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Summary

The study of liquid crystals is one of the active areas of research in physics. In this
paper, the MLPG and direct MLPG (DMLPG) methods are used for the numeri-
cal study of the coupled nonlinear sine-Gordon equations in two dimensions arising
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1 INTRODUCTION

1.1 2D coupled nonlinear sine-Gordon equations
Nonlinear PDEs are important in various sciences, especially mathematics, engineering, and physics. Sometimes, researchers
introduce many types of physical systems that require mathematics to solve them, but it’s difficult to solve PDEs analytically.
Hence, They use the numerical methods to approximate solutions. One of the active areas of study in physical systems is liquid
crystals. In recent decades, the study of liquid crystals has been of great importance, since the liquid crystals and their optical
properties are remarkable among other optical materials1,2,3,4.
The dynamic equation of nematic liquid crystal (NLC)molecules is the nonlinear action and reaction among the liquid crystals

and the external electric field. This equation is revealed as anisotropy for different physical parameters5. These parameters can
approximately be given the permittivity anisotropy of NLCs in the direct current (DC) with

Δ� = 4�nhF
[

Δ� −
�2F
3kt

3
2
(1 − 3 cos2 �)

]

s, (1)

where Δ� = �∥ − �⟂, which �∥ is the parallel dirrection and �⟂ is the vertical dirrection of permittivity �. n is the number of
moecules, ℎ = 3�̄∕(2�̄ + 1), �̄ = (2�⟂ + �‖)∕3, F = 1∕(1 − f�̄),f = 4

3
�n(2�̄ − 2)∕(2x̄i + 1), �̄ = (�⟂ + �∥) and Δ� = �∥ − �⟂

which �∥ and �⟂ are the polarizability parallel and vertical to the direction of the molecular long axis respectively5.
The Hamiltonian system of action and reaction energy is as follows

 =
∑

i

[1
n

fE + Er + Vp

]

, (2)
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which fE is the potential energy, Er is the kinetic energy and Vp is the elastic interaction energy where

fE = −
1
2
�⟂E

2 − 1
2
Δ�(n̂.⃖⃖⃗E)2, (3)

Er =
1
2
∑

i
Ii�̇

2
i , (4)

Vp =
1
2
∑

i

(

K(�i+1 − �i)2 + K(�i − �i−1)2
)

. (5)

For more information about parameters and coefficients see5. Now by using (1),(3),(4) and (5) and substituting them into (2),
we will have

)2�i
)t2

− �2∇2�i + � sin 2�i = 0 (6)

where � = 2�ℎF [Δ�+F�2∕(kt)]E2∕I , �2 = Ka2∕I which a is the distance among two adjacent liquid crystal molecules. The
equation (6) holds for any �i so i can be omitted and therefore we have the following 2D non-linear sine-Gordon (SG) equation

)2�
)t2

− �2∇2� + � sin 2� = 0, (7)

This paper focuses on the numerical study of the following 2D coupled nonlinear sine-Gordon (SG) equations which earned
by 2D coupled Klein-Gordon equations

{

utt − Δu = ℎu(u, v)
vtt − c2Δv = ℎv(u, v)

(8)

where Δu = ∇.∇u. The system (8) is Lagrangian with the density

L = 1
2
(

u2t + v
2
t − (∇u)

2 − c2(∇v)2
)

+ ℎ(u, v).

The above Lagrangian system shows two equal equations for the protected energy and momentum
)
)t

[1
2
(

u2t + v
2
t + (∇u)

2 + c2(∇v)2
)

− ℎ(u, v)
]

− ∇
[

ut∇u + c2vt∇v
]

= 0,

)
)t

[

ut∇u + vt∇v
]

− ∇
[1
2
(

u2t + v
2
t + (∇u)

2 + c2(∇v)2
)

+ ℎ(u, v)
]

= 0.

If the potential function ℎ(u, v) = cos(�u − v) − 1, we have the 2D coupled nonlinear sine-Gordon (SG) equations
{

utt − ∇2u = −�2 sin(u − v) + f (x, y, t),
vtt − c2∇2v = sin(u − v) + g(x, y, t),

(9)

where functions f, g ∈ c∞(Ω) and coefficients c, � > 0 are known. This system can describe the open conditions in deoxyri-
bonucleic acid (DNA) and also generalize the Frenkel-Kontorova dislocation model6,7,8. If � → 0 and u = 0, the system (9)
reduces to the sine-Gordon equation (7) for the variable v.
Khusnutdinova and Pelinovsky9 constructed a nonlinear solution for the special case c = 1 and they obtainedweakly nonlinear

solutions for the general case by reduction of the system (9) to nonlinear Schrödinger (NLS) system.
One of the applications of the coupled SG equations is that these equations can explain flexion phenomena of stacked intrinsic

Josephson junction in high-temperature superconductors10. Also, these equations were studied widely for two junction steaks11,
and the coupled SG equations can be applied to the soliton phenomenon and ultimately leads to the expansion of liquid crystal
applications, including optical performance control5.
Many authors tried to find the exact solutions to the coupled SG equations. For example, Ekici et al.12 used two integration

tools to find the soliton solutions to these equations. Also, Salas13 used a special rational exponential method for this purpose.
Some of the numerical methods used for 2D coupled SG equations as follows: the Modified Decomposition method

(MDM)14,15, the RBF and RBF-QR methods16 and the regularization method17.

1.2 The meshless methods, MLPG and DMLPG methods
In recent years, using meshless methods in solving problems in applied sciences and engineering has grown quickly. Also,
meshless methods have been known as good and powerful tools for solving boundary value problems (BVPs).
Classical mesh-based methods have been used in many problems but these methods have some limitations. Due to difficulties

in mesh generation and mesh refinement, these methods lead to higher errors, and the solution is not guaranteed to be accurate
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enough for a long time for complex geometries12. Because of these limitations, researchers have focused on meshless methods
to eliminate these constraints. Another reason for using meshless methods is to reduce the computational time because no mesh
is used. Meshless methods have high accuracy because, for more refinement, the number of nodes can be easily added. Also,
these methods can easily create high-order shape functions18.
According to the classification in19, the meshless methods are classified into three types. The first type is themeshless methods

based on strong forms such as FDM. The second type is themeshlessmethods based onweak forms such as the point interpolation
method (PIM) and the meshless local Petrov-Galerkin (MLPG) method. The third type is the meshless methods based on the
combination of weak and strong forms, such as the meshless weak-strong-form (MWS) method (see19 and references therein).
The MLPG methods, the most famous meshless methods based on weak forms, have been introduced by S.N. Atluri and

collaborators20. The MLPG methods do not use any mesh or background cells for obtaining the interpolation functions or the
integrations and because of this, MLPG methods are truly meshless methods. The most important difference between these
methods and other meshless methods is that the local weak forms are produced around each node in local sub-domains, instead
of using the global weak form.
In the MLPG methods, the moving least squares (MLS) shape functions used for approximating numerical integrals21. These

shape functions are complicated and do not have closed forms. To get accurate results, numerical quadratures with many
integration nodes are required. Thus the MLS subroutines must be called very often, leading to high computational costs.
As an improvement of the MLPGmethod based onMLS approximation, Mirzaei and Schaback22 introduced the Direct mesh-

less local Petrov–Galerkin (DMLPG) method that uses generalized moving least squares (GMLS) approximation instead of the
MLS approximation. The GMLS approximation ignores MLS shape functions completely for integration in the MLPG method
and uses basis polynomials for obtaining DMLPG integrals. Also, boundary conditions and local weak forms are approxi-
mated directly in the GMLS method23. Therefore, the DMLPG methods based on GMLS approximation are simpler, faster, and
sometimes more accurate than the MLPG methods based on the MLS approximation.
There are many papers about the use of MLPG methods for numerical solution of PDEs such as the 2D sine-Gordon

equation24, the electric field integral equation (EFIE)25, the generalized 2D nonlinear Schrödinger equation26, the 3D Poisson
problems27 and so on. Some of the few PDEs that are numerically solved with the DMLPG methods are elliptic interface prob-
lems28, the 2D time-fractional advection-diffusion equation23, some non-linear time-dependent reaction-diffusion systems29,
the generalized Zakharov system30 and the 2D complex Ginzburg–Landau equation31.
A brief outline of this paper is as follows: Section 2 contains a review of the MLPG method and MLS approximation. Section

3 is dedicated to the generalized MLS approximation. Section 4 is about local weak forms of 2D coupled nonlinear sine-Gordon
equations. Numerical implementation of the MLPG and the DMLPG methods on 2D coupled SG equations is given in Section
5. Section 6 is dedicated to the numerical outcomes and finally, a conclusion is given in Section 7.

2 THE MLPG METHODS

The MLPG methods are impressive discretization tactics for numerical solutions of PDEs32,33. These methods approximate
the numerical integrals which result from the local weak form of equations using the shape functions constructed through the
moving least squares (MLS) method.
Generally, meshless methods use a local approximation to construct basis functions by the values of scattered nodes in the

domain of the problem. Now, suppose Ω is the domain of the problem and Ωs is a sub-domain of Ω in the around of a point x.
The MLS approximation of a function Ψ(l)(x) over scattered nodes X = {xj}Nj=1 in Ωs can be written as

Ψ̂(l)(x) = pT (x)a(l)(x) ∀x ∈ Ωs, (10)

where pT (x) = [p1(x), p2(x), ..., pm(x)] is a vector of complete monomial basis and a coefficient vector a(l)(x) = {a(l)i (x)}
m
i=1

can be obtained from minimizing the following quadratic form

H (l)(x) =
N
∑

j=1
wj

[

pT (xj)a(l)(x) − Ψ̂
(l)
j

]2
=
[

P.a(l)(x) − 	̂(l)
]T
W

[

P.a(l)(x) − 	̂(l)
]

(11)

whereN is the number of nodes in Ωs and

PT =
[

p(x1),p(x2),… ,p(xN )
]T

m×N
,
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W = diag
[

w1(x), w2(x),… , wN (x)
]

N×N
.

Finding a stationary point ofH respect to a(l)(x) leads to

B(x)a(l)(x) = C(x)	̂(l), (12)

whereby (12) is a linear relationship between 	̂(l) and a(l)(x), where

B(x) = PTWP =
N
∑

j=1
p(xj)wj(x)pT (xj), (13)

and
C(x) = PTW =

[

p(x1)w1(x),p(x2)w2(x),… ,p(xN )wN (x)
]

. (14)
If the points {xj}N1 are separate then P is full rank and therefore the matrix B is non-singular and the MLS approximation is
well-defined.
By computing a(l)(x) from (12) and put it into (10), we will have

Ψ̂(l)(x) = �T (x).	̂(l) =
N
∑

j=1
�j(x)Ψ̂

(l)
j , x ∈ Ωx, (15)

where
�T (x) = PT (x)B−1(x)C(x), (16)

or

�j(x) =
m
∑

i=1
pi(x)

{

B−1(x)C(x)
}

ij . (17)

�j(x) is named the MLS shape function respect to the nodal point xj .
To find the partial derivative of �j(x) respect to a variable like x we have

�j,ℎ =
m
∑

i=1

(

pi,ℎ[A−1B]ij + pi[A−1B,ℎ + A−1,ℎ B]ij
)

, (18)

where A−1,ℎ = −A
−1A,ℎA−1 and (),ℎ denotes )()∕)x. Therefore

Ψ̂(l),ℎ (x) =
N
∑

j=1
�j,ℎ(x)Ψ̂

(l)
j , x ∈ Ωx. (19)

3 THE GENERALIZED MLS APPROXIMATION

To describe the GMLS approximation, we will use the GMLS method as mention in22 and34. The focus of the method is on
finding good estimations for functional �(Ψ) by nodal values Ψ(x1),⋯Ψ(xN ). For this purpose, we need a generalized version
of MLS, adapted from34.
Let Ψ ∈ ℂm(Ω), m ≥ 0, and {�j(Ψ)}Nj=1 are continuous linear functionals from the dual space ℂm(Ω)∗.
Any approximation of �(Ψ) as �̂(Ψ) should be a linear combination of the Ψ(xj), i.e.

�̂(Ψ) =
N
∑

j=1
aj(�)Ψ(xj), (20)

where the coefficients aj should be linear in �. Also, the same as the MLS, we consider that equation (20) be exact at least for a
Q-dimensional subspace  = span{p1, p2,… , pQ} ⊂ Cm(Ω) (usually  is the space of d-variate polynomials of degree at most
m with dimension Q = (m + d)!∕m!d!)31, i.e.

�̂(Ψ) =
N
∑

j=1
aj(�)p(xj), ∀p ∈  . (21)
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The �̂(Ψ) can be determined as �̂(Ψ) = �(p∗), where p∗ to be found from minimizing the weighted residual functional among
all p ∈  34

N
∑

j=1
!j
[

p(xj) − Ψ(xj)
]2. (22)

The optimal solution a∗(�) ∈ ℝN can be obtained as

a∗(�)T = �(pT )(PTWP)−1PTW, (23)

where the matrices P andW are defined in previous section and

�(pT ) = [�(p1),… , �(pQ)] ∈ ℝQ.

It is notable that in our numerical implementation in the next section the following Gaussian weight function is used

!j(x) =
⎧

⎪

⎨

⎪

⎩

exp
(

−�2r2
)

− exp
(

−�2r20
)

1 − exp
(

−�2r20
) , 0 ≤ r ≤ r0,

0, elsewhere
(24)

where r = ‖x − xj‖2, r0 is the size of the support domains and � = 1∕c is a constant that controls the shape of the weight
function. In our Matlab codes, we set c = 0.1 and r0 = 2mℎ where ℎ is a fill distance of nodes and m is a degree of polynomial
basis functions.

4 LOCAL WEAK FORMS OF THE COUPLED SG EQUATIONS

The local weak form of equations in meshless methods like MLPG and DMLPG is created over local subdomains such as
Ωs ⊂ Ω̄ = Ω ∪ Γ, which is usually a small disk taken around each point in the inner nodes of the domain and the boundary
nodes. These subdomains could have different geometric shapes and sizes22, that are considered circular in this paper.
For each x ∈ Ωs the local weak forms of the equations (9) can be written as

∫
Ωs

()2u
)t2

− ∇2u
)

� dΩ = ∫
Ωs

(

− �2 sin(u − v) + f (x, t)
)

� dΩ, (25)

∫
Ωs

()2v
)t2

− c2∇2v
)

� dΩ = ∫
Ωs

(

sin(u − v) + g(x, t)
)

� dΩ, (26)

Using the linearity of the integral and the Divergence theorem, these weak forms can be written as follows
)2

)t2 ∫
Ωs

u� dΩ − ∫
)Ωs

)u
)n
� dΓ + ∫

Ωs

∇u∇� dΩ = − ∫
Ωs

�2 sin(u − v)� dΩ + ∫
Ωs

f (x, t)� dΩ, (27)

)2

)t2 ∫
Ωs

v� dΩ − c2 ∫
)Ωs

)v
)n
� dΓ + c2 ∫

Ωs

∇v∇� dΩ = ∫
Ωs

sin(u − v)� dΩ + ∫
Ωs

g(x, t)� dΩ, (28)

where � is an arbitrary test function. In (D)MLPG1, � is chosen as Gaussian weight function (24) with this goal that all integrals
over )Ωs will vanish. But in (D)MLPG5, the Heaviside step function is used, and so all integrals that having a derivation of the
test function will be zero20,24,34,35,36,37.

5 NUMERICAL IMPLEMENTATION

In the following two sections, we demonstrate the numerical implementation of theMLPG and DMLPGmethods for 2D coupled
nonlinear SG equations (9) with initial conditions

u(x, y, 0) = u0(x, y), v(x, y, 0) = v0(x, y), (29)
ut(x, y, 0) = l1(x, y), vt(x, y, 0) = l2(x, y). (30)

and Dirichlet boundary conditions.
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5.1 Discreized equations in the MLPG method
In the first step, consider a set of random nodes X = {xj}Nj=1 located on the domain of the problem Ω and its boundary )Ω. In
the second step, we have to consider a time-splitting method to handle the time derivatives in these equations. So, the following
approximation can be used

)2u
)t2

(x) ≃ 1
(dt)2

[

u(k+1)(x) − 2u(k)(x) + u(k−1)(x)
]

, (31)

where u(k) = u(x, kdt). Using (31), (27) and (28) can be written as

� ∫
Ωs

u(k+1)� dΩ − ∫
)Ωs

∇u(k+1).n� dΓ + ∫
Ωs

∇u(k+1)∇� dΩ = 2� ∫
Ωs

u(k)� dΩ − � ∫
Ωs

u(k−1)� dΩ

− ∫
Ωs

�2 sin(u(k) − v(k))� dΩ + ∫
Ωs

f (x, t(k+1))� dΩ, (32)

� ∫
Ωs

v(k+1)� dΩ − c2 ∫
)Ωs

∇v(k+1).n� dΓ + c2 ∫
Ωs

∇v(k+1)∇� dΩ = 2� ∫
Ωs

v(k)� dΩ − � ∫
Ωs

v(k−1)� dΩ

+ ∫
Ωs

sin(u(k) − v(k))� dΩ + ∫
Ωs

g(x, t(k+1))� dΩ, (33)

where � = 1∕(dt)2. Ωs is a local subdomain which it is a circle at point xj and )Ωs is the boundary of Ωs. Considering the
Heaviside step function

�(x) =

{

1, x ∈ Ωs,
0, x ∉ Ωs,

(34)

as a test function, the equations (32) and (33) are simplified as follows

� ∫
Ωs

u(k+1) dΩ − ∫
)Ωs

∇u(k+1).n dΓ = 2� ∫
Ωs

u(k) dΩ − � ∫
Ωs

u(k−1) dΩ − ∫
Ωs

�2 sin(u(k) − v(k)) dΩ + ∫
Ωs

f (x, t(k+1)) dΩ, (35)

� ∫
Ωs

v(k+1) dΩ − c2 ∫
)Ωs

∇v(k+1).n dΓ = 2� ∫
Ωs

v(k) dΩ − � ∫
Ωs

v(k−1) dΩ + ∫
Ωs

sin(u(k) − v(k)) dΩ + ∫
Ωs

g(x, t(k+1)) dΩ. (36)

In theMLPGmethod by using theMLS approximations (15) and (19), quantities of u(k), v(k),∇u(k) and∇v(k) can be approximated
by the nodal values û(k)j and v̂(k)j and then we can rewrite the equations (35) and (36) as follows

N
∑

j=1

⎡

⎢

⎢

⎣

� ∫
Ωs

�j(x) dΩ − ∫
)Ωs

∇�j(x).n dΓ
⎤

⎥

⎥

⎦

û(k+1)j = 2�
N
∑

j=1

⎡

⎢

⎢

⎣

∫
Ωs

�j(x) dΩ
⎤

⎥

⎥

⎦

û(k)j − �
N
∑

j=1

⎡

⎢

⎢

⎣

∫
Ωs

�j(x) dΩ
⎤

⎥

⎥

⎦

û(k−1)j

− ∫
Ωs

�2 sin(u(k) − v(k)) dΩ + ∫
Ωs

f (x, t(k+1)) dΩ, (37)

N
∑

j=1

⎡

⎢

⎢

⎣

� ∫
Ωs

�j(x) dΩ − c2 ∫
)Ωs

∇�j(x).n dΓ
⎤

⎥

⎥

⎦

v̂(k+1)j = 2�
N
∑

j=1

⎡

⎢

⎢

⎣

∫
Ωs

�j(x) dΩ
⎤

⎥

⎥

⎦

v̂(k)j − �
N
∑

j=1

⎡

⎢

⎢

⎣

∫
Ωs

�j(x) dΩ
⎤

⎥

⎥

⎦

v̂(k−1)j

+ ∫
Ωs

sin(u(k) − v(k)) dΩ + ∫
Ωs

g(x, t(k+1)) dΩ. (38)

Now, by calculating the integrals we get to the following system of linear equations
{

A1û(k+1) = B1û(k) + C1û(k−1) −D1 sin(u(k) − v(k)) + F (k+1),
A2v̂(k+1) = B2v̂(k) + C2v̂(k−1) −D2 sin(u(k) − v(k)) + G(k+1),

(39)
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where û(k) =
[

û(k)1 , û
(k)
2 ,⋯ , û(k)N

]T
and v̂(k) =

[

v̂(k)1 , v̂
(k)
2 ,⋯ , v̂(k)N

]T
. Solving the systems (39) lead us to the numerical solutions

of the u and v at each time step for nodal points.

5.2 Discreized equations in the DMLPG method
In the beginning, like the MLPG method, consider a set of random nodesX = {xj}Nj=1 located on the domain of the problem Ω
and its boundary )Ω. By using the local weak forms (27) and (28), all integrals can be approximated using of (20):

�1,k(Ψ) ∶= ∫
Ωs

Ψ� dΩ ≈ �̂1,k(Ψ) =
N
∑

j=1
a1,j(xk)Ψ(xj),

�2,k(Ψ) ∶= ∫
Ωs

∇Ψ.∇� dΩ ≈ �̂2,k(Ψ) =
N
∑

j=1
a2,j(xk)Ψ(xj),

�3,k(Ψ) ∶= ∫
)Ωs

)Ψ
)n
� dΓ ≈ �̂3,k(Ψ) =

N
∑

j=1
a3,j(xk)Ψ(xj).

In DMLPG1, we used the Gaussian function (24) as a test function and therefore the functionals �3,k are vanishes. But, by using
the constant test function � = 1 in DMLPG5, the functionals �2,k become not exist and also the functionals �1,k have simple
forms23,38,31.
Now, using these functionals over weak forms (27) and (28), the following time-dependent systems are obtained

{

A(1) )
2

)t2
u(t) +

(

A(2) − A(3)
)

u(t) = −D1 sin(u(t) − v(t)) + F ,
B(1) )

2

)t2
v(t) + c2

(

B(2) − B(3)
)

v(t) = D2 sin(u(t) − v(t)) + G,
(40)

where u(t) and v(t) are the time-dependent vectors, and D1 and D2 are diagonal matrices, which diagonal elements are areas of
subdomains. The kth row of A(l) and B(l),l = 1, 2, 3 are obtained by using (23) as follow

ak,∶ = bk,∶ = �l,k(pT )(P TWP )−1P TW ,

where

�1,k(p) =
[

∫
Ωs

p1� dΩ,∫
Ωs

p2� dΩ,⋯ ,∫
Ωs

pQ� dΩ
]

,

�2,k(p) =
[

∫
Ωs

∇p1.∇� dΩ,∫
Ωs

∇p2.∇� dΩ,⋯ ,∫
Ωs

∇pQ.∇� dΩ
]

,

�3,k(p) =
[

∫
)Ωs

)p1
)n

� dΓ,∫
)Ωs

)p2
)n

� dΓ,⋯ ,∫
)Ωs

)pQ
)n

� dΓ
]

.

Using the time-splitting method (31) for the time-dependant ODE systems (40) we obtain
⎧

⎪

⎨

⎪

⎩

(

� + A(2) − A(3)
)

u(k+1) = 2�u(k) + �u(k−1) −D1 sin(u(k) − v(k)) + F (k+1),
(

� + c2
(

B(2) − B(3)
)

)

v(k+1) = 2�v(k) + �v(k−1) +D2 sin(u(k) − v(k)) + G(k+1),
(41)

where � = A(1)∕dt2 and � = B(1)∕dt2. The initial conditions (30) are used for computing u−1 and v−1 at the first time step as

u−1 = u1 − 2dtl1, v−1 = v1 − 2dtl2. (42)
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TABLE 1 Maximum errors on regular nodes withN = 121 at t = 1 for example 1.

DMLPG1 MLPG1 MQ RBF
dt Max_err u Max_err v Max_err u Max_err v Max_err u Max_err v
1∕20 1.67(−2) 1.39(−2) 1.67(−2) 1.39(−2) 1.34(−2) 1.93(−2)
1∕80 4.33(−3) 3.93(−3) 4.34(−3) 3.93(−3) 6.77(−3) 6.48(−3)
1∕320 1.06(−3) 9.90(−4) 1.06(−3) 2.88(−4) 1.78(−3) 1.97(−3)
1∕1280 2.38(−4) 2.24(−4) 2.36(−4) 2.21(−4) 4.38(−4) 4.59(−4)

TABLE 2 Maximum errors on regular nodes withN = 121 at t = 1 for example 1.

DMLPG5 MLPG5
dt Max_err u Max_err v Max_err u Max_err v
1∕20 1.63(−2) 1.36(−2) 1.65(−2) 1.38(−2)
1∕80 4.02(−3) 3.64(−3) 4.10(−3) 3.70(−3)
1∕320 7.53(−4) 6.99(−4) 8.04(−4) 7.40(−4)
1∕1280 1.05(−4) 1.38(−4) 6.50(−5) 1.32(−4)

6 NUMERICAL OUTCOMES

To show the suitability of the MLPG and DMLPGmethods for the numerical solution of the 2D coupled SG equations (9) some
computational results will provide in this section. All codes were written in Matlab c© and for boundary and domain integrals a
10-point Gauss-Legendre quadrature is used.

Example 1
Consider the nonlinear sine-Gordon equations (9) in the square domain Ω = [0, 2] × [0, 2] with the analytical solution16

{

u(x, y, t) = t2 sin(x) sin(y),
v(x, y, t) = t2 cos(x + y).

Initial and boundary conditions can be extracted from the above postulated exact solutions. For this example, we have considered
two cases. In the first case, we have used regular nodes and for the second case, we have used Hammersley scattered nodes in
the domain.

Case 1: Regular nodes
In this case, we consider regularly distributed nodes in the domain. Tables 1 and 2 contain maximum errors for the MLPG
and DMLPG methods and RBF-QR method16 at t = 1 with different time steps on 121 (11 × 11) uniform nodes (ℎ = 0.2). By
comparing the results of (D)MLPGmethods with the results of the RBF-QRmethod in16, it is found that the (D)MLPGmethods
have fewer errors.
Table 3 shows the CPU time consumed by the DMLPG and MLPG methods. As can be seen, the time consumed in the

DMLPGmethods is much less than the MLPGmethods, and this is the main advantage of the DMLPGmethods. Also, in Tables
4 and 5 , the numerical convergence rates of the MLPG and DMLPG methods are given. The results show the greater stability
of the results of the DMLPG methods.

Case 2: Hammersley scattered nodes
To see the performance of the MLPG and DMLPGmethods on scattered nodes, consider the Hammersley random nodes (Figure
1 ). Maximum errors and CPU time consumed for (D)MLPG1 and (D)MLPG5 are tabulated in Tables 6 and 7 , respectively.



AUTHOR ONE ET AL 9

TABLE 3 CPU time consumed in the MLPG and DMLPG methods for example 1.

DMLPG MLPG
N 1 5 1 5
121 1.2 1.2 13.4 5.1
441 8.4 7.9 76.5 30.3
1681 73.8 71.4 446.1 191.4

TABLE 4 Numerical convergence rates for example 1.

DMLPG1 MLPG1
N dt u v u v

121 (ℎ = 0.2) 0.01 − − − −
441 (ℎ = 0.1) 0.01∕2 1.38 1.33 1.38 1.33
1681 (ℎ = 0.05) 0.01∕4 1.41 1.41 NaN NaN

TABLE 5 Numerical convergence rates for example 1.

DMLPG5 MLPG5
N dt u v u v

121 (ℎ = 0.2) 0.01 − − − −
441 (ℎ = 0.1) 0.01∕2 1.28 1.22 1.30 1.24
1681 (ℎ = 0.05) 0.01∕4 1.37 1.36 NaN NaN

The results indicate good accuracy of both methods and greater stability of DMLPG results. In Figures 2 and 3 the position
density of u and v are shown for DMLPG1 and DMLPG5.
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FIGURE 1 Hammersley random nodes.
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TABLE 6 Maximum errors and CPU time consumed on Hammersley nodes for example 1.

DMLPG1 MLPG1
N dt Max_err u Max_err v CPU Max_err u Max_err v CPU
36 0.01 3.14(−3) 2.75(−3) 0.3 1.76(−2) 4.98(−2) 1.5
121 0.01∕2 1.74(−3) 1.63(−3) 1.8 1.76(−3) 2.01(−3) 16.8
441 0.01∕4 8.92(−4) 8.32(−4) 16.2 2.10(+5) 4.70(+5) 93.3

TABLE 7 Maximum errors and CPU time consumed on Hammersley nodes for example 1.

DMLPG5 MLPG5
N dt Max_err u Max_err v CPU Max_err u Max_err v CPU
36 0.01 1.86(−3) 1.66(−3) 0.3 3.65(−3) 4.82(−3) 0.6
121 0.01∕2 1.44(−3) 1.34(−3) 1.8 1.48(−3) 1.37(−3) 5.6
441 0.01∕4 8.15(−4) 7.57(−4) 15.5 4.45(+29) 8.02(+29) 37.5
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FIGURE 2 The position density of u by the DMPLG1 and DMLPG5 at t = 1 for example 1.
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FIGURE 3 The position density of v by the DMPLG1 and DMLPG5 at t = 1 for example 1.

Example 2
Now consider the nonlinear sine-Gordon equations (9) with parameters � = 1 and c = 1 in the square domainΩ = [0, 1]× [0, 1]
with the postulated analytical solution16

{

u(x, y, t) = sech(x + y − t),
v(x, y, t) = tanh(x + y − t).

Initial and boundary conditions and right-hand side functions f and g can extract from the exact solutions. The same as the
previous example, we have considered two cases of regular nodes and Hammersley random nodes.
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TABLE 8 Maximum errors on regular nodes withN = 121 at t = 2 for example 2.

DMLPG1 MLPG1 MQ RBF
dt Max_err u Max_err v Max_err u Max_err v Max_err u Max_err v
1∕10 3.51(−3) 2.99(−3) 3.51(−3) 3.99(−3) 2.74(−3) 6.47(−3)
1∕40 1.04(−3) 9.49(−4) 1.03(−3) 9.52(−4) 1.27(−3) 1.21(−3)
1∕160 3.12(−4) 2.77(−4) 3.02(−4) 2.81(−4) 4.05(−4) 4.00(−4)
1∕640 9.32(−5) 6.82(−5) 8.40(−5) 7.27(−5) 1.20(−4) 1.31(−4)

TABLE 9 Maximum errors on regular nodes withN = 121 at t = 2 for example 2.

DMLPG5 MLPG5
dt Max_err u Max_err v Max_err u Max_err v
1∕10 3.42(−3) 3.10(−3) 3.48(−3) 3.99(−3)
1∕40 1.12(−3) 9.90(−4) 1.05(−3) 1.00(−3)
1∕160 4.23(−4) 3.19(−4) 3.38(−4) 3.35(−4)
1∕640 2.40(−4) 1.10(−4) 1.39(−4) 1.29(−4)

TABLE 10 Maximum errors and CPU time consumed on Hammersley nodes for example 2.

DMLPG1 MLPG1
N dt Max_err u Max_err v CPU Max_err u Max_err v CPU
36 0.01 2.73(−2) 2.36(−2) 0.9 1.83(+1) 2.59(+2) 1.9
121 0.01∕2 1.72(−3) 1.66(−3) 5.8 7.54(−2) 6.59(−2) 16.5
441 0.01∕4 5.77(−4) 8.28(−4) 48.3 3.26(+22) 7.17(+22) 117.4

Case1: Regular nodes
In this case, we consider the regular nodes in the domain. Maximum errors for (D)MLPG1 and (D)MLPG5 methods with
N = 121 ℎ = 0.1 and at t = 2 for different time steps are given in Table 8 and Table 9 . The results show a similar accuracy of
both methods. Also, the accuracy of (D)MLPG methods can be compared with the QR RBF method, which is presented in16.
This comparison shows better accuracy of the (D)MLPG methods.
The plot of L∞ errors of MLPG and DMLPG methods for ℎ = 0.2, 0.1 and 0.05 are given in Figures 4 and 5 . As can be

seen in these figures, in ℎ = 0.05, the MLPG1 and MLPG5 are divergent.

Case 2: Hammersley scattered nodes
Again to see the performance of the MLPG and DMLPG methods on scattered nodes, consider the Hammersley random nodes
with N = 36, 121 and 441 nodes. Maximum errors and CPU time consumed for (D)MLPG1 and (D)MLPG5 are tabulated in
Tables 10 and 11 , respectively. The results show that the DMLPG methods are more accurate and the MLPG methods are
divergent forN = 441. The positions density of u and v for DMLPG1 and DMLPG5 are demonstrated in Figures 6 and 7 .

7 CONCLUSIONS

In this paper, we used the MLPG and DMLPG methods to numerically solve the 2D coupled nonlinear Sine-Gordon equations.
By comparing the results from numerical examples, it can be seen that the DMLPGmethod is significantly faster than theMLPG
method because
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FIGURE 4 L∞ errors for u on regular nodes at t = 2 for example 2.
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FIGURE 5 L∞ errors for v on regular nodes at t = 2 for example 2.

TABLE 11 Maximum errors and CPU time consumed on Hammersley nodes for example 2.

DMLPG5 MLPG5
N dt Max_err u Max_err v CPU Max_err u Max_err v CPU
36 0.01 1.69(−2) 1.65(−2) 0.5 5.09(−2) 4.68(−2) 1.1
121 0.01∕2 1.76(−3) 2.27(−3) 5.8 3.17(−3) 2.45(−3) 9.4
441 0.01∕4 6.71(−4) 9.77(−4) 47.4 5.87(+70) 2.48(+70) 68.1

1. The DMLPG methods use direct approximations to estimate boundary conditions and the local weak form of the
differential equations.

2. These methods use basic polynomials instead of complex shape functions to compute numerical integrals on local sub-
domains.

Also by comparing the convergence rates of the two methods, it is observed that in some cases the MLPGmethods are divergent
while the DMLPG methods are convergent. So the DMLPG methods are numerically more stable than the MLPG methods. In
addition, due to the reduced computational volume in the DMLPG methods and reduced the computational errors, the results of
the DMLPGmethods are more accurate than theMLPGmethods. Therefore, in many cases, DMLPGmethods have the potential
to replace MLPG methods.
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