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Abstract

This paper analyzes a SIS model for infectious diseases with two classes of individ-
uals with different susceptibilities. It focuses in a transition function between both
classes of susceptible individuals depending on the density of the infected population.
A classification of all the possible bifurcation diagrams that the model can present
is done. Specifically, some conditions for the simultaneous existence of backward
bifurcation and multiple endemic states are shown.
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1 INTRODUCTION

Human behavior plays an important role in the spread of infectious diseases, and understanding the influence of behavior on
the spread of diseases can be key to improving control efforts.1 During the initial phase of the epidemics, most people and
public mass media are in general unaware of the disease, but as the awareness of it disseminates, people respond and eventually
change their behavior to reduce their susceptibility. People aware of the danger of the epidemic spread adopt practices to try to
minimize their exposure to contagion, a fact that may deeply influence the epidemic pattern.2,3

Awareness can have very complex and sometimes unexpected effects on the dynamics of the disease spread. It can have a
clearly positive influence, where disease propagation is minimized or fully stopped by various disease control measures. On
the other hand, the spread of information about a disease can also result in anxiety and panic, which can lead to undesired
consequences. In light of this complexity of behavioral changes in the population in the presence of awareness, it is important
to understand how the concurrent spread of the disease and awareness affects disease dynamics.4,5

In recent years, theoretical epidemiology has called attention to the existence of multiple endemic equilibria and the neces-
sary conditions for their existence. Some of the cases in the literature that show the existence of multiple endemic states are
related to the backward bifurcation phenomena.6,7,8,9,10,11 The existence of a backward bifurcation has important consequences
in the strategies and control policies designed to eradicate or control an infectious disease because the policies of public health
when this phenomenon appears change from the classically adopted ones.12

In this work we show an epidemiological model which considers behavioral changes of the population caused by the per-
ception they have about the disease. The susceptible population is divided into two classes: aware susceptible and unaware
susceptible. There are two transition functions between these classes, depending on the density of infected individuals in the
population: the first one from the unaware to the aware class and the other one in the reverse direction.
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The objective of this work is to investigate the effect of different preventive behavioral changes in the dynamics of the
infectious diseases. These behavioral changes cause the appearance or disappearance of endemic equilibrium in the system
described by the model. The different bifurcation diagrams associated to the system that can appear by these changes will be
classified, and we will establish the conditions for the presence of backward bifurcation and multiple endemic states.

The paper is organized as follows. In Section 2 we formulate the mathematical model and present its basic properties. We
derive the basic reproduction number R0 in section 3, and we write it as a function of the number of infected individuals, in
order to find the endemic states. In section 4 we explore how the parameters of the transition functions between susceptible
classes generate bifurcation diagrams with some different topological characteristics, and we make a classification of them. A
final discussion section concludes the paper in Section 5.

2 THE MODEL

We consider a SIS-type epidemic model for two social groups with different susceptibilities. We divide the population, which
is assumed to be constant, into susceptibles unaware of the disease, whose proportion is denoted by S1, susceptibles aware of
the disease, whose proportion is denoted by S2, and infected individuals, whose proportion is denoted by I 13.

As the awareness disseminates, people respond to it and eventually will change their behavior to alter their susceptibility.
Usually, aware susceptible individuals contract the disease at a lower rate than unaware individuals. The disease is transmitted
from infected to susceptible individuals following a mass action functional form. Also, infected individuals recover through
appropriate treatment. We assume that the awareness rate is proportional to the number of infected individuals whereas the
depletion of the aware class is inversely proportional to the number of infected individuals.14,15 With these assumptions, the
model has the form:

S ′

1 = −�1S1I − c1(I)S1 + c2(I)S2 + I
S ′

2 = −�2S2I + c1(I)S1 − c2(I)S2

I ′ = (�1S1 + �2S2)I − I
(1)

where �1 and �2 represent the disease transmission rates of each susceptible population, with �1 > �2 ≥ 0;  ≥ 0 is the recovery
rate; the transition rate from the unaware class to the aware class is expressed by the non decreasing function c1(I) and the
reverse rate is expressed by the not increasing function c2(I), that is

c1(I) ≥ 0, c2(I) ≥ 0, c′1(I) ≥ 0, c′2(I) ≤ 0 ∀I ∈ [0, 1] (2)

3 EQUILIBRIA ANALYSIS

There is a disease free state (S∗
1 , S

∗
2 , 0) with

S∗
1 =

c2(0)
c1(0) + c2(0)

, S∗
2 =

c1(0)
c1(0) + c2(0)

(3)

where c1(0) + c2(0) > 0.

Let R1 = �1∕ and R2 = �2∕ be the basic reproduction numbers for a population consisting only of S1 or only of S2
individuals, respectively. Then the basic reproduction number R0 of the uninfected population is

R0 =
�1

S∗
1 +

�2

S∗
2 =

R1c2(0) + R2c1(0)
c1(0) + c2(0)

(4)

To determine the endemic states, we will find a bifurcation equation for the prevalence I depending on the parameters. This
equation assumes the form F (I) = 016, where the function F (I) is given by

F (I) = c1(I)[1 − R2(1 − I)] + [R2I + c2(I)][1 − R1(1 − I)] (5)

It follows that F (0) = 0 if and only if R0 = 1.
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In the case R1 < 1 then F (I) > 0 for all I ∈ [0, 1]. In the case R2 > 1 then F (0) = 0 only if c1(0) = c2(0) = 0; but
c1(0) + c2(0) ≠ 0 and then from equation (4) R0 is not well defined. Thus the interesting case occurs if R2 < 1 < R1.

The equation (5) can be solved for R1, that is, R1 can be expressed as a function of I , where 0 ≤ I < 1. This function takes
the form

R1(I) =
1 +

c1(I)[1 − R2(1 − I)]
R2I + c2(I)
1 − I

(6)
This expression of R1 is introduced into equation (4) to obtain the basic reproduction number as a function of the endemic

state

R0(I) =

[

1 +
c1(I)[1 − R2(1 − I)]

R2I + c2(I)

]

c2(0)
1 − I

+ c1(0)R2

c1(0) + c2(0)
(7)

The function R0(I) is continuous in [0, 1). It satisfies R0(0) = 1 and lim
I→1−

R0(I) → ∞.

4 AWARENESS TRANSITION RATE

For model (1) let c2(I) = c2 be constant and let c1(I) be the function

c1(I) =
r

1 + e−s(I−Im)
(8)

where r ≥ 0 represents the maximum transition rate from the unaware class to the aware class, s ≥ 0 represents the reaction
speed to new infected individuals and Im ∈ [0, 1] represents the infection level such that the change in the behavior is the most
drastic.

When the disease reaches the infection level Im, the susceptible individuals change rapidly their behavior from unaware to
aware caused by panic to the disease, in order to reduce their susceptibility. Depending on the moment and the speed of this
reaction, it could exist different scenarios of the disease. These scenarios are represented by the bifurcation diagrams related to
the model (1) and the graphic of the function (7).

4.1 Backward bifurcation
Finding the direction of the derivative in I = 0 of the function R0(I) defined in (7), we can determine the conditions for the
existence of backward bifurcation in the model (1). If R′

0(0) < 0 then there is backward bifurcation, that is

c22 +
r

1 + esIm
[

c2 − R2(1 − R2)
]

+ rsesIm
(

1 + esIm
)2
(1 − R2)c2 < 0 (9)

When R′

0(0) = 0 it is possible to obtain a function of the parameter Im depending on the parameter s of the transition rate
defined in (8). The graph of this function divides the positive quadrant of the plane s − Im in two regions: the region where
backward bifurcation exists in the model (1) and the region where backward bifurcation does not exist. This function takes the
form:

Im(s) =

log

[

r[(R2(1−R2)−c2)−s(1−R2)c2]−2c22+
√

r2[(R2(1−R2)−c2)−s(1−R2)c2]2+4c32rs(1−R2)

2c22

]

s
(10)

The bifurcation diagrams associated to the points (s, Im) located to the left of the graph of the function Im(s) present backward
bifurcation. The domain of this function is (0, s∗], where

s∗ =
2r(R2(1 − R2) − c2) − 4c22

rc2(1 − R2)
(11)

is the maximum value of the parameter s where backward bifurcation can exist in the model (1).

Since the function Im(s) is decreasing when s∗ > 0, it follows that if the most accelerated behavioral change Im took place
when the infection level is low then it would be necessary a high reaction speed s to eliminate backward bifurcation. On the
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other hand, when s∗ < 0 then R′

0(0) > 0 for every pair (s, Im) on the positive quadrant of the plane s − Im and thus there is not
backward bifurcation. Hence, we have the following Theorem:

Theorem 1. There is a region on the positive quadrant of the plane s − Im where the bifurcation diagram associated to every

pair (s, Im) on this region presents backward bifurcation if and only if r >
2c22

R2(1 − R2) − c2
.

4.2 Classification of bifurcation diagrams
Analyzing the zeros of the functionR′

0(I), it is possible to divide the positive quadrant of the plane s−Im into regions according to
the topological characteristics of the bifurcation diagrams associated to every pair (s, Im). Changing the value of the parameters
s and Im while fixing the other parameters of the model (1), there are seven different classes of bifurcation diagrams:

FIGURE 1 Classes of bifurcation diagrams

1. Zero roots of R′

0(I)

2. Two roots of R′

0(I) such that R0(I1) > 1 and R0(I2) > 1

3. Two roots of R′

0(I) such that R0(I1) > 1 and R0(I2) < 1

4. Three roots of R′

0(I) such that R0(I1) < 1, R0(I2) > 1 and R0(I3) < 1

5. Three roots of R′

0(I) such that R0(I1) < 1, R0(I2) > 1 and R0(I3) > 1

6. One root of R′

0(I) such that R0(I1) < 0

7. Three roots of R′

0(I) such that R0(I1) < 1, R0(I2) < 1 and R0(I3) < 1
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Figure 1 shows an example of each one of these classes and Figure 2 shows the regions on the positive quadrant of the plane
s − Im where each one of them can be located.

FIGURE 2 Map of classes of bifurcation diagrams on the plane s − Im

From Figure 2 it can be seen that there are four different curves which separate each region according to the characteristics
of their bifurcation diagrams:

• The curveA divide the plane s−Im in two regions: the region formed by the classes 1, 2 and 3 where the model (1) presents
forward bifurcation, and the region formed by the classes 4, 5, 6 and 7 where the model (1) presents backward bifurcation.

• The curve B divide the plane s − Im in two regions: the region formed by the classes 1 and 6 where the model (1) does
not present multiple endemic states, and the region formed by the classes 2, 3, 4, 5 and 7 where the model (1) presents
multiple endemic states.

• The curve C divide the region where the model (1) presents multiple endemic states in two regions: the region formed by
the class 7 where all the roots of the function R′

0(I) satisfy R0(I) < 1, and the region formed by the classes 2, 3, 4 and 5
where at least one root of the function R′

0(I) satisfies R0(I) > 1.

• The curve D divide the region where the model (1) presents multiple endemic states in two regions: the region formed
by the classes 3, 4 and 7 where the highest root of the function R′

0(I) satisfies R0(I) < 1, and the region formed by the
classes 2 and 5 where the highest root of the function R′

0(I) satisfies R0(I) > 1.

From Figure 2 also it is possible to identify all the natural transitions between different classes of bifurcation diagrams.
Figure 3 shows the graph of these transitions.

Further, there are seven points (s, Im) representing the limit cases of transition between different classes of bifurcation
diagrams:

• a is the intersection between the curves Im = 0 and A.

• b is the intersection between the curves Im = 0 and B.
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FIGURE 3 Graph of transitions between classes of bifurcation diagrams

• c is the intersection between the curves Im = 0 and C .

• d is the intersection between the curves Im = 0 and D.

• e is the intersection between the curves A and B.

• f is the intersection between the curves B, C and D.

• g is the intersection between the curves A and D.

4.2.1 Conditions for the existence of bifurcation diagrams
To determine the existence of each class of bifurcation diagram, we will find the existence conditions of the curves A, B, C
and D.

The curve A is given by the function Im(s) defined in (10). Further, a = (s∗, 0) where s∗ is defined by (11).

The curve B is determined by all the points (s, Im) whose bifurcation diagrams have an unique value I ∈ (0, 1) that satisfies
R′

0(I) = 0 and R′′

0(I) = 0. We can see that R′

0(I) = 0 is equivalent to:

es(Im−I) =
−(2f (I) + g(I) + ℎ(I)) +

√

[g(I) + ℎ(I)]2 + 4f (I)ℎ(I)
2f (I)

(12)

where
f (I) = (R2I + c2)2

g(I) = r[c2 + [(1 − R2(1 − I))2 − (1 − R2)2 − R2(1 − R2)]
ℎ(I) = rs[R2I + c2][1 − R2(1 − I)][1 − I]

(13)

We will analyze the values I ∈ (0, 1) where the equation (12) holds to determine the existence of the curve B, and therefore
the existence of multiple endemic states in the model (1).

Since es(Im−I) > 0 for all I ∈ (0, 1) then the right side of equation (12) must be positive. From (13) when f (I) + g(I) ≥ 0
the right side of equation (12) is not positive, and since f (I) + g(I) is an increasing function in I ∈ [0, 1] that satisfies
f (1) + g(1) > 0, to find a value I ∈ (0, 1) that holds the equation (12) it is necessary that f (0) + g(0) < 0. This is equivalent to

r >
c22

R2(1 − R2) − c2
.

Hence, suppose f (0) + g(0) < 0 and let I∗ ∈ (0, 1) satisfy f (I∗) + g(I∗) = 0. If Im < I∗ then for s sufficiently high it holds:

• If I ∈ (Im, I∗) then
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es(Im−I) <
−(2f (I) + g(I) + ℎ(I)) +

√

[g(I) + ℎ(I)]2 + 4f (I)ℎ(I)
2f (I)

(14)

• If I ∈ (I∗, 1) then

es(Im−I) > 0 >
−(2f (I) + g(I) + ℎ(I)) +

√

[g(I) + ℎ(I)]2 + 4f (I)ℎ(I)
2f (I)

(15)

Further, if s > s∗ then

esIm ≥ 1 >
−(2f (0) + g(0) + ℎ(0)) +

√

[g(0) + ℎ(0)]2 + 4f (0)ℎ(0)
2f (0)

(16)

From (14) to (16) it follows that when Im < I∗ there are two values I1, I2 ∈ (0, I∗) where the equation (12) holds. When
I1 = I2 then R

′

0(I1) = 0 and R′′

0(I1) = 0 are satisfied and therefore every point (s, Im) where both conditions hold is on the
curve B.

On the other hand, when Im > I∗ and s > s∗ it holds

• If I ∈ (0, I∗) then

es(Im−I) ≥ 1 >
−(2f (I) + g(I) + ℎ(I)) +

√

[g(I) + ℎ(I)]2 + 4f (I)ℎ(I)
2f (I)

(17)

• If I ∈ (I∗, 1) then

es(Im−I) > 0 >
−(2f (I) + g(I) + ℎ(I)) +

√

[g(I) + ℎ(I)]2 + 4f (I)ℎ(I)
2f (I)

(18)

From (17) and (18) the equation (12) does not hold for all I ∈ (0, 1) and therefore the curve B does not exist when Im > I∗.

We summarize these results in the following theorem.

Theorem 2. There is a region on the positive quadrant of the plane s − Im where the bifurcation diagram associated to every

pair (s, Im) on this region presents multiple endemic states if and only if r >
c22

R2(1 − R2) − c2
. Further, this region is located

below Im = I∗.

It can be shown that when the reaction speed s is low, the model (1) does not present multiple endemic states. If s = 0 then
c1(I) = r∕2 and hence

R′

0(I) =
c2
[

(R2I + c2)2 +
r
2
[c2 + [(1 − R2(1 − I))2 − (1 − R2)2 − R2(1 − R2)]]

]

[ r
2
+ c2

]

[R2I + c2]2[1 − I]2
(19)

The numerator of equation (19) is a polynomial of second grade in the proportion I . It assumes the formAI2+BI +C where
A > 0 and B > 0. Thus:

• In the case C > 0 the function R′

0(I) does not have positive roots.

• In the case C < 0 the function R′

0(I) has an unique positive root.

Since the equation (19) has at most one root, it follows that when s = 0 the model (1) does not have multiple endemic states.
By continuity, there are not multiple endemic states for small values of s. Therefore the curve B never intersects the axis Im.
Hence we have the following result:

Corollary 1. If c1(I) = c1 and c2(I) = c2 then the model (1) does not have multiple endemic states.

From Theorem 2 and Corollary 1, we have the following result:

Corollary 2. For every Im < I∗ there is a sIm > 0 such that the bifurcation diagram associated to (s, Im) presents multiple
endemic states if and only if s > sIm .
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The curve B is formed with the points (sIm , Im). Now, we suppose there are multiple endemic states in the model (1). Using
the transition rate (8) it can be shown that there are at most three roots of R′

0(I) = 0. We will use these roots to analyse the
characteristics of the curves C and D.

The curve C must be located in the region on the plane s − Im where the bifurcation diagrams associated to the model (1)
present backward bifurcation. If this curve were not in that region, there would exist bifurcation diagrams with forward bifur-
cation and multiple endemic states such that they do not have roots of R′

0(I) with R0(I) ≥ 1. But this is impossible because the
first root of R′

0(I) satisfies R0(I) > 1 by the forward bifurcation.

Therefore, since there are at most three roots of the function R′

0(I), it follows that the bifurcation diagrams associated to the
points on the curve C have three roots I1, I2 and I3 of R

′

0(I) such that R0(I1) < 1, R0(I2) = 1 and R0(I3) ≤ 1.

The highest root of R′

0(I) satisfies R0(I) = 1 in the bifurcation diagrams associated to the points on the curve D. Let (s̄, Īm)
be in the intersection of the curves C and D. The roots of R′

0(I) must satisfy R0(I1) < 1, R0(I2) = 1 and R0(I3) = 1, but this
can only be possible if I2 = I3. Thus R

′

0(I2) = 0 and R′′

0(I2) = 0. Hence (s̄, Īm) is located on the curve B, and therefore the
point f exists and it is defined by f = (s̄, Īm).

In order to find the conditions for the existence of these curves C and D, we will show the existence of the points c and d
located on the later curves respectively. To do this, we will use the number of roots of R0(I) = 1. This equation is equivalent to

1
1 + es(Im−I)

=
R2I + c2

1 − R2(1 − I)

[

(1 − R2)(1 − I)
c2(1 + esIm)

− I
r

]

(20)

When Im = 0, from equation (20) it is possible to obtain a function of the parameter s depending on I . Using this function,
one can determine the number of nonzero roots of R0(I) = 1 for every s > 0, in order to find the location and number of
endemic states of the model (1). This function is given by

s(I) = −
log(f (I) − 1)

I
(21)

where
f (I) =

R2I + (1 − R2)

(R2I + c2)
[

1 − R2

2c2
− I

(

1
r
+

1 − R2

2c2

)] (22)

The function f (I) is continuous in I ∈
[

0, I∞
)

where I∞ = r(1 − R2)∕[r(1 − R2) + 2c2]. It satisfies f (0) = 2 and
lim
I→I−∞

f (I) = ∞. Hence log(f (0) − 1) = 0.

It is easy to see that f ′(0) < 0 if and only if s∗ > 0, where s∗ is defined by (11). Thus, if s∗ > 0 then there is an I0 ∈ (0, I∞)
such that f (I0) = 2, f (I) < 2 for every I ∈ (0, I0) and f (I) > 2 for every I ∈ (I0, I∞).

From equation (21) it follows that lim
I→0+

s(I) = s∗ and s(I0) = 0. If f (I) > 1 for every I ∈ [0, I0] then s(I) is a continuous
function in I ∈ (0, I0). Further lim

I→0+
s′(I) < 0.

It can be shown that the function s′(I) has at most two roots in I ∈ (0, I0). Suppose the function s
′(I) has two roots Ic and

Id . We define the points c = (s(Ic), 0) and d = (s(Id), 0) on the plane s − Im by the values s(Ic) and s(Id) where the function
s(I) reaches its local minimum and its local maximum respectively.

We can determine the relative position of the point c respect to the points a, b and d. Since lim
I→0+

s′(I) < 0 then s(Ic) < s∗.
Further Ic ≤ Id and thus s(Ic) ≤ s(Id). Therefore the point c is located to the left of the points a and d on the axis s. In the case
Ic < Id , it follows that R

′

0(Ic) = 0 but R′′

0(Ic) < 0, and thus the point c is not located on the curve B. Therefore the point c is
located to the right of the point b on the axis s.

The point d can be located to the left or to the right of the point a on the axis s. From the graphic of the function s(I), we
determine the existence of different the regions on the plane s − Im by the relative position of the point d to the point a. In the
case s(Id) < s∗ it follows that
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• If 0 < s < s(Ic) then there is only a root of R0(I) = 1 (classes 6 and 7).

• If s(Ic) < s < s(Id) then there are three roots of R0(I) = 1 (class 4).

• If s(Id) < s < s∗ then there is only a root of R0(I) = 1 (class 5).

• If s∗ < s then there are not roots of R0(I) = 1 (class 2).

Thus there are not values of s where R0(I) = 1 has two roots. Hence it does not exist the region 3 and therefore the point g
does not exist. In the case s(Id) > s∗ it follows that

• If 0 < s < s(Ic) then there is only a root of R0(I) = 1 (classes 6 and 7).

• If s(Ic) < s < s∗ then there are three roots of R0(I) = 1 (class 4).

• If s∗ < s < s(Id) then there are two roots of R0(I) = 1 (class 3).

• If s(Id) < s then there are not roots of R0(I) = 1 (class 2).

Thus the region 3 exists and then the point g exists. Since the points f and g exist then the region 5 exists, but it does not inter-
sect the axis s. In this case, all the regions with backward bifurcation and multiple endemic states presented previously exist.

Finally, we analyse the cases when the function s′(I) does not have two different roots.

In the case Ic = Id there is a double root of s
′(I), and then R′

0(Ic) = 0 and R′′

0(Ic) = 0. Thus c and d are located on the curve
B. Since they are located in the intersection of the curves B, C and D, therefore the point f coincides with the later points.

If s′(I) does not have roots, then the points c and d do not exist and thus the points f and g do not exist too. Hence, if s < s∗
then there is an only root of R0(I) = 1, and if s > s∗ then there are not roots of R0(I) = 1. Therefore the regions 3, 4 and 7 do
not exist.

If there is an I ∈ (0, I0) such that f (I) < 1 then there is not superior bound to the function (21). Thus, the point d does not
exist for a finite value of s. Hence, the curve D does not intersect the axis s. Therefore, for every s > s∗ exists an Im > 0 such
that (s, Im) is on the region 3.

4.2.2 Simultaneous existence of bifurcation diagrams
From the results presented in the last subsection, it can be obtained the possible divisions of the positive quadrant of the plane
s − Im into regions of bifurcation diagrams classes, depending on the value of the parameter r of the function (8).

If r < c22∕[R2(1 − R2) − c2] then from Theorem 2 there are not classes with multiple endemic states. Also it is satisfied
r < 2c22∕[R2(1 − R2) − c2] and then from Theorem 1 there are not classes with backward bifurcation. Therefore, on the plane
s − Im there is only the region 1.

If c22∕[R2(1 −R2) − c2] < r < 2c22∕[R2(1 −R2) − c2] then from Theorems 1 and 2 there are classes with multiple endemic
states, but there are not classes with backward bifurcation. Since the curve D intersects the curve B at the same time with the
curve C , and since there are not classes with backward bifurcation, then the curve C does not exist and hence the curve D does
not exist too. Therefore, on the plane s − Im there are only the regions 1 and 2.

If r > 2c22∕[R2(1 − R2) − c2] then from Theorems 1 and 2 there are classes with backward bifurcation and classes with
multiple endemic states. From Corollary 1 since the curve B does not intersect the axis Im, then the curves A and B do not
intersect until r reaches a value re where this situation occurs, and then the point e appears.

If r < re then the curves A and B do not intersect. Therefore on the plane s − Im there are only the regions 1, 2 and 6. If
r > re then the curves A and B intersect, thus the point e exists. By increasing the value of r, then the different classes located
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in the region with multiple endemic states start to appear.

Since the point c is located to the left of the point a on the axis s, then c is not located on the curve A. It follows that there is
a value rf such that if re < r < rf then the point f does not exist and hence the points c, d and g do not exist too. Therefore on
the plane s − Im there are only the regions 1, 2, 5 and 6.

If r > rf then there exists the point f , and thus the points c and d exist too. Hence, the regions 4 and 7 appear. Further, if the
point d is located to the right of the point a on the axis s then the point g appears and therefore the region 3 appears. Therefore,
on the plane s − Im there are the regions from 1 to 7.

5 CONCLUSIONS

Awareness among the human population can change the pattern of disease spread. If the information about the presence of
infectious diseases is disseminated in the population, people adapt their behavior as a result of their awareness to the disease.17

In order to determine the necessary control policies that could eradicate a disease or decrease the infection level, it is impor-
tant to identify the disease scenario by its associated bifurcation diagram. In the model presented in this work, we decided to
focus on the transition rate from the unaware to the aware class defined in (8) to do a classification of all the possible classes of
bifurcation diagrams that can appear in this model, selecting the reaction speed s and the moment of change in behavior Im as
the principal parameters. Changes in these parameters are decisive for the transformation of the bifurcation diagrams.

Anticipating the moment of panic reaction in the population and accelerating the speed of this reaction could be a good policy
to decrease the infection level. But this policy should be applied carefully, since if the reaction speed is not fast enough, it can
generate backward bifurcation in the system. For this reason, it is important to select an adequate control policy that could
generate better disease scenarios and eliminate the worst ones.
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