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Abstract

The paper investigates exact solutions of the resonant nonlinear Shrödinger’s equation (R-

NLSE) with Kerr law nonlinearity by using the extended direct algebraic method. Graphs

of some obtained solutions are presented with different values of parameters to describe their
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propagation. In order to understand the bifurcation structure of nonlinear and super-nonlinear

travelling wave solutions of the considered equation, bifurcation analysis has been practiced.

Moreover, a set of non-trivial and first-order conserved quantities are computed by multiplier

approach.

Keywords: Shrödinger’s equation; Bifurcation theory; Conservation laws.

1 Introduction

The nonlinear Shrödinger’s equation (NLSE) plays an important role in different branches of science.

Nonlinear optics, plasma physics, quantum mechanics and fluid dynamics are one of the fields where

NLSE is appeared. The R-NLSE is utilized in the study of dynamics of solitons and Madelung fluids

in many nonlinear systems ([3] and references therein):

iΦt + αΦxx + βΩ(| Φ |2)Φ + γ

(
| Φ |xx
| Φ |

)
Φ = 0, i =

√
−1. (1)

In Eq. (1), non-dimensional distance along the fiber and temporal variable is described by independent

variables x and t respectively. The complex valued dependent variable Φ(t, x) represents wave profile

while constants α, β and γ are the coefficients of group-velocity dispersion, non-Kerr nonlinearity

and resonant nonlinearity respectively.

In Eq. (1), real valued and n-times differentiable function Ω is defined as:

Ω(| Φ |2)Φ : C→ C.

where C represents the complex plane as a two dimensional linear space of R2. Here we are assuming

Ω(y) = y which arises in nonlinear fiber optics or water waves when refractive index is proportional

to intensity [6].

The R-NLSE equation has been discussed by many means in literature. In recent past, researchers

computed the exact solutions of Eq. (1) by using different approaches. In [8], authors compute the

exact solutions of Eq. (1) by using Jacobi elliptic approach and simplest equation technique. Baleanu

et. al. [3] investigated the soliton solutions of the considered equation by using Ricatti-Bernoulli

sub-ODE method. One of the objectives of this research is to find a new set of exact solutions. For

this, the extended direct algebraic method is used to find the exact solutions of Eq. (1). In recent

years, study of differential equations by means of bifurcation analysis is a hot topic of research.

Dubinov et. al. in [10] characterized a new class of nonlinear and super-nonlinear waves. In [20],
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a class of solutions is obtained for Klein-Gordon-Zakharov equations by using bifurcation theory.

More recently, Sharma-Tasso-Olver (STO) equation is dealt by means of bifurcation theory [1] and

a complete classification of waves is presented. By the best of our knowledge, any study related to

behaviour of nonlinear and super-nonlinear travelling waves for R-NLSE equation is not done before.

Thus a depth analysis of Eq. (1) along these lines is interesting and is presented here.

Conservation laws have a vital role to play in solving differential equations and in many applica-

tions. The idea of conservation laws came from the conception of physical laws like mass, energy, and

momentum. The use of Noether’s theorem [5] proved by German mathematician Emmy Noether is a

systematic method for finding conservation laws. Noether theorem states that each Euler - Lagrange

equation’s Noether symmetry corresponds to a difference equation’s conservation law. Noether’s

theorem works only for variational differential equation, yet there are differential equations which

have no Lagrangian equations which can be dealt with different approaches available in literature,

some of them are [2, 11, 12] while computer package for construction of conserved quantities by using

[2] is also developed [9] and utilized in this research. Here we search out the first order nontrivial

conserved quantities of Eq. (1) by using multiplier approach [2]. Some latest works related to exact

solutions and conservation laws are given in [4, 7, 13, 14, 16]

Paper is organized as: Section 2 is devoted for the exact solutions of Eq. (1) by using the extended

direct algebraic method. Bifurcation analysis of Eq. (1) is presented in Section 3. Section 4 is devoted

for conserved quantities, while conclusion is stated at the end.

2 Travelling wave solutions

2.1 Description of method

Suppose that a nonlinear partial differential equation:

Q(Φ,Φt,Φx,Φy,Φtt,Φxx, ...) = 0, (2)

can be reduced into nonlinear ordinary differential equation:

G(u, u′, u′′, ...) = 0, (3)

using the complex transformation

Φ(t, x) = u(ξ)eiv(t,x), (4)
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where ξ = K(x+ st) and v(t, x) = −kx+ωt+ θ and here prime in Eq. (3) shows the derivative with

respect to ξ.

Suppose that Eq. (3) has the solution of the form

u(ξ) = a0 +
m∑
i=1

[
aiW (ξ)

]
, (5)

where

W ′(ξ) = ln(ρ)
(
µ+ νW (ξ) + ζW 2(ξ)

)
, ρ 6= 0, 1, (6)

where µ, ν and ζ are real constants.

The general solutions of Eq. (6) with respect to parameters µ, ν and ζ are given below [18]:

1): When ν2 − 4µζ < 0 and ζ 6= 0,

W1(ξ) = − ν

2ζ
+

√
−(ν2 − 4µζ)

2ζ
tanρ

(√
−(ν2 − 4µζ)

2
ξ

)
, (7)

W2(ξ) = − ν

2ζ
−
√
−(ν2 − 4µζ)

2ζ
cotρ

(√
−(ν2 − 4µζ)

2
ξ

)
, (8)

W3(ξ) = − ν

2ζ
+

√
−(ν2 − 4µζ)

2ζ

(
tanρ

(√
− (ν2 − 4µζ)ξ

)
±
√
mn secρ

(√
− (ν2 − 4µζ)ξ

))
, (9)

W4(ξ) = − ν

2ζ
+

√
−(ν2 − 4µζ)

2ζ

(
cotρ

(√
− (ν2 − 4µζ)ξ

)
±
√
mn cscρ

(√
− (ν2 − 4µζ)ξ

))
, (10)

W5(ξ) = − ν

2ζ
+

√
−(ν2 − 4µζ)

4ζ

(
tanρ

(√
−(ν2 − 4µζ)

4
ξ

)
− cotρ

(√
−(ν2 − 4µζ)

4
ξ

))
. (11)

2): When ν2 − 4µζ > 0 and ζ 6= 0,

W6(ξ) = − ν

2ζ
−
√
ν2 − 4µζ

2ζ
tanhρ

(√
ν2 − 4µζ

2
ξ

)
, (12)

W7(ξ) = − ν

2ζ
−
√
ν2 − 4µζ

2ζ
cothρ

(√
ν2 − 4µζ

2
ξ

)
, (13)
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W8(ξ) = − ν

2ζ
+

√
ν2 − 4µζ

2ζ

(
− tanhρ

(√
ν2 − 4µζξ

)
± i
√
mn sechρ

(√
ν2 − 4µζξ

))
, (14)

W9(ξ) = − ν

2ζ
+

√
ν2 − 4µζ

2ζ

(
− cothρ

(√
ν2 − 4µζξ

)
±
√
mn cschρ

(√
ν2 − 4µζξ

))
, (15)

W10(ξ) = − ν

2ζ
−
√
ν2 − 4µζ

4ζ

(
tanhρ

(√
ν2 − 4µζ

4
ξ

)
+ cothρ

(√
ν2 − 4µζ

4
ξ

))
. (16)

3): When µζ > 0 and ν = 0,

W11(ξ) =

√
µ

ζ
tanρ

(√
µζξ
)
, (17)

W12(ξ) = −
√
µ

ζ
cotρ

(√
µζξ
)
, (18)

W13(ξ) =

√
µ

ζ

(
tanρ

(
2
√
µζξ
)
±
√
mn secρ

(
2
√
µζξ
))

, (19)

W14(ξ) =

√
µ

ζ

(
− cotρ

(
2
√
µζξ
)
±
√
mn cscρ

(
2
√
µζξ
))

, (20)

W15(ξ) =
1

2

√
µ

ζ

(
tanρ

(√
µζ

2
ξ

)
− cotρ

(√
µζ

2
ξ

))
. (21)

4): When µζ < 0 and ν = 0,

W16(ξ) = −
√
−µ
ζ

tanhρ

(√
−µζξ

)
, (22)

W17(ξ) = −
√
−µ
ζ

cothρ

(√
−µζξ

)
, (23)

W18(ξ) =

√
−µ
ζ

(
− tanhρ

(
2
√
−µζξ

)
± i
√
mn sechρ

(
2
√
−µζξ

))
, (24)

W19(ξ) =

√
−µ
ζ

(
− cothρ

(
2
√
−µζξ

)
±
√
mn cschρ

(
2
√
−µζξ

))
, (25)
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W20(ξ) = −1

2

√
−µ
ζ

(
tanhρ

(√
−µζ
2

ξ

)
+ cothρ

(√
−µζ
2

ξ

))
. (26)

5): When ν = 0 and µ = ζ,

W21(ξ) = tanρ (µξ) , (27)

W22(ξ) = − cotρ (µξ) , (28)

W23(ξ) = tanρ (2µξ)±
√
mn secρ (2µξ) , (29)

W24(ξ) = − cotρ (2µξ)±
√
mn cscρ (2µξ) , (30)

W25(ξ) =
1

2

(
tanρ

(µ
2
ξ
)
− cotρ

(µ
2
ξ
))

. (31)

6): When ν = 0 and ζ = −µ,

W26(ξ) = − tanhρ (µξ) , (32)

W27(ξ) = − cothρ (µξ) , (33)

W28(ξ) = − tanhρ (2µξ)± i
√
mn sechρ (2µξ) , (34)

W29(ξ) = − cotρ (2µξ)±
√
mn cschρ (2µξ) , (35)

W30(ξ) = −1

2
tanhρ

(µ
2
ξ
)

+ cotρ

(µ
2
ξ
)
. (36)

7): When ν2 = 4µζ,

W31(ξ) =
−2µ(νξ ln ρ+ 2)

ν2ξ ln ρ
. (37)

8): When ν = p, µ = pq, (q 6= 0) and ζ = 0,

W32(ξ) = ρpξ − q. (38)

9): When ν = ζ = 0,

W33(ξ) = µξ ln ρ. (39)
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10): When ν = µ = 0,

W34(ξ) =
−1

ζξ ln ρ
. (40)

11): When µ = 0 and ν 6= 0,

W35(ξ)−
mν

ζ (coshρ (νξ)− sinhρ (νξ) +m)
, (41)

W36(ξ) = − ν (sinhρ (νξ) + coshρ (νξ))

ζ (sinhρ (νξ) + coshρ (νξ) + n)
. (42)

12): When ν = p, ζ = pq, (q 6= 0 and µ = 0),

W37(ξ) = − mρpξ

m− qnρpξ
. (43)

sinhρ(ξ) =
mρξ − nρ−ξ

2
, coshρ(ξ) =

mρξ + nρ−ξ

2
,

tanhρ(ξ) =
mρξ − nρ−ξ

mρξ + nρ−ξ
, cothρ(ξ) =

mρξ + nρ−ξ

mρξ − nρ−ξ
,

sechρ(ξ) =
2

mρξ + nρ−ξ
, cschρ(ξ) =

2

mρξ − nρ−ξ
,

sinρ(ξ) =
mρiξ − nρ−iξ

2i
, cosρ(ξ) =

mρiξ + nρ−iξ

2
,

tanρ(ξ) = −imρ
iξ − nρ−iξ

mρiξ + nρ−iξ
, cotρ(ξ) = i

mρiξ + nρ−iξ

mρiξ − nρ−iξ
,

secρ(ξ) =
2

mρξ + nρ−ξ
, cscρ(ξ) =

2i

mρξ − nρ−ξ
,

where m and n are arbitrary constants greater than zero and called deformation parameters.
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2.2 Application to Eq. (1)

The R-NLSE with Kerr law nonlinearity is considered for the calculation of the exact solutions

via method purposed in [18]. For this let us substitute a complex envelope (4) in Eq. (1). After

separating into real and imaginary parts, we get the following equations:

K2(γ + α)u
′′ − (k2α + ω)u+ βu3 = 0, s = 2kα. (44)

After balancing the highest order derivative terms with the highest power of nonlinear terms in

Eq. (44), one can take the solution of the form:

u = a0 + a1W (ξ), (45)

where W (ξ) satisfies Eq. (6).

After substituting (45) in Eq. (44) and equating the coefficients of different powers of W (ξ), leads

to a system of following algebraic equations.(
W (ξ)

)0

: −k2αa0 − ωa0 + βa30 +K2µναa1 log(ρ)2 +K2µνγa1 log(ρ)2 = 0,(
W (ξ)

)1

: −k2αa1 − ωa1 + 3βa20a1 +K2ν2αa1 log(ρ)2 + 2K2µζαa1 log(ρ)2

+K2ν2γa1 log(ρ)2 + 2K2µζγa1 log(ρ)2 = 0,(
W (ξ)

)2

: 3βa0a
2
1 + 3K2νζαa1 log(ρ)2 + 3K2νζγa1 log(ρ)2 = 0,(

W (ξ)

)3

: βa31 + 2K2ζ2αa1 log(ρ)2 + 2K2ζ2γa1 log(ρ)2 = 0.

Solving above algebraic equations with the help of Mathematica, following set of solution is obtained:

a0 = ±ν
√

Θ

β
√

Π
, a1 = ±2ζ

√
Θ

β
√

Π
, K = ±

√
−2Θ√

Π(α + γ) log(ρ)2
, (46)

where

Θ = k2α + ω, Π = ν2 − 4µζ

Case 1. If Π < 0 and ζ 6= 0, then

After substituting the values of a0 and a1 from (46) in Eq. (45) we get:

u1±(ξ) = ∓
√
−Θ

β
tanρ

(√
−Π

2
ξ

)
,
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where u1±(ξ) with the complex transformation (4) yields the following solution of Eq. (1):

Φ1±(t, x) = ±
√
−Θ

β
tanρ

(√
−Π

2
ξ

)
ei(−kx+ωt+θ).

Thus working on the same line following solutions are obtained.

Φ2±(t, x) = ±
√
−Θ

β
cotρ

(√
−Π

2
ξ

)
ei(−kx+ωt+θ).

Φ3±(t, x) = ±
√
−Θ

β

(
tanρ

(√
−Πξ

)
±
√
mn secρ

(√
−Πξ

))
ei(−kx+ωt+θ).

Φ4±(t, x) = ±
√
−Θ

β

(
cotρ

(√
−Πξ

)
±
√
mn cscρ

(√
−Πξ

))
ei(−kx+ωt+θ).

Φ5±(t, x) = ±
√
−Θ

β

(
tanρ

(√
−Π

4
ξ

)
− cotρ

(√
−Π

4
ξ

))
ei(−kx+ωt+θ).

Case 2. If Π > 0 and ζ 6= 0, then

Φ6±(t, x) = ∓
√

Θ

β
tanhρ

(√
Π

2
ξ

)
ei(−kx+ωt+θ).

Φ7±(t, x) = ∓
√

Θ

β
cothρ

(√
Π

2
ξ

)
ei(−kx+ωt+θ).

Φ8±(t, x) = ∓
√

Θ

β

(
− tanhρ

(√
Πξ
)
± i
√
mn sechρ

(√
Πξ
))

ei(−kx+ωt+θ).

Φ9±(t, x) = ∓
√

Θ

β

(
− cothρ

(√
Πξ
)
±
√
mn cschρ

(√
Πξ
))

ei(−kx+ωt+θ).

Φ10±(t, x) = ∓
√

Θ

β

(
tanhρ

(√
Π

4
ξ

)
+ cothρ

(√
Π

4
ξ

))
ei(−kx+ωt+θ).

Case 3. If µζ > 0 and ν = 0, then

Φ11(t, x) = ±
√

Θ

β
√

Π

(
ν + 2

√
µζ tanρ

(√
µζξ
))

ei(−kx+ωt+θ).
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Φ12(t, x) = ±
√

Θ

β
√

Π

(
ν − 2

√
µζ cotρ

(√
µζξ
))

ei(−kx+ωt+θ).

Φ13(t, x) = ±
√

Θ

β
√

Π

[
ν + 2

√
µζ
{

tanρ

(
2
√
µζξ
)
±
√
mn secρ

(
2
√
µζξ
)}]

ei(−kx+ωt+θ).

Φ14(t, x) = ±
√

Θ

β
√

Π

[
ν + 2

√
µζ
{
− cotρ

(
2
√
µζξ
)
±
√
mn cscρ

(
2
√
µζξ
)}]

ei(−kx+ωt+θ).

Φ15(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2

√
µζ

{
tanρ

(√
µζ

2
ξ

)
− cotρ

(√
µζ

2
ξ

)}]
ei(−kx+ωt+θ).

Case 4. If µζ < 0 and ν = 0, then

Φ16(t, x) = ±
√

Θ

β
√

Π

{
ν − 2

√
−µζ tanhρ

(√
−µζξ

)}
ei(−kx+ωt+θ).

Φ17(t, x) = ±
√

Θ

β
√

Π

{
ν − 2

√
−µζ cothρ

(√
−µζξ

)}
ei(−kx+ωt+θ).

Φ18(t, x) = ±
√

Θ

β
√

Π

[
ν + 2

√
µζ
{
− tanhρ

(
2
√
−µζξ

)
± i
√
mn sechρ

(
2
√
−µζξ

)}]
ei(−kx+ωt+θ).

Φ19(t, x) = ±
√

Θ

β
√

Π

[
ν + 2

√
µζ
{
− cothρ

(
2
√
−µζξ

)
±
√
mn cschρ

(
2
√
−µζξ

)}]
ei(−kx+ωt+θ).

Φ20(t, x) = ±
√

Θ

2β
√

Π

[
ν − 2

√
−µζ

{
tanhρ

(√
−µζ
2

ξ

)
+ cothρ

(√
−µζ
2

ξ

)}]
ei(−kx+ωt+θ).

Case 5. If When ν = 0 and µ = ζ, then

Φ21(t, x) = ±
√

Θ

β
√

Π

[
ν + 2ζ tanρ (µξ)

]
ei(−kx+ωt+θ).

Φ22(t, x) = ±
√

Θ

β
√

Π

[
ν − 2ζ cotρ (µξ)

]
ei(−kx+ωt+θ).
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Φ23(t, x) = ±
√

Θ

β
√

Π

[
ν + 2ζ

{
tanρ (2µξ)±

√
mn secρ (2µξ)

}]
ei(−kx+ωt+θ).

Φ24(t, x) = ±
√

Θ

β
√

Π

[
ν + 2ζ

{
− cotρ (2µξ)±

√
mn cscρ (2µξ)

}]
ei(−kx+ωt+θ).

Φ25(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
tanρ

(µ
2
ξ
)
− cotρ

(µ
2
ξ
)}]

ei(−kx+ωt+θ).

Case 6. If ν = 0 and ζ = −µ, then

Φ26(t, x) = ±
√

Θ

2β
√

Π

[
ν − 2ζ tanhρ (µξ)

]
ei(−kx+ωt+θ).

Φ27(t, x) = ±
√

Θ

2β
√

Π

[
ν − 2ζ cothρ (µξ)

]
,

Φ28(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
− tanhρ (2µξ)± i

√
mn sechρ (2µξ)

}]
ei(−kx+ωt+θ).

Φ29(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
− cothρ (2µξ)±

√
mn cschρ (2µξ)

}]
ei(−kx+ωt+θ).

Φ30(t, x) = ∓
√

Θ

4β
√

Π

[
ν + 2ζ

{
tanhρ

(µ
2
ξ
)

+ cothρ

(µ
2
ξ
)}]

ei(−kx+ωt+θ).

Case 7. If ν2 = 4µζ, then

Φ31(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
−2µ(νξ ln ρ+ 2)

ν2ξ ln ρ

}]
ei(−kx+ωt+θ).

Case 8. If ν = p, µ = pq, (q 6= 0) and ζ = 0, then

Φ32(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
ρpξ − q

}]
ei(−kx+ωt+θ).

Case 9. If ν = ζ = 0, then

Φ33(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζµξ ln ρ

]
ei(−kx+ωt+θ).
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Case 10. If ν = µ = 0, then

Φ34(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
−1

ζξ ln ρ

}]
ei(−kx+ωt+θ).

Case 11. If µ = 0 and ν 6= 0 then

Φ35(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
− mν

ζ (coshρ (νξ)− sinhρ (νξ) +m)

}]
ei(−kx+ωt+θ).

Φ36(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
− ν (sinhρ (νξ) + coshρ (νξ))

ζ (sinhρ (νξ) + coshρ (νξ) + n)

}]
ei(−kx+ωt+θ).

Case 12. If ν = p, ζ = pq, (q 6= 0 and µ = 0) then

Φ37(t, x) = ±
√

Θ

2β
√

Π

[
ν + 2ζ

{
− mρpξ

m− qnρpξ

}]
ei(−kx+ωt+θ).

3D-graphics, 2D-graphics and contour plots of different solutions | Φi | of Eq. (1) for m = 2, n =

3, ρ = 3,Π = 1, α = 0.5, γ = 0.5,Θ = 1, β = 1, s = 0.2 are presented to describe their behaviour in

Fig (1-6).

3 Bifurcations behavior and phase portraits

By the theory of planar dynamical systems, equilibrium point (uq, zq) is called saddle point if J < 0,

a center for J > 0 and T1 = 0, a node if J > 0 and T 2
1 − 4J > 0 while a zero point when J = 0 and

Poincaré index of (uq, zq) is zero. Where J and T1 represent the Jacobian and trace of the coefficient

matrix for the linearized system of (47).

For classification of different orbits in the phase portraits of dynamical system (47), following

notations will be used:

(1): Supernonlinear periodic orbit is presented by SNPO(e,s),

(2): Nonlinear homoclinic orbit is presented by NHO(e,s),

(3): Nonlinear heteroclinic orbit is presented by NHTO(e,s),

(4): Nonlinear periodic orbit is presented by NPO(e,s),

where ‘e’ is the number of equilibrium points and ‘s’ is the number of seperatix layers enveloped by

the orbit. It is well known that each phase orbit is a closed non-self intersecting curve on the phase

plane. Phase portrait of dynamical system is a set of such nested phase trajectories.
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Eq. (44) can be written as a system of nonlinear dynamical equations:

∂u

∂ξ
= z,

∂z

∂ξ
=

(k2α + ω)u

K2(γ + α)
+

βu3

K2(γ + α)
. (47)

The system (47) is a planar Hamiltonian system. Hamiltonian function can be obtained by integrating

the system (47):

H(u, z) =
z2

2
− (k2α + ω)u2

2K2(γ + α)
− βu4

4K2(γ + α)
= h. (48)

From (48), it can be verified that:

∂u

∂ξ
=
∂H

∂z
and

∂z

∂ξ
= −∂H

∂u
. (49)

As system (47) is a planar Hamiltonian system and from (49), one can conclude that system (47) is

conservative and thus phase orbits defined by the vector fields of (47) will posses all travelling wave

solution of Eq. (44) (for detail see [15] and references therein).

Level curves Lh(u, z) with respect to energy level h can be defined in following fashion:

Lh = {(u, z) ∈ R×R : H(u, z) = h},

where H(u, z) is defined in (48) and h is called the energy level. In the phase portraits against each

energy level h one can have an orbit. In order to investigate the relations between energy level and

closed orbits of system (47), let us define:

Eh(u) = h+
(k2α + ω)u2

2K2(γ + α)
+

βu4

4K2(γ + α)
. (50)

From (48), one can easily find the following relation:

z = ±

√
2h+

(k2α + ω)u2

K2(γ + α)
+

βu4

2K2(γ + α)
, (51)

which means z2

2
= Eh(u). Graphical illustration of (50) is given in Fig. 9(a-b).

Here all possible phase trajectories of dynamical system (47) are presented and classified.

System (47) has three equilibrium points:

u1 = (0, 0), u2 = (

√
(k2α + ω)

β
, 0), u3 = (−

√
(k2α + ω)

β
, 0).
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The coefficient matrix of the linearized system (47) at an equilibrium point (uq, zq) is:

M =

(
0 1

(k2α+ω)
K2(γ+α)

0

)
, (52)

while Jacobian for the system (47) is:

J =

(
0 1

(k2α+ω)
K2(γ+α)

+ 3βu2

K2(γ+α)
0

)
. (53)

It yields the following cases:

3.0.1 K2(γ + α) > 0, (−k2α− ω) < 0, C > 0 or K2(γ + α) < 0, (−k2α− ω) > 0, β < 0

For this case, the system (47) has three equilibrium points u1, u2, and u3. For this J(u1) < 0, J(u2) >

0, J(u3) > 0 while T1(M(u2)) = 0 and T1(M(u3)) = 0. Above information helps to claim that u1 is

a saddle point and u2, u3 are center points (see Fig. 7(a)).

For this case, the phase portraits of nonlinear dynamical system (47) is presented in Fig. 10(a).

This phase portrait contains a family of SNPO(3,1), where family of SNPO(3,1) carries all three

equilibrium points of the considered dynamical system. It also carries two families of NPO(1,0),

which accommodates u2 and u3. There is also a pair of NHO(1,0) at u1 which carries u2 and u3.

3.0.2 K2(γ + α) < 0, (−k2α− ω) > 0, β > 0.

For this case, the system (47) has one equilibrium points u1, where J(u1) < 0 thus u1 is a saddle

point. (see Fig. 7(b))

3.0.3 K2(γ + α) > 0, (−k2α− ω) > 0, C < 0. or K2(γ + α) < 0, (−k2α− ω) < 0, β > 0.

For this case, the system (47) has three equilibrium points u1, u2, and u3. For this J(u1) > 0 and

T1(M(u1)) = 0, so u1 is a center point, while J(u2) > 0 and J(u3) > 0 with Poincarè index is zero

thus u2, u3 are cusp points, (see Fig. 8(a)). The phase portraits of the system of nonlinear ODEs (47)

is given in Fig. 11(a). This phase portrait carries a family of NPO(1,0) which envelops u1.

3.0.4 K2(γ + α) > 0, (−k2α− ω) > 0, β > 0.

For this case, the system (47) has one equilibrium point u1. For which J(u1) > 0 and T1(M(u1)) = 0,

thus u1 is a center point. The phase portraits for this case is presented in Fig. 8(b), which shows

that there is a family of NPO(1,0) which carries u1.
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4 Conserved quantities

In this section, nontrivial conserved quantities are computed by using the method given by Anco and

Bluman [2]. They advocated a systematic approach to built non-trivial conservation laws.

4.1 Multiplier approach

A system containing two partial differential equations of second order with two dependent variables

Ψ = (u, v) and three independent variables χ = (t, x) is denoted by

R1[Ψ] = F1 (χ,Ψ,Ψχ, ...,Ψχχ) ,

R2[Ψ] = F2 (χ,Ψ,Ψχ, ...,Ψχχ) , (54)

where Ψχ and Ψχχ stand for the first and second order partial derivatives of dependent variables

with respect to independent variables, respectively. Let U = (U1, U2) represents the set of arbitrary

functions of independent variable χ, Uχ and Uχχ etc.

A set of multipliers (factors, characteristics) Λ = (Λ1,Λ2) yields a divergence expression for the

system given in Eq. (54) if the identity

Λ1[U ]R1[Ψ] + Λ2[U ]R2[Ψ] = DχC
χ[U ] (55)

holds for arbitrary function U(χ). In Eq. (55), T χ are called the conserved densities (fluxes) while

Dχ is the total derivative:

Dχ =
∂

∂χ
+ Ψχ

∂

∂Ψχ

+ ...· (56)

If U = (U1, U2) is the solution of Eq. (54), form Eq. (55), one can derive the local conserved quantity

by using the following equation

DχT
χ[Ψ] = 0. (57)

System (54) contains the set of multipliers for the conserved quantities if and only if following identity

holds:

δ

δΨ

(
Λ1[U ]R1[Ψ] + Λ2[U ]R2[Ψ]

)
= 0, (58)

where δ
δU

is said to be Euler operators and defined as:

δ

δΨ
=

∂

∂Ψ
−Dχ

∂

∂Ψχ

+ ...· (59)
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Eq. (58) leads to a set of over-determined system of determining equations in terms of multipliers

Λ = (Λ1,Λ2). Solution of the obtained determining equations with some computation further gives

the conserved quantities. In this section, first order nontrivial conserved quantities are computed by

using the method given by Anco and Bluman [2]. They advocated a systematic approach to built

non-trivial conservation laws. In this method, multipliers Λ of specific order for considered problem

is required, which is further used to get their corresponding fluxes Υ. Each set of multipliers and

fluxes produces a local conservation law DΥ = 0 holding for all solution of the considered differential

equation.

4.2 Conserved quantities

In this section, conserved quantities of Eq. (1) are computed [2, 9].

Eq. (44) with complex envelope:

Φ(t, x) = u(t, x)eiv(t,x) (60)

converts into a complex partial differential equation, after splitting into real and imaginary parts it

yields:

βu3 − uvt − αu(vx)
2 + (α + γ)uxx = 0, ut + 2αuxvx + αuvxx = 0. (61)

Substituting system (61) in Eq. (58) gives:

δ

δΨ

[
Λ1(βu− uvt − αu(vx)

2 + (α + γ)uxx) + Λ2(ut + 2αuxvx + αuvxx)

]
= 0. (62)

Equating the coefficients of the derivatives of dependent variables with respect to independent vari-

ables in Eq. (62), we get linear homogeneous over-determined system of partial differential equations.

After solving the obtained system of partial differential equations for

Λ1 = Λ1(t, x, u, v, ut, vt, ux, vx) and Λ2 = Λ2(t, x, u, v, ut, vt, ux, vx)

with the help of Maple we get the following results:

Λ1 = (c1t+ c3)ux + c2ut, Λ2 =

(
c1vxt−

c1x

2α
+ c2vt + c3vx + c4

)
u. (63)

Next step is to find the fluxes by using the multiplier given in (63). For instance, the multipliers Λ1

and Λ2 for the constants ci give the following conservation laws:

(i): Λ1
1 = tux, Λ1

2 = (vxt− x
2α

)u

T 1
t =

u2

4α
(2αtvx − x), T 1

x =
1

4

(
βtu4 − 2tvtu

2 + 2αtu2v2x + 2αtu2x + 2γtu2x − 2vxxu
2

)
. (64)
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(ii): Λ2
1 = ut, Λ2

2 = vtu

T 1
t =

1

4

(
βu4 − 2αu2v2x − 2u2xα− 2u2xγ

)
, T 1

x = αu2vtvx + αutux + γutux. (65)

(iii): Λ3
1 = ux, Λ3

2 = vxu

T 1
t =

u2vx
2

, T 1
x =

1

4

(
βu4 − 2vtu

2 + 2αu2v2x + 2u2xα + 2u2xγ

)
. (66)

(iv): Λ4
1 = 0, Λ4

2 = u

T 1
t =

u2

2
, T 1

x = vxαu
2. (67)

4.3 Conclusion

To be brief, he extended direct algebraic method [18] is applied to find the exact solutions of the

resonant non-linear Schrödinger equation with Kerr law nonlinearity. The proposed method gave a

class of solutions which may be worthwhile for the explaining certain physical phenomena accurately.

Moreover, physical composition of these solutions are described via their graphical presentation. Four

portraits of dynamical system (47) are obtained and existence of the travelling wave solutions is dis-

cussed as well. Further, all possible cases of the system parameters are considered by using the phase

portraits and the effect of different situations are shown in detail. Moreover, nontrivial, first order

and new conserved quantities are given by using multiplier approach.
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