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Abstract

In this paper, we define a non-iterative transformation method for an Ex-
tended Blasius Problem. The original non-iterative transformation method,
which is based on scaling invariance properties, was defined for treazhs
Blasius problem by Topfer in 1912. This method allows us to solve numer-
ically a boundary value problem by solving a related initial value problem
and then rescaling the obtained numerical solution. In recent yearswee h
seen applications of the non-iterative transformation method to sevelal pro
lems of interest.

The obtained numerical results are improved by both a mesh refinement
strategy and Richardson’s extrapolation technique. In this way, wee&an b
confident that the computed six decimal places are correct.
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1 Introduction.

The problem of determining the steady two-dimensional amotf a fluid past a
flat plate placed edge-ways to the stream was formulateciergéterms, accord-
ing to the boundary layer theory, by Prandtl [32], and wagstigated in detail by
Blasius [2]. The engineering interest was to calculate tleasht the plate (skin
friction), which leads to the determination of the viscousgdon the plate, see for
instance Schlichting [38]). In this contest the celebrddaskius problem is given

by
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This is a boundary value problem (BVP) defined on the semiitefimterval
[0,00). According to Weyl [41], the unique solution of (1) has a pigsi sec-
ond order derivative, which is monotone decreasing®m) and approaches to
zero ag) goes to infinity. The governing differential equation and tiwo bound-
ary conditions at the origin in (1) are invariant with respgeche scaling group of
transformations

nt=A9  fr=A0f 2)

wherea is a nonzero constant, classicatly= 1/3; but here we have used also
a = 1 in order to simplify the analysis. The mentioned invareupcoperty has
both analytical and numerical interest. From a numericalpioint a non-iterative
transformation method (ITM) reducing the solution of (1)tkee solution of a
related initial value problem (IVP) was defined by Topfer][4@wing to that
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transformation, a simple existence and uniqueness Thesesgiven by J. Serrin
as reported by Meyer [29, pp. 104-105]. Let us note here tiatentioned
invariance property is essential to the error analysis eftthncated boundary
solution due to Rubel [35], see Fazio [13]. Blasius problem ugesi, recently, by
Boyd [4] as an example were some good analysis, before theutempvention,
allowed researchers of the past to solve problems, govdmyedrtial differential
equations, that might be otherwise impossible to face.

The application of a non-ITM to the Blasius equation with $flgundary con-
dition, arising within the study of gas and liquid flows at tinecro-scale regime
[5, 28], was considered already in [14]. We applied a non-lidvthe Blasius
equation with moving wall considered by Ishak et al. [21] orface gasification
studied by Emmons [6] and recently by Lu and Law [27] or slipibdary condi-
tions investigated by Gad-el-Hak [5] or Martin and Boyd [28}¢ Fazio [16] for
details. In particular, we find a way to solve non-iteratyvidle Sakiadis problem
[36, 37]. As far as the non-ITM is concerned, a recent reviealidg with all the
cited problems can be be found in [18].

Moreover, Topfer's method has been extended to classeslatigons in bound-
ary layer theory involving a physical parameter. This kirfiéxtension was con-
sidered first by Na [30], see also NA [31, Chapters 8-9].

Finally, an iterative extension of the transformation nogetlhas been intro-
duced, for the numerical solution of free BVPs, by Fazio [T9]is iterative exten-
sion has been applied to several problems of interest: fsraadary problems [19,
10, 11], a moving boundary hyperbolic problem [8], Homand Biremenz prob-
lems governed by the Falkner-Skan equation in [9], one-dgimmal parabolic
moving boundary problems [12], two variants of the Blasiugyem [14], namely:
a boundary layer problem over moving surfaces, studieddy&tiemp and Acrivos
[23], and a boundary layer problem with slip boundary caoditthat has found
application in the study of gas and liquid flows at the miccals regime [5, 28],
parabolic problems on unbounded domains [20] and, recesa®/[15], a further
variant of the Blasius problem in boundary layer theory: tbecalled Sakiadis
problem [36, 37]. A recent review dealing with, the derigatand application of,



ITM can be be found by the interested reader in [17].

2 Extended Blasius problem

Our extended Blasius problem is given by,

@ P 1 @
dn3dn2 2 dn?
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whereP verifies the conditions ¥ P < 2, see Schowalter [39], Lee and Ames
[24], Lin and Chern [26], Kim et al. [22], or Akcay and Yukselghl. Liao
[25] has found analytically that the extended Blasius pnobier P = 2 admit an
infinite number of solutions anf therefore in his opinion danconsidered as a

challenge problem for numerical techniques.

2.1 The non-ITM

The applicability of a non-ITM to the Blasius problem (1) is @nsequence of
both: the invariance of the governing differential equatimd the two boundary
conditions at) = 0, and the non invariance of the asymptotic boundary canditi
under the scaling transformation (2). In order to apply aHavi to the BVP (3)
we investigate its invariance with respect to the scaliraygr

f*=Af, n*=A%. (4)

We find that the extended Blasius problem (3) is invariant udeff

2—P
1-2P° ®)
Now, we can integrate the extended Blasius equation in (3)emrin the star vari-

ables o0, ng|, wheren;; is a suitable truncated boundary, with initial conditions

df A2+

(0= G0 =0, G50 =1, ©)
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in order to compute an approximati@;e};(no’g) for g—ﬁ(oo) and the corresponding

value ofA according to the equation

(7)

df 1/(1-9)
A= |G
Once the value ok has been computed by equation (7), we can find the missed
initial condition by the equation

2 2%

GO =A%) ®)
Moreover, the numerical solution of the original BVP (3) casmdomputed by
rescaling the solution of the IVP. In this way we get the dolubf a given BVP
by solving a related IVP.

3 Numerical results

In this section we report the numerical results computeti wiir non-ITM. To
compute the numerical solution, we used the classicallicander Runge-Kutta
method with constant step size. For the results shown ifithuse we used\n =
0.001 andn; = 5. Figure 1 shows the solution of the extended Blasius propblem
describing the behaviour of a boundary layer flow due to a ng¥iat surface
immersed in an otherwise quiescent fluid, correspondifgtd/2. Let us notice
here that, by rescaling, we gef < Ne.

In table 1 we report the missing initial conditicgcz,%(O) obtained by a mesh
refinement. As itis easily seen the decimal digits, stattrtye left of the decimal
point, tend to be confirmed, in particular, here we have caowit the first four
decimal values.

In order to improve the obtained missing initial conditiaiue, we can apply a
Richardson’s extrapolation technique, see [33, 34]. Lebusicer that we would

like to compute the valug = g;f (0) asAn goes to zero, then we can apply the
extrapolation formula
Ugt 1k —Ugk
Ug+1k+1 =Ugr1k+ % ; (©)
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Figure 1: Numerical results of the non-ITM for (3) with= 3/2. The starred vari-
ables problem and the original problem solution componfentsd after rescaling.

wherege {0,1,2,...,G—1}, ke {0,1,2,...,G— 1}, hereg indicates thej-esima
computational gridk the level of extrapolation, and 4 is the true order of the dis-
cretization error for the classical Runge-Kutta method. fBineula (9) is asymp-
totically exact in the limit ag&\n goes to zero if we use uniform grids. We notice
that to obtain each value &fy, 1 k41 requires two computed solutiokk in two
adjacent grids, namelg+ 1 andg at the extrapolation levek. For anyg, the



Table 1: Missing initial condition by mesh refinement.

An 3%2(0)

0.001 0.47001559210
0.0005 0.46953524356
0.00025 0.46929513793
0.000125 0.46917509666

0.0000625 0.46911507775
0.00003125 0.46908506833
0.000015625 0.46907006359
0.0000078125 0.46906256120

levelk = O represents the numerical solutionlbfvithout any extrapolation. The
numerical results obtained applying formula (9) to the galveported in table 1
are reported in table 2.

Naturally, we can stop the mesh refinement as soty agx = Ug « or Richardon’s
extrapolation whetJg k.1 = Ug . Itis evident, from the data reported in table 2,
that we have achieved six decimal places of agreement.

As mentioned before, the caBe= 1 is the Blasius problem (1). In this case our
non-ITM reduces to the original method defined by Topfer [40]that case, the
computed skin friction coefficient value, namely382057336215, obtained with
An = 0.001 andng = 10, is in good agreement with the values available in liter-
ature, see for instance the valu8®2057336215 computed by Fazio [7] by a free
boundary formulation of the Blasius problem or the valug3205733621519630
computed by Boyd [3] who believes all the decimal digits to beect.



Table 2: Missing initial condition by Richardson’s extragtabn.

Ugo

Uga

Ug,2

Ug3

Ug74

Ugs

0.47001559210
0.46953524356
0.46929513793
0.46917509666
0.46911507775
0.46908506833
0.46907006359
0.46906256120

0.46937512738
0.46921510272
0.46913508290
0.46909507145
0.46907506519
0.46906506201
0.46906006040

0.46916176117
0.46910840963
0.46908173430
0.46906839644
0.46906172762
0.46905839320

0.46909686257

0.469072842%6906691477
0.469069950416906098648
0.469058504816905802274
0.469053280.A46905654074

0.46905901038
0.46905703482 0.46905637630
0.46905604674 0.46905571739 0.469038497




4 Concluding remarks.

The main contribution of this paper is the extension of tha-hidM, proposed
by Topfer [40] and defined for the numerical solution of théebeated Blasius
problem [2], to an extended Blasius problem. This methodallos to solve nu-
merically the extended Blasius problem by solving a relatédhi value problem
and then rescaling the obtained numerical solution. Theioét numerical re-
sults, have been improved both by a mesh refinement and urigithardson’s
extrapolation technique. In this way, we can be confidertttiea computed six
decimal place are correct.
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