as follows

∂α(x,t)Ψ(x, t)

∂tα(x,t)
=

{
1

Γ(1−α(x,t))

∫ t
0

1
(t−η)α(x,t)

∂Ψ(x,η)
∂η dη, 0 < α(x, t) < 1,

∂Ψ(x,t)
∂t , α(x, t) = 1.

(1.3)

In Eq. (1.1) λ1, λ2, λ3, λ4 and λ5 are known constants. Moreover, g, f and h are given functions. Many

numerical methods have been used for solving fractional mobile/immobile equation in Multi-dimensional

case. Authors of [27] proposed an implicit Euler scheme for this equation in one dimension. Salehi and

co-authors used the discrete Hahn polynomials for the numerical solution of this equation in two dimensional

[28]. Authors of [29] expanded a numerical simulation for this equation.

Meshfree techniques [30, 31, 32] are very interesting and impressive for solving PDEs since these methods

include simple projecting, variety in solving metamorphosis and have capability to improve non-smooth

solutions. The meshless local Petrov-Galerkin (MLPG) method is an efficient meshfree method to solve PDEs

with complicated domains. Atluri [33] discussed six different kinds of MLPG techniques by changing the local

weighting function which are called MLPG1, MLPG2,. . . , MLPG6. They are the localized asymmetric weak
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form scheme (MLPG1), the collocation scheme (MLPG2), the discrete least-square method (MLPG3), the

local boundary integration method (MLPG4), the local Heaviside asymmetric method (MLPG5) and the local

Galerkin symmetric scheme (MLPG6) (for other properties see [34, 35, 36]). The major superiority of these

methods compared to the other meshless schemes based on the weak form is the use of local weak form in each

sub-domain (Ωs) instead of a global weak form. Moving least square (MLS) is used to construct the shape

functions of MLPG methods [33]. In the MLPG method based on MLS approximation, applying of essential

boundary conditions is difficult, since the MLS shape functions don’t have the Kronecker delta attribute. We

use the moving Kriging (MK) interpolation instead of MLS approximation to create shape functions of the

MLPG scheme. With this change, the MLPG shape functions have the Kronecker delta property. So, we can

impose the Dirichlet boundary conditions directly and easily. Some authors have employed and improved

the MLPG approach based on the MK interpolation [37, 38, 39]. Here, we use the MLPG2 method based on

MK interpolation to obtain numerical solution of mobile/immobile (1.3).

The structure of this article is as follows: In Section 2, we briefly refer to the variable-order fractional

calculus. In the next Section, the MK interpolation and its shape functions are brought. In Section 4, we

introduce the MLPG2 based on MK interpolation to get the numerical solution of fractional mobile/immobile

advection-diffusion model. To evaluate the accuracy and efficiency of the present method, several examples

are given in Section 5 with various regular and irregular domains and distributed nodes. A momentous

application of fractional calculus is simulation of pollution transport in the underground water reservoirs.

We do this simulation in the last example. Finally, this article will be end with a conclusion.

2. The fractional calculus with variable-order (V-O)

In this part, we briefly refer to the variable order fractional calculus. Also, we provide some definitions

which are needed in our work.

Definition 2.1. If β > 0, the one parameter Mittag-Leffler function is defined as follows [40]

Eβ(w) =

∞∑
i=0

wi

Γ(iβ + 1)
, w ∈ R.

Definition 2.2. If β1, β2 > 0, the two parameters Mittag-Leffler function is defined as follows [40]

Eβ1,β2
(w) =

∞∑
i=0

wi

Γ(iβ1 + β2)
, w ∈ R.

Remark 1. The following feature is an important issue in the V-O fractional definition

∂α(x,t)tn

∂tα(x,t)
=

n!

Γ(n+ 1− α(x, t))
tn−α(x,t), n ∈ N, 0 < α(x, t) ≤ 1.
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3. The moving Kriging (MK) interpolation

The MK interpolation is a well-known geostatic technique for spatial interpolation in geology and mining

[41, 42]. In the following, we will explain the building of meshless shape function by using MK interpolation.

Assume that the problem domain Ω ⊆ R2 is discretized by a set of properly scattered nodes xi, i =

1, 2, . . . , n and u(x) is a function defined in Ω. Similar to the MLS approximation, assume that only N nodes

surrounding point x have the effect on u(x). The MK interpolation uh(x) is defined as follows [41, 43]

uh(x) =

N∑
i=1

φi(x)ui = Φ(x)u, x ∈ Ωx, (3.1)

where

Φ(x) = pT (x)A+ rT (x)B. (3.2)

Matrices A and B are known by the following equations:

A = (PTR−1P )−1PTR−1, (3.3)

B = R−1(I − PA), (3.4)

in which I is an N ×N unit matrix and vector p(x) is

pT (x) = [p1(x) · · · pm(x)], (3.5)

where pj(x), j = 1, 2, . . . ,m is the m polynomial basis functions, which have monomial terms. For example,

for a two-dimensional problem, the linear basis is pT (x) = [1, x, y] and the quadratic basis is pT (x) =

[1, x, y, x2, y2, xy]. Note that we will use a linear basis in our computations in the next sections. Values of

the polynomial basis functions (3.5) at the given set of nodes are collected in the matrix P as follows

P =

 p1(x1) · · · pm(x1)

· · · · · · · · ·
p1(xN ) · · · pm(xN )

 . (3.6)

Also, the vector r(x) in (3.2) is given by

rT (x) =
[
γ(x,x1) · · · γ(x,xN )

]
, (3.7)

where γ(x,xj) is the correlation function between any pair of nodes located at x and xj . Many functions

can be used as a correlation function. In this paper, we use the weight function as follows

γ(x,xi) =

{
1− 6d2

i + 8d3
i − 3d4

i , di ≤ 1,

0, di > 1,
(3.8)
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where di = ‖x−xi‖
ri

, in which ri is the size of support in weight function. In addition, the correlation matrix

R is given in the following form :

R =

 γ(x1,x1) · · · γ(x1,xN )

· · · · · · · · ·
γ(xN ,x1) · · · γ(xN ,xN )

 . (3.9)

The first-order partial derivatives of shape function Φ(x) against the coordinates x and y can be easily

obtained from (3.2) as

∂Φ(x)

∂x
=
∂pT (x)

∂x
A+

∂rT (x)

∂x
B, (3.10)

∂Φ(x)

∂y
=
∂pT (x)

∂y
A+

∂rT (x)

∂y
B. (3.11)

The shape function Φ(x) obtained by the MK interpolation possesses the delta function property. For the

other properties of MK based on the shape functions see [41, 43, 42].

4. Numerical implementation

The local sub-domains overlap each other and cover the whole global domain Ω. They could be of any

geometric shape and size [44]. Here, we use the collocation scheme (MLPG2) to obtain numerical solution of

V-O time fractional advection-diffusion Eq. (5.2). So, the local weak form of (5.2) is as follows∫
Ωs

(
∂Ψ(x, t)

∂t
+ λ1

∂α(x,t)Ψ(x, t)

∂tα(x,t)

)
ν dΩ =

∫
Ωs

(
λ2
∂2Ψ(x, t)

∂x2
+ λ3

∂2Ψ(x, t)

∂y2
(4.1)

+λ4
∂Ψ(x, t)

∂x
+ λ5

∂Ψ(x, t)

∂y
+ f(x, t),

)
ν dΩ,

in which ν = ν(x, t) is the test function. We will use the collocation Dirac’s Delta function δ(x− xI) as the

test function in each sub-domains Ωs. So, the Eq. (4.1) is transferred to

∂Ψ(xI , t)

∂t
+λ1

∂α(xI ,t)Ψ(xI , t)

∂tα(xI ,t)
= λ2

∂2Ψ(xI , t)

∂x2
+λ3

∂2Ψ(xI , t)

∂y2
+λ4

∂Ψ(xI , t)

∂x
+λ5

∂Ψ(xI , t)

∂y
+f(xI , t). (4.2)

Assuming just N points in the neighborhood node xk have the effect on the numerical solution. So, we have

Ψh(x, t) =

N∑
j=1

φj(x)Ψ̂j(t). (4.3)

Substituting the MK interpolation (4.3) in Eq. (4.2), the following system for all nodes will be obtained(
∂Ψh(xI , t)

∂t
+ λ1

∂α(x,t)Ψh(xI , t)

∂tα(x,t)

)
C = KΨ(xI , t) + F. (4.4)
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Note that C is an unit matrix because the shape functions obtained by the MK interpolation have the δ

Kronecker property, and

KIj = λ2
∂2φj(xI)

∂x2
+ λ3

∂2φj(xI)

∂y2
+ λ4

∂φj(xI)

∂x
+ λ5

∂φj(xI)

∂y
, FI = f(xI , t).

To generate a fully discrete scheme of Eq .(4.4), let τ = T
n be the step size of time. So, we define tk = kτ, k =

0, 1, 2, . . . , n, where n is a positive integer. To approximate V-O fractional derivative, we use the following

finite difference technique [45]

∂α(x,t)Ψ(x, tn+1)

∂tα(x,t)
= a(x, tn+1)

[
Ψn+1 −Ψn +

n∑
k=1

bk(x, tn+1) (Ψn−k+1 −Ψn−k)

]
+O

(
τ2−α(x,tn+1)

)
, (4.5)

where a(x, tn+1) = τ−α(x,tn+1)

Γ(2−α(x,tn+1)) , bk(x, tn+1) = (k+ 1)1−α(x,tn+1)− (k)1−α(x,tn+1) and Ψn = Ψ(x, nτ). Also,

∂Ψ(xI , t)

∂t
=

Ψn+1 −Ψn

τ
, Ψ =

1

2
(Ψn+1 + Ψn). (4.6)

Substituting (4.5) and (4.6) in (4.4), results in[
(1− λ1an+1τ)C − τ

2
K
]

Ψn+1 =
[
(1 + λ1an+1τ)C +

τ

2
K
]

Ψn (4.7)

− λ1an+1τC

n∑
k=1

bk(x, tn+1) (Ψn−k+1 −Ψn−k) + τFn+1,

where an+1 = a(x, tn+1) and Fn+1 = F (x, tn+1).

5. Numerical examples

In this section, some test problems are given to indicate the efficiently and accuracy of the presented

numerical scheme. Note that we suppose the global data density of X in Ω as follows [46]

h = hΩ,X = sup
x∈Ω

min
xi∈X

‖x− xi‖.

Also, we use the cubic polynomial basis for constructing the MK interpolation shape functions. In all examples

we illustrate the L∞ error which is defined as follows

L∞ = max ‖ΨNumerical −ΨExact‖∞ = max
i
‖ΨNumerical

i −ΨExact
i ‖,

in which ΨNumerical and ΨExact are numerical and exact solutions, respectively. Moreover, to evaluate the

capability of our method, we report its order in time variable as

C − order =
log
(
L∞(τ1)
L∞(τ2)

)
log
(
τ1
τ2

) ,
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Table 1: The L∞ errors and the C − order of present method for Example 1 over Ω1 with T = 1.

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.001 4.4962e− 06 − 3.1261e− 05 − 3.5573e− 05 −
0.001/2 2.4215e− 06 0.8928 1.5063e− 05 1.0534 1.7157e− 05 1.0505

0.001/4 1.2700e− 06 0.9311 7.3031e− 06 1.0444 8.3209e− 06 1.0440

0.001/8 6.5548e− 07 0.9542 3.5592e− 06 1.0370 4.0646e− 06 1.0338

where, L∞(τ1) and L∞(τ2) are L∞ error related to τ1 and τ2, respectively. These examples are investigated

on the following domains

Ωi =
{

(x, y) ∈ R2 : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
}
, i = 1, 2, (Rectangular),

Ωi =
{

(x, y) ∈ R2 : x = ri cos(θ), y = ri sin(θ), θ ∈ [0, 2π]
}
, i = 3, 4, 5, 6, (Polar),

where r3 = r4 = 3
4

√
cos(5θ) + cos2(2θ) + cos2(θ) and r5 = r6 = 3

256 (81− 9 cos(8θ)). Nodal points distribu-

tion on Ωi, i = 1, . . . , 6 are indicated in Fig. 1. In the case of irregular nodes, we use the Halton nodes.

Example 1. Consider the following time V-O fractional mobile-immobile advection-dispersion model:

∂Ψ(x, t)

∂t
+
∂α(x,t)Ψ(x, t)

∂tα(x,t)
=
∂2Ψ(x, t)

∂x2
+
∂2Ψ(x, t)

∂y2
− ∂Ψ(x, t)

∂x
− ∂Ψ(x, t)

∂y
+ f(x, t),

in which

f(x, t) = 2t+
2t2−α(x,t)

Γ(3− α(x, t))
+ 2x+ 2y − 4.

The exact solution is Ψ(x, t) = x2 + y2 + t2. We have solved this example on Ω1 and Ω2. The initial and

Dirichlet boundary conditions will be obtained by the exact solution. Three cases for α(x, t) are chose as

α(x, t) = 0.5, 0.7 and α(x, t) = 0.8− 0.1 cos(xt) sin(x)− 0.1 cos(yt) sin(y). This example is considered by the

proposed method for t ∈ [0, 1] and error between the exact and numerical solutions are shown in Tables 1

and 2.

Table 1 shows the L∞ errors for different values of fractional order α(x, t). Also, it shows the convergence

order in time variable which computations are done in 21× 21 uniform nodes (Ω1 ).This table indicates that

the proposed method has good accuracy for solving this example for uniform points .

Table 2 reveals the results obtained by the presented scheme in global domain Ω2 (see Fig. 1). The

number of irregular nodes in this case is 484. From this table, we counculd that our method is capable for

solving this problem in irregular distributed nodes. By comparison tables 1 and 2, one can see that this

method in regular case is more accurate than irregular case.

Graphs of numerical results obtained for this example in final time T = 1 on global domain Ω1 are

depicted in Fig. 2, with τ = 0.001. This figure illustrates that the obtained results are in a good agreement

with the analytical solution.
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Fig. 1: Regular and irregular distributed nodes on the domains Ωi, i = 1, 2, . . . , 6.
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Table 2: The L∞ errors and C − order of the presented method for Example 1 in Ω2 with T = 1.

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.001 6.3748e− 05 − 2.1764e− 04 − 2.3062e− 04 −
0.001/2 3.0911e− 05 1.0443 1.0566e− 04 1.0425 1.1199e− 04 1.0421

0.001/4 1.5121e− 05 1.0316 5.1539e− 05 1.0357 5.4625e− 05 1.0357

0.001/8 7.4434e− 06 1.0225 2.5246e− 05 1.0296 2.6749e− 05 1.0301
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Fig. 2: Graphs of the numerical results for Example 1 at t = 1 with τ = 0.001 over Ω1.
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Table 3: The L∞ errors and C − order of presented method for Example 2 over Ω3

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.001 1.0683e− 04 − 9.3108e− 05 − 8.8223e− 05 −
0.001/2 5.1198e− 05 1.0612 4.4102e− 05 1.0781 4.1289e− 05 1.0954

0.001/4 2.3582e− 05 1.1184 2.0006e− 05 1.1404 1.8453e− 05 1.1619

0.001/8 1.0266e− 05 1.1998 9.3341e− 06 1.0998 8.9519e− 06 1.0436

Table 4: The L∞ errors and C − order of the presented method for Example 2 over Ω4 with T = 2.

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.01 5.1201e− 04 − 6.8332e− 04 − 8.4566e− 04 −
0.01/2 2.4241e− 04 1.0787 3.2289e− 04 1.0815 4.0135e− 04 1.0752

0.01/4 1.1174e− 04 1.1173 1.4941e− 04 1.1118 1.8695e− 04 1.1022

0.01/8 5.0408e− 05 1.1484 6.6163e− 05 1.1752 8.3222e− 05 1.1674

Results of tables 1,2 and Fig. 2 show that the proposed method has good accuracy for solving this

example with regular and irregular distributed nodes.

Example 2. In this example, we consider time variable fractional order mobile-immobile advection-dispersion

model

∂Ψ(x, t)

∂t
+
∂α(x,t)Ψ(x, t)

∂tα(x,t)
=
∂2Ψ(x, t)

∂x2
+
∂2Ψ(x, t)

∂y2
− ∂Ψ(x, t)

∂x
− ∂Ψ(x, t)

∂y
+ f(x, t), (5.1)

where, f(x, t) =
[
cos(t) + t1−α(x,t)E2,2−α(x,t)(−t2)− 4 sin(t)

]
e−(x+y). The exact solution is Ψ(x, t) = sin(t)e−(x+y).

The boundary conditions are chosen Dirichlet, and will be determined from the exact solution. Also, the

initial condition is Ψ(x, t) = 0. The results of numerical scheme for this example are obtained on global

domains Ω3 and Ω4 (see Fig. 1).

Table 3 shows the computational on Ω3 whit the regular distributed nodes. Here we use 629 nodes in

boundary of Ω3 and 765 uniform nodes in Ω3. Also, we report the convergence order in time variable for

different kinds of fraction variable order α(x, t). These results reveal that the proposed numerical scheme

has good efficiency for solving this example and the convergence order in time variable is almost O(τ). The

final time is T = 1 and the results are obtain for different time steps. The results of this table confirm that

by decreasing the time step the L∞ error is decreased.

In Table 4, the results of this problem by our method are compared with the analytical solution. Final

time is T = 2 and the global domain is Ω4. The number of nodes in boundary of Ω4 is 629 and 765 irregular

nodes are selected in interior domain Ω4. The L∞ errors related to different time steps are reported in this
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Fig. 3: Graphs of numerical solution and absolute error for Example 1 in T = 1 with τ = 0.001 on Ω3.

table. Also, the order of convergence are shown for different values of α(x, t). From this table, we deduce

that the our numerical scheme has nearly O(τ) order in time variable and has a good performance for solving

this example in irregular distributed nodes. Also, this method is very efficient in large values of time for

solving this example.

The absolute error between proposed scheme and analytical solution and behavior of approximation

solution for this problem are plotted in Fig. 3. This figure illustrates that, the proposed method has good

agreement with the exact solution for this example.

Tables 3, 4 and Fig. 3 reveal that our method is suitable and accurate to obtain numerical solution of

this problem.

Example 3. In this example, we consider the time variable fractional order mobile-immobile advection-

dispersion model (1.1) in the following form

∂Ψ(x, t)

∂t
+
∂α(x,t)Ψ(x, t)

∂tα(x,t)
=
∂2Ψ(x, t)

∂x2
+
∂2Ψ(x, t)

∂y2
− ∂Ψ(x, t)

∂x
− ∂Ψ(x, t)

∂y
+ f(x, t), (5.2)

in which f(x, t) =
[
−e−t + tα(x,t)E1,2−α(x,t)(−t) + 2e−t

]
sin(x) cos(y) + e−t cos(x) cos(y) − e−t sin(x) sin(y).

The exact solution is Ψ(x, t) = exp(−t) sin(x) cos(y). Similar to the previous examples, the Dirichlet bound-

ary and initial conditions will be obtained from the exact solution. We solve this example by the presented

method and the results will be compared with the exact solution. The L∞ errors between our computations

and the exact solution are reported in tables 5 and 6.

In Table 5, the results of our scheme are shown in different time steps. Here, the final time is T = 1

and global domain is Ω5 (see Fig. 1). Also, we use 126 points on boundary of Ω5 and 609 uniform nodes

in interior. The constant values of fractional order α(x, t) are 0.5, 0.7 and the variable order is supposed to

be α(x, t) = 0.8 − 0.1 cos(xt) sin(x) − 0.1 cos(yt) sin(y). The L∞ errors for these values are reported in the
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Table 5: The L∞ errors and the C − order of present method for Example 3 in Ω5.

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.001 3.6492e− 05 − 3.8810e− 05 − 4.0684e− 05 −
0.001/2 1.7439e− 05 1.0653 1.8609e− 05 1.0604 1.9539e− 05 1.0581

0.001/4 7.9149e− 06 1.1397 8.5073e− 06 1.1292 9.0119e− 06 1.1165

0.001/8 3.2035e− 06 1.3049 3.5397e− 06 1.2651 3.7974e− 06 1.2468

Table 6: The L∞ errors and C − order of presented method for Example 3 in Ω6 with final time T = 2.

τ α = 0.5 C − order α = 0.7 C − order α(x, t) C − order

0.01 1.5498e− 04 − 1.6410e− 04 − 1.5442e− 04 −
0.01/2 7.7173e− 05 1.0059 8.2121e− 05 0.9987 7.7065e− 04 1.0027

0.01/4 3.8628e− 05 0.9986 4.1394e− 05 0.9883 3.8582e− 05 0.9986

0.01/8 1.9615e− 05 0.9777 2.1204e− 05 0.9651 1.9607e− 05 0.9766

second, forth and sixth columns of this table. Moreover, the third, fifth and seventh columns of this table

demonstrate the C − order convergence in time variable for these values. From this table, we conclude that

our method has a good accuracy and capability in regular nodes and almost O(τ) order in time variable.

Table 6 provides the numerical results for this example on global domain Ω6 (see Fig. 1). These

computational are done by using 126 nodes on the boundary of this domain, and 609 irregular nodes in its

interior. Here the final time is T = 2 and the time steps decreased from τ = 0.01 to τ = 0.01/8 to get the

C − order convergence in time variable. The different values of α(x, t) are 0.5, 0.7 and the variable order is

considered as α(x, t) = 1− exp(−xyt). The L∞ errors related to this values are reported in columns 2, 4 and

6 of this table, respectively. Also, the c− order for these values are given in columns 3, 5 and 6, respectively.

From this table we conclude that our method has a good efficiency in the large final time and irregular nodes

with approximately O(τ) order in the time variable.

The graphs of the numerical solution and absolute error function at final time T = 1 with time steps

τ = 0.001 on global domain Ω5 are depicted in Fig. 4. From this figure, one can see that our scheme has

good performance for solving Example 3.

The results of tables 5, 6 and Fig. 4 reveal the accuracy and capability of the proposed scheme in the

regular and irregular distributed nodes for solving this problem.

Example 4. Anomalous contaminant diffusion in underground reservoir

One of the important applications of the examined fractional equation is the simulation of pollution

transport in underground water reservoir. To be more specific, as the water passes across various underground

soil layers, the natural or human-produced contaminants can penetrate into the main flow stream and pollute

12



Fig. 4: Graphs of numerical solution and absolute error for Example 3 in t = 1 with τ = 0.001 on Ω5.

the flow entirely. Moreover, as the soil domain includes several heterogeneous pores, the conventional diffusion

equation can not be applied and the incorporation of the anomalous diffusion is essential. In the present

example, the transportation of the contaminant within a rectangular channel is numerically examined. To

generalize the obtained results, it is assumed that the pollution can penetrate the flow stream due to the

blowing/suction at the peripheral channel sides as well as generation inside the channel. Moreover, for the

simulation of the pollutants advection through the channel the streamwise velocity profile is obtained and

applied from the solution of the laminar steady Navier Stokes equation. Besides, a first order chemical

reaction for pollutants removal is also accounted.

The pollution concentration governing equation as well as the initial and boundary conditions are rep-

resented in Eqs (5.3)-(5.5) as [47]

∂ζΨ(x, t)

∂tζ
+ µ1−ζ

(
W 2

D

)ζ
Reϑ

W 2

[
u(y)

∂Ψ(x, t)

∂x
+ v(y)

∂Ψ(x, t)

∂y

]
=

(
W 2

µD

)ζ−1 [
∂2Ψ(x, t)

∂x2
+
∂2Ψ(x, t)

∂y2

]
−K(x)µ1−ζ

(
W 2

D

)ζ
Ψ(x, t) + µ1−ζS(x), (5.3)

where ζ,Ψ,W,K and D are the time fractional order, the pollution concentration, width of the channel,

reaction rate coefficient and diffusion coefficient, respectively. Moreover, it should be noted that the variables

in Eq. (5.3), as stated before, are dimensionless [48]. To account for the contaminant advection, the velocity

components of u and v along and perpendicular to the flow stream are assumed, respectively. Additionally,

µ is the time fractional constant, Re is the Reynolds number, ϑ is the kinematic viscosity and S represents
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the pollution generation source. Eq. (5.3) is numerically solved with the following boundary conditions

Ψ(0, y, t) = 0,
∂Ψ(L/W, y, t)

∂x
= 0, (5.4)

Ψ(x, 0, t) = 0, Ψ(x, 1, t) = 0,

and with initial condition:

Ψ(x, y, t) = 0. (5.5)

According to the boundary conditions, it is assumed that a pollution free stream is entered the rectangular

field from left, while the pollution concentration at the upper and lower faces are set to one and zero,

respectively. Besides, the gradient free (fully developed) boundary condition at the channel outlet as well

as zero concentration at the initial instance are also applied for physical modeling. As stated before, the

velocity components are determined based on the solution of the laminar Navier-Stokes equation as

u(y) =
−4

Reν0

(
eν0yRe − 1

eν0Re − 1
− y
)
, (5.6)

v(y) = ν0. (5.7)

The pollution generation source is also assumed to be applied between locations of x = a and x = b as:

S(x) =
m

1 + e−n(x−a)
− m

1 + e−n(x−b) , (5.8)

The constants in Eq. (5.8) are assigned as m = 2000, n = 20, a = 1.0 and b = 1.5. Based on the introduced

governing equations, the proposed meshless scheme is applied and the results are represented in the following.

The simulation is conducted with the following values for the affecting parameters: ν0 = 0.2, ζ = 0.7, Re =

20,K = 50, D = 10,W = 1.0 and L = 7.0.

The contours of the variations of pollutant concentration within the simulated channel at the final time

(Fig. 5-a) as well as the effect of fractional order magnitude on the concentration profile along a vertical line

(Fig. 5-b) are revealed in Fig. 1. The vertical line is selected at x = a+b
2 which is the center of the pollution

generation region. According to the concentration contours at the final time, it is observed that the boundary

conditions at the peripheral channel surfaces are fully satisfied and the effect of pollution generation between

x = 1.0 and x = 1.5 as a local accumulation of concentration is occurred. Additionally, regarding the effect of

fractional order, it is shown that for lower magnitudes of the fractional order, the non-dimensional diffusion

coefficient is intensified and leads to more propagation of the generated pollution. On the other hand, by

increasing the fractional order the accumulation of contaminant in the source region grows significantly due

to the lower diffusivity coefficient.

6. Conclusion

In the presented work, we applied a meshless scheme for solving V-O fractional mobile/immobile advection-

diffusion equation. In this scheme we used the moving Kriging interpolation to contraction the shape functions
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(a)

(b)

Fig. 5: The variations of the pollution concentration: a) contours at the final time and b) the effect of fractional order.

of MLPG2. By using this method, the boundary conditions were applied directly and easily. The Dirac’s

Delta was employed as a test function over the local sub-domains. To approximate the variable-order frac-

tional derivative, we used the finite difference method. We investigated the capability and accuracy of the

method by solving several examples. Also, we used this method to simulation pollution transport in un-

derground water reservoirs. The obtained results showed that presented scheme was efficient with a good

accuracy to handle these kinds of problems.
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