References
[1] B.C. Sakiadis , Boundary-layer behavior on continuous solid
surface: I. Bound- ary-layer equations for two-dimensional and
axisymmetric flow, J. AIChe. 3 (1961) 26–28 .
[2] L.J. Crane , Flow past a stretching plate, Angew Math. Phys. 2
(1970) 645–647 .
[3] C.Y. Wang , Exact solutions of the steady state Navier-Stokes
equations, Ann. Reviw. Fluid Mech. 23 (1991) 159–177 .
[4] P Guptaand , A.S. Gupta , Heat and mass transfer on a stretching
sheet with suction or blowing, Can. J. Chem. Eng. 55 (1977) 744–746 .
[5] E. Magyari , B. Keller , Exact solutions for self-similar
boundary-layer flows in- duced by permeable stretching walls, Eur. J.
Mech. B. 19 (20 0 0) 109–122 .
[6] T. Hayat , M.I. Khan , M. Farooq , A. Alsaedi , M. Waqas , T.
Yasmeen , Impact of Cat- taneo-Christov heat flux model in flow of
variable thermal conductivity fluid over a variable thicked surface,
Int. J. Heat Mass Transf. 99 (2016) 702–710 .
[7] M.I. Khan , M. Waqas , T. Hayat , A. Alsaedi , A comparative
study of Casson fluid with homogeneous-heterogeneous reactions, J.
Colloid Interface Sci. 498 (2017) 85–90 .
[8] T. Fang , J. Zhang , Closed-form exact solutions of MHD viscous
flow over a shrinking sheet, Commu. Nonlinear Sci. Numer. Simul. 14
(2009) 2853–2857 .
[9] T. Hayat , S. Qayyum , M.I. Khan , A. Alsaedi , Current
progresses about probable error and statistical declaration for
radiative two phase flow using Ag-H 2 O and Cu-H 2 O nanomaterials, Int.
J. Hydrogen Energy 42 (2017) 29107–29120 .
[10] M.I. Khan , T. Hayat , A. Alsaedi , S. Qayyum , M. Tamoor ,
Entropy optimization and quartic autocatalysis in MHD chemically
reactive stagnation point flow of Sisko nanomaterial, Int. J. Heat Mass
Transf. 127 (2018) 829–837 .
[11] J. Goldstein , On backward boundary layers and flow in
converging passages, J. Fluid Mech. 21 (1965) 33–45 .
[12] M. Miklavcic , C.Y. Wang , Viscous flow due to a shrinking
sheet, Quart. Appl. Math. 64 (2006) 283–290 .
[13] Fourier J.B.J 1822, Theorie analytique. De La chaleur Paris.
[14] J. Wang , J. Zhu , X. Zhang , Y. Chen , Heat transfer and
pressure drop of nanoflu- ids containing carbon nanotubes in laminar
flows, Exper. Thermal Fluid Sci. 44 (2013) 716–721 . [15] T. Hayat
, M.I. Khan , M. Waqas , A. Alsaedi , M. Farooq , Numerical simulation
for melting heat transfer and radiation effects in stagnation point flow
of car- bon-water nanofluid, Comput. Method. Appl. Mech. Eng. 315 (2017)
1011–1024 .
[16] T. Hayat , K. Muhammad , M. Farooq , A. Alsaedi , Unsteady
squeezing flow of carbon nanotubes with convective boundary conditions,
PLoS ONE 11 (2016) 0152923 .
[17] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley,
C60: buckminsterfullerene, Nature 318 (1985) 162–163.
[18] S. Iijima, Helical microtubules of graphitic carbon, Nature 354
(1991) 56–58.
[19] S. Ciraci, S. Dag, T. Yildirim, O. Gulseren, R.T. Senger,
Functionalized carbon nanotubes and device applications, J. Phys:
Condens. Matter 16 (2004)
R901–R960.
[20] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang,
S.V. Dubonos, et al., Electric field effect in atomically thin carbon
films, Science 306 (2004)
666–669.
[21] C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani,
Carbon-atom wires 1-D systems with tunable properties, Nanoscale 8
(2016) 4414–4435.
[22] S.U.S. Choi, Enhancing thermal conductivity of fluids with
nanoparticles, in: The Proceedings of the 1995, ASME International
Mechanical Engineering Congress
and Exposition, San Francisco, USA, ASME,1995, pp. 99–105.
[23] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal
conductivity of nanofluid using experimental effective particle volume,
Exp. Heat Transf. 19 (2006)
181–191.
[24] S. Nadeem, C. Lee, Boundary layer flow of nanofluid over an
exponentially stretching surface, Nanoscale Res. Lett. 94 (2012) 7.
[25] M. Sheikholeslami, Numerical simulation of magnetic nanofluid
natural convection in porous media, Phys. Lett. A 381 (2017) 494–503.
[26] M. Sheikholeslami, CuO-water nanofluid free convection in a
porous cavity considering Darcy law, Eur. Phys. J. Plus 132 (2017) 55.
[27] M. Sheikholeslami, Numerical investigation of nanofluid free
convection under the influence of electric field in a porous enclosure,
J. Mol. Liq. 249 (2018)
1212–1221.
[28] M. Sheikholeslami, H.B. Rokni, Simulation of nanofluid heat
transfer in presence of magnetic field,A review, Int. J. Heat Mass
Transf. 115 (2017) 1203–1233.
[29] M. Sheikholeslami, B. Rokni Houman, Numerical simulation for
impact of Coulomb force on nanofluid heat transfer in a porous enclosure
in presence of thermal
radiation, Int. J. Heat Mass Transf. 118 (2018) 823–831.
[30] A.C. Eringen, Simple micropolar fluids, Int. J. Eng. Sci. 2
(1964) 205–217.
[31] A.C. Eringen, Theory of micropolar fluid, J. Math. Mech. 16
(1966) 1–18.
[32] G. Lukaszewicz, Micropolar Fluids: Theory and Applications,
Brikhauser, Basel, 1999.
[33] A.A. Mohammeadein, R.S.R. Gorla, Effects of transverse magnetic
field on a mixed convection in a micropolar fluid on a horizontal plate
with vectored mass
transfer, Acta Mech. 118 (1966) 1–12.
[34] A. Ishak, Y.Y. Lok, L. Pop, Stagnation-point flow over a
shrinking sheet in a micropolar fluid, Chem. Eng. Commun. 1417–1427
(2010) 197.
[35] Abd El-Hakiem, M. Mohammadein, S.M.M. El-KabeirRama, S.R.
Gorla, Joule heating effects on magnetohydrodynamic free convection flow
of a micropolar
fluid, Int. Commun. Heat Mass Transf. 26 (1999) 219–227.
[36] M. Ramzan, M. Farooq, T. Hayat, Jae Dong Chung, Radiative and
Joule heating effects in the MHD flow of a micropolar fluid with partial
slip and convective
boundary condition, J. Mol. Liq. 221 (2016) 394–400.
[37] Nor Azizah Yacob, Anuar Ishak, Ioan Pop, Melting heat transfer
in boundary layer stagnation-point flow towards a stretching/shrinking
sheet in a micropolar fluid, Comput. Fluids 47 (2011) 16–21.
[38] M. Ziaul Haque, M. Mahmud Alam, M. Ferdows, A. Postelnicu,
Micropolar fluid behaviors on steady MHD free convection and mass
transfer flow with constant
heat and mass fluxes, joule heating and viscous dissipation, J. King
Saud. Univ., Eng. Sci. 24 (2012).
[39] Z. Shah, S. Islam, H. Ayaz, S. Khan, Radiative heat and mass
transfer analysis of micropolar nanofluid flow of Casson fluid between
two rotating parallel plates
with effects of Hall current, ASME J. Heat Transf. (2018),
https://doi.org/10.1115/1.4040415.
[40] Z. Shah, S. Islam, T. Gul, E. Bonyah, M.A. Khan, The electrical
MHD and hall current impact on micropolar nanofluid flow between
rotating parallel plates,
Results Phys. 9 (2018) (2018) 1201–1214,
https://doi.org/10.1016/j.rinp.2018.01.064.
[41] S. Nadeem, Rashid Mehmood, S. Masood, Effects of transverse
magnetic field on a rotating micropolar fluid between parallel plates
with heat transfer, J. Magn.
Magn. Mater. 401 (2016) 1006–1014.
[42] P. Forchheimer, Wasserbewegung durch boden, Z. Ver. D. Ing. 45
(1901) 1782–1788.
[43] M. Muskat, The Flow of Homogeneous Fluids through Porous Media,
Edwards, MI, 1946.
[44] D. Pal, H. Mondal, Hydromagnetic convective diffusion of
species in Darcy-Forchheimer porous medium with non-uniform heat
source/sink and variable
viscosity, Int. Commun. Heat Mass Transf. 39 (2012) (913}917).
[45] T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao,
Darcy-Forchheimer flow with variable thermal conductivity and
Cattaneo-Christov heat flux, Int. J. Numer.
Methods Heat Fluid Flow 26 (2016) 2355–2369.
[46] T. Hayat, K. Rafique, T. Muhammad, A. Alsaedi, M. Ayub, Carbon
nanotubes significance in Darcy-Forchheimer flow, Results Phys. 8 (2018)
26–33.
[47] H.P. Greenspan, L.N. Howard, On a time-dependent motion of a
rotating fluid”, J. Fluid Mech. 17 (3) (1963) 385–404.
[48] M.I. Khan , M. Tamoor , T. Hayat , A. Alsaedi , MHD boundary
layer thermal slip flow by nonlinearly stretching cylinder with
suction/blowing and radiation, Re- sults Phys 7 (2017) 1207–1211 .
[49] M.I. Khan , T. Hayat , M. Waqas , M.I. Khan , A. Alsaedi ,
Entropy generation mini- mization (EGM) in nonlinear mixed convective
flow of nanomaterial with Joule heating and slip condition, J. Mol. Liq.
256 (2018) 108–120 .
[50] M. Waqas , A mathematical and computational framework for heat
transfer analysis of ferromagnetic non-Newtonian liquid subjected to
heterogeneous and homogeneous reactions, J. Magn. Magnet. Mater. 493
(2020) 165646 .
[51] M. Waqas, Simulation of revised nanofluid model in the
stagnation region of cross fluid by expanding-contracting cylinder, Int.
J. Numer. Meth. Heat & Fluid Flow (2019), doi: 10.1108/HFF- 12- 2018-
0797 .
[52] T. Hayat , M.W.A Khan , A. Alsaedi , M.I. Khan , Corrigendum to
Squeezing flow of second grade liquid subject to non-Fourier heat flux
and heat genera- tion/absorption, Colloid Polymer Sci. 295 (2017) 2439 .
[53] M.I. Khan , S. Ullah , T. Hayat , M.I. Khan , A. Alsaedi ,
Entropy generation min- imization (EGM) for convection nanomaterial flow
with nonlinear radiative heat flux, J. Mol. Liq. 260 (2018) 279–291 .
[54] M.I. Khan , M. Waqas , T. Hayat , M.I. Khan , A. Alsaedi ,
Numerical simulation of nonlinear thermal radiation and
homogeneous-heterogeneous reactions in convective flow by a variable
thicked surface, J. Mol. Liq. 246 (2017) 259–267 .
[55] M. Tamoor , M. Waqas , M.I. Khan , A. Alsaedi , T. Hayat ,
Magnetohydrodynamic flow of Casson fluid over a stretching cylinder,
Results Phys. 7 (2017) 498–502 .
[56] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , Newtonian
heating effect in nanofluid flow by a permeable cylinder, Results Phys.
7 (2017) 256–262 .
[57] P. Forchheimer , Wasserbewegung durch boden, Z Ver D Ing. 45
(1901) 1782–1788 .
[58] M.A. Seddeek , Influence of viscous dissipation and
thermophoresis on Darcy–Forchheimer mixed convection in a fluid
saturated porous media, J. Colloid In- terface Sci. 293 (2006) 137–142
.
[59] M. Muskat , The flow of homogeneous fluids through porous
media, Physics 7 (1936) 346 . [60] T. Hayat , T. Muhammad , S.Al
Mezal , S.J. Liao ,Darcy-Forchheimer flow with variable thermal
conductivity and Cattaneo-Christov heat flux, Int. J. Numer. Methods
Heat Fluid Flow 26 (2016) 2355–2369 .
[61] T. Hayat , F. Shah , A. Alsaedi , Z. Hussain ,Outcome of
homogeneous and hetero- geneous reactions in Darcy-Forchheimer flow with
nonlinear thermal radiation and convective condition, Results Phys. 7
(2017) 2497–2505 .
[62] T. Hayat , M. Waqas , M.I. Khan , A. Alsaedi , S.A. Shehzad ,
Magnetohydrodynamic flow of Burgers fluid with heat source and power law
heat flux, Chin. J. Phys. 55 (2017) 318–330 . [63] T. Hayat , M.I.
Khan , M. Waqas , A. Alsaedi , Effectiveness of magnetic nanoparti- cles
in radiative flow of Eyring-Powell fluid, J. Mol. Liq. 231 (2017)
126–133 .
[64] M.I. Khan , S. Qayyum , T. Hayat , M.I. Khan , A . Alsaedi ,
T.A . Khan , Entropy gen- eration in radiative motion of tangent
hyperbolic nanofluid in presence of activation energy and nonlinear
mixed convection, Phys. Lett. A 382 (2018) 2017–2026 .
[65] T. Hayat , S. Qayyum , M.I. Khan , A. Alsaedi , Modern
developments about statis- tical declaration and probable error for skin
friction and Nusselt number with copper and silver nanoparticles,
Chinese J. Phys. 55 (2017) 2501–2513 .
[66] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , On
Cattaneo–Christov heat flux in the flow of variable thermal
conductivity Eyring–Powell fluid, Results Phys. 7 (2017) 446–450 .
[67] Yasir Nawaz, Keller-Box shooting method and its application to
nanofluid flow over convectively
heated sheet with stability and convergence, NUMERICAL HEAT TRANSFER,
PART B:
FUNDAMENTALS 2019, VOL. 76, NO. 3, 152–180.