References
[1] B.C. Sakiadis , Boundary-layer behavior on continuous solid surface: I. Bound- ary-layer equations for two-dimensional and axisymmetric flow, J. AIChe. 3 (1961) 26–28 .
[2] L.J. Crane , Flow past a stretching plate, Angew Math. Phys. 2 (1970) 645–647 .
[3] C.Y. Wang , Exact solutions of the steady state Navier-Stokes equations, Ann. Reviw. Fluid Mech. 23 (1991) 159–177 .
[4] P Guptaand , A.S. Gupta , Heat and mass transfer on a stretching sheet with suction or blowing, Can. J. Chem. Eng. 55 (1977) 744–746 .
[5] E. Magyari , B. Keller , Exact solutions for self-similar boundary-layer flows in- duced by permeable stretching walls, Eur. J. Mech. B. 19 (20 0 0) 109–122 .
[6] T. Hayat , M.I. Khan , M. Farooq , A. Alsaedi , M. Waqas , T. Yasmeen , Impact of Cat- taneo-Christov heat flux model in flow of variable thermal conductivity fluid over a variable thicked surface, Int. J. Heat Mass Transf. 99 (2016) 702–710 .
[7] M.I. Khan , M. Waqas , T. Hayat , A. Alsaedi , A comparative study of Casson fluid with homogeneous-heterogeneous reactions, J. Colloid Interface Sci. 498 (2017) 85–90 .
[8] T. Fang , J. Zhang , Closed-form exact solutions of MHD viscous flow over a shrinking sheet, Commu. Nonlinear Sci. Numer. Simul. 14 (2009) 2853–2857 .
[9] T. Hayat , S. Qayyum , M.I. Khan , A. Alsaedi , Current progresses about probable error and statistical declaration for radiative two phase flow using Ag-H 2 O and Cu-H 2 O nanomaterials, Int. J. Hydrogen Energy 42 (2017) 29107–29120 .
[10] M.I. Khan , T. Hayat , A. Alsaedi , S. Qayyum , M. Tamoor , Entropy optimization and quartic autocatalysis in MHD chemically reactive stagnation point flow of Sisko nanomaterial, Int. J. Heat Mass Transf. 127 (2018) 829–837 .
[11] J. Goldstein , On backward boundary layers and flow in converging passages, J. Fluid Mech. 21 (1965) 33–45 .
[12] M. Miklavcic , C.Y. Wang , Viscous flow due to a shrinking sheet, Quart. Appl. Math. 64 (2006) 283–290 .
[13] Fourier J.B.J 1822, Theorie analytique. De La chaleur Paris.
[14] J. Wang , J. Zhu , X. Zhang , Y. Chen , Heat transfer and pressure drop of nanoflu- ids containing carbon nanotubes in laminar flows, Exper. Thermal Fluid Sci. 44 (2013) 716–721 . [15] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , M. Farooq , Numerical simulation for melting heat transfer and radiation effects in stagnation point flow of car- bon-water nanofluid, Comput. Method. Appl. Mech. Eng. 315 (2017) 1011–1024 .
[16] T. Hayat , K. Muhammad , M. Farooq , A. Alsaedi , Unsteady squeezing flow of carbon nanotubes with convective boundary conditions, PLoS ONE 11 (2016) 0152923 .
[17] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, C60: buckminsterfullerene, Nature 318 (1985) 162–163.
[18] S. Iijima, Helical microtubules of graphitic carbon, Nature 354 (1991) 56–58.
[19] S. Ciraci, S. Dag, T. Yildirim, O. Gulseren, R.T. Senger, Functionalized carbon nanotubes and device applications, J. Phys: Condens. Matter 16 (2004)
R901–R960.
[20] K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, et al., Electric field effect in atomically thin carbon films, Science 306 (2004)
666–669.
[21] C.S. Casari, M. Tommasini, R.R. Tykwinski, A. Milani, Carbon-atom wires 1-D systems with tunable properties, Nanoscale 8 (2016) 4414–4435.
[22] S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in: The Proceedings of the 1995, ASME International Mechanical Engineering Congress
and Exposition, San Francisco, USA, ASME,1995, pp. 99–105.
[23] H.U. Kang, S.H. Kim, J.M. Oh, Estimation of thermal conductivity of nanofluid using experimental effective particle volume, Exp. Heat Transf. 19 (2006)
181–191.
[24] S. Nadeem, C. Lee, Boundary layer flow of nanofluid over an exponentially stretching surface, Nanoscale Res. Lett. 94 (2012) 7.
[25] M. Sheikholeslami, Numerical simulation of magnetic nanofluid natural convection in porous media, Phys. Lett. A 381 (2017) 494–503.
[26] M. Sheikholeslami, CuO-water nanofluid free convection in a porous cavity considering Darcy law, Eur. Phys. J. Plus 132 (2017) 55.
[27] M. Sheikholeslami, Numerical investigation of nanofluid free convection under the influence of electric field in a porous enclosure, J. Mol. Liq. 249 (2018)
1212–1221.
[28] M. Sheikholeslami, H.B. Rokni, Simulation of nanofluid heat transfer in presence of magnetic field,A review, Int. J. Heat Mass Transf. 115 (2017) 1203–1233.
[29] M. Sheikholeslami, B. Rokni Houman, Numerical simulation for impact of Coulomb force on nanofluid heat transfer in a porous enclosure in presence of thermal
radiation, Int. J. Heat Mass Transf. 118 (2018) 823–831.
[30] A.C. Eringen, Simple micropolar fluids, Int. J. Eng. Sci. 2 (1964) 205–217.
[31] A.C. Eringen, Theory of micropolar fluid, J. Math. Mech. 16 (1966) 1–18.
[32] G. Lukaszewicz, Micropolar Fluids: Theory and Applications, Brikhauser, Basel, 1999.
[33] A.A. Mohammeadein, R.S.R. Gorla, Effects of transverse magnetic field on a mixed convection in a micropolar fluid on a horizontal plate with vectored mass
transfer, Acta Mech. 118 (1966) 1–12.
[34] A. Ishak, Y.Y. Lok, L. Pop, Stagnation-point flow over a shrinking sheet in a micropolar fluid, Chem. Eng. Commun. 1417–1427 (2010) 197.
[35] Abd El-Hakiem, M. Mohammadein, S.M.M. El-KabeirRama, S.R. Gorla, Joule heating effects on magnetohydrodynamic free convection flow of a micropolar
fluid, Int. Commun. Heat Mass Transf. 26 (1999) 219–227.
[36] M. Ramzan, M. Farooq, T. Hayat, Jae Dong Chung, Radiative and Joule heating effects in the MHD flow of a micropolar fluid with partial slip and convective
boundary condition, J. Mol. Liq. 221 (2016) 394–400.
[37] Nor Azizah Yacob, Anuar Ishak, Ioan Pop, Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet in a micropolar fluid, Comput. Fluids 47 (2011) 16–21.
[38] M. Ziaul Haque, M. Mahmud Alam, M. Ferdows, A. Postelnicu, Micropolar fluid behaviors on steady MHD free convection and mass transfer flow with constant
heat and mass fluxes, joule heating and viscous dissipation, J. King Saud. Univ., Eng. Sci. 24 (2012).
[39] Z. Shah, S. Islam, H. Ayaz, S. Khan, Radiative heat and mass transfer analysis of micropolar nanofluid flow of Casson fluid between two rotating parallel plates
with effects of Hall current, ASME J. Heat Transf. (2018), https://doi.org/10.1115/1.4040415.
[40] Z. Shah, S. Islam, T. Gul, E. Bonyah, M.A. Khan, The electrical MHD and hall current impact on micropolar nanofluid flow between rotating parallel plates,
Results Phys. 9 (2018) (2018) 1201–1214, https://doi.org/10.1016/j.rinp.2018.01.064.
[41] S. Nadeem, Rashid Mehmood, S. Masood, Effects of transverse magnetic field on a rotating micropolar fluid between parallel plates with heat transfer, J. Magn.
Magn. Mater. 401 (2016) 1006–1014.
[42] P. Forchheimer, Wasserbewegung durch boden, Z. Ver. D. Ing. 45 (1901) 1782–1788.
[43] M. Muskat, The Flow of Homogeneous Fluids through Porous Media, Edwards, MI, 1946.
[44] D. Pal, H. Mondal, Hydromagnetic convective diffusion of species in Darcy-Forchheimer porous medium with non-uniform heat source/sink and variable
viscosity, Int. Commun. Heat Mass Transf. 39 (2012) (913}917).
[45] T. Hayat, T. Muhammad, S. Al-Mezal, S.J. Liao, Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux, Int. J. Numer.
Methods Heat Fluid Flow 26 (2016) 2355–2369.
[46] T. Hayat, K. Rafique, T. Muhammad, A. Alsaedi, M. Ayub, Carbon nanotubes significance in Darcy-Forchheimer flow, Results Phys. 8 (2018) 26–33.
[47] H.P. Greenspan, L.N. Howard, On a time-dependent motion of a rotating fluid”, J. Fluid Mech. 17 (3) (1963) 385–404.
[48] M.I. Khan , M. Tamoor , T. Hayat , A. Alsaedi , MHD boundary layer thermal slip flow by nonlinearly stretching cylinder with suction/blowing and radiation, Re- sults Phys 7 (2017) 1207–1211 .
[49] M.I. Khan , T. Hayat , M. Waqas , M.I. Khan , A. Alsaedi , Entropy generation mini- mization (EGM) in nonlinear mixed convective flow of nanomaterial with Joule heating and slip condition, J. Mol. Liq. 256 (2018) 108–120 .
[50] M. Waqas , A mathematical and computational framework for heat transfer analysis of ferromagnetic non-Newtonian liquid subjected to heterogeneous and homogeneous reactions, J. Magn. Magnet. Mater. 493 (2020) 165646 .
[51] M. Waqas, Simulation of revised nanofluid model in the stagnation region of cross fluid by expanding-contracting cylinder, Int. J. Numer. Meth. Heat & Fluid Flow (2019), doi: 10.1108/HFF- 12- 2018- 0797 .
[52] T. Hayat , M.W.A Khan , A. Alsaedi , M.I. Khan , Corrigendum to Squeezing flow of second grade liquid subject to non-Fourier heat flux and heat genera- tion/absorption, Colloid Polymer Sci. 295 (2017) 2439 .
[53] M.I. Khan , S. Ullah , T. Hayat , M.I. Khan , A. Alsaedi , Entropy generation min- imization (EGM) for convection nanomaterial flow with nonlinear radiative heat flux, J. Mol. Liq. 260 (2018) 279–291 .
[54] M.I. Khan , M. Waqas , T. Hayat , M.I. Khan , A. Alsaedi , Numerical simulation of nonlinear thermal radiation and homogeneous-heterogeneous reactions in convective flow by a variable thicked surface, J. Mol. Liq. 246 (2017) 259–267 .
[55] M. Tamoor , M. Waqas , M.I. Khan , A. Alsaedi , T. Hayat , Magnetohydrodynamic flow of Casson fluid over a stretching cylinder, Results Phys. 7 (2017) 498–502 .
[56] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , Newtonian heating effect in nanofluid flow by a permeable cylinder, Results Phys. 7 (2017) 256–262 .
[57] P. Forchheimer , Wasserbewegung durch boden, Z Ver D Ing. 45 (1901) 1782–1788 .
[58] M.A. Seddeek , Influence of viscous dissipation and thermophoresis on Darcy–Forchheimer mixed convection in a fluid saturated porous media, J. Colloid In- terface Sci. 293 (2006) 137–142 .
[59] M. Muskat , The flow of homogeneous fluids through porous media, Physics 7 (1936) 346 . [60] T. Hayat , T. Muhammad , S.Al Mezal , S.J. Liao ,Darcy-Forchheimer flow with variable thermal conductivity and Cattaneo-Christov heat flux, Int. J. Numer. Methods Heat Fluid Flow 26 (2016) 2355–2369 .
[61] T. Hayat , F. Shah , A. Alsaedi , Z. Hussain ,Outcome of homogeneous and hetero- geneous reactions in Darcy-Forchheimer flow with nonlinear thermal radiation and convective condition, Results Phys. 7 (2017) 2497–2505 .
[62] T. Hayat , M. Waqas , M.I. Khan , A. Alsaedi , S.A. Shehzad , Magnetohydrodynamic flow of Burgers fluid with heat source and power law heat flux, Chin. J. Phys. 55 (2017) 318–330 . [63] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , Effectiveness of magnetic nanoparti- cles in radiative flow of Eyring-Powell fluid, J. Mol. Liq. 231 (2017) 126–133 .
[64] M.I. Khan , S. Qayyum , T. Hayat , M.I. Khan , A . Alsaedi , T.A . Khan , Entropy gen- eration in radiative motion of tangent hyperbolic nanofluid in presence of activation energy and nonlinear mixed convection, Phys. Lett. A 382 (2018) 2017–2026 .
[65] T. Hayat , S. Qayyum , M.I. Khan , A. Alsaedi , Modern developments about statis- tical declaration and probable error for skin friction and Nusselt number with copper and silver nanoparticles, Chinese J. Phys. 55 (2017) 2501–2513 .
[66] T. Hayat , M.I. Khan , M. Waqas , A. Alsaedi , On Cattaneo–Christov heat flux in the flow of variable thermal conductivity Eyring–Powell fluid, Results Phys. 7 (2017) 446–450 .
[67] Yasir Nawaz, Keller-Box shooting method and its application to nanofluid flow over convectively
heated sheet with stability and convergence, NUMERICAL HEAT TRANSFER, PART B:
FUNDAMENTALS 2019, VOL. 76, NO. 3, 152–180.