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Abstract 27 

We traced diatom composition and diversity through time using diatom derived sedimentary 28 

ancient DNA (sedaDNA) from eastern continental slope sediments off Kamchatka (North 29 

Pacific) by applying a short, diatom-specific marker on 63 samples in a DNA metabarcoding 30 

approach. The sequences were assigned to diatoms that are common in the area and 31 

characteristic of cold water. SedaDNA allowed us to observe shifts of potential lineages from 32 

species of the genus Chaetoceros that can be related to different climatic phases, suggesting that 33 

pre-adapted ecotypes might have played a role in the long-term success of species in areas of 34 

changing environmental conditions. These sedaDNA results complement our understanding of 35 

the long-term history of diatom assemblages and their general relationship to environmental 36 

conditions of the past. Sea-ice diatoms (Pauliella taeniata (Grunow) Round & Basson, Attheya 37 

septentrionalis (Østrup) R.M.Crawford and Nitzschia frigida (Grunow)) detected during the late 38 

glacial and Younger Dryas are in agreement with previous sea-ice reconstructions. A positive 39 

correlation between pennate diatom richness and the sea-ice proxy IP25 suggests that sea ice 40 

fosters pennate diatom richness, whereas a negative correlation with June insolation and 41 

temperature points to unfavorable conditions during the Holocene. A sharp increase in 42 

proportions of freshwater diatoms at ~11.1 cal kyr BP implies the influence of terrestrial runoff 43 

and coincides with the loss of 42% of diatom sequence variants. We assume that reduced salinity 44 

at this time stabilized vertical stratification which limited the replenishment of nutrients in the 45 

euphotic zone. 46 

 47 

1 Introduction 48 

Climate warming is transforming arctic and subarctic ecosystems by a reduction in the 49 

duration, extent and thickness of sea ice (Parkinson et al., 1999; Walsh et al., 2017) – a key variable 50 

of the global climate system whose disappearance is resulting in a positive temperature feedback 51 

from a reduction of the surface albedo (Pistone et al., 2014). Rapidly melting glaciers and increased 52 

riverine runoff resulting from thawing permafrost and augmented precipitation over the adjacent 53 

continents are expected to decrease sea-surface salinities, for example by about 1.5 ± 1.1 psu on 54 

average in the Arctic Ocean (Shu et al., 2018). As a consequence, the fresher, less dense water 55 

masses are expected to enhance vertical water-column stratification, which could result in a 56 

reduced supply of nutrients to the euphotic zone (Tremblay & Gagnon, 2009). On top of regionally 57 

expected loss of sea ice-associated organisms, such a scenario could potentially affect the 58 

distribution, composition and diversity of primary producers which are limited by the availability 59 

of nutrients, amongst others, with unknown consequences for food-web structure, biochemical 60 

cycles and the biological carbon pump (Coupel et al., 2015; Li et al., 2009).  61 
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The subarctic northwest (NW) Pacific and its adjacent seas have experienced pronounced 62 

environmental changes since the Last Glacial Maximum (LGM). The variability of previously 63 

reconstructed sea-surface temperatures and sea-ice coverage have been connected to the millennial 64 

scale climatic changes recorded in sediment cores from the North Atlantic and in Greenland ice 65 

cores (Max et al., 2012; Méheust et al., 2016). Several meltwater pulses have been detected in 66 

sediment cores of this region (Gorbarenko et al., 2019), which make it attractive for analyzing the 67 

effects of past environmental changes on primary producers.  68 

A dominant group of primary producers in high-latitudinal sea-ice and coastal ecosystems 69 

are diatoms (Poulin et al., 2011), which are single-celled eukaryotes that form a cell wall of 70 

biomineralized silicium dioxide (biogenic silica) and fix carbon dioxide as a product of their 71 

photosynthetic activity (Rotatore et al., 1995). They are sensitive to environmental change and can 72 

be used as indicators of past sea-surface conditions. For example, morphological data from diatom 73 

assemblages of the subarctic NW Pacific and the Bering and Okhotsk Seas have revealed 74 

variations in ocean circulation patterns, past distribution of sea ice and past sea-surface 75 

temperatures (Caissie et al., 2010; Ren et al., 2009; Sancetta, 1979; Sancetta & Silvestri, 1986; 76 

Smirnova et al., 2015). While the investigation of microfossils can distinguish size distributions, 77 

resting stages and, in many instances, taxonomic resolution to species level for millions of years 78 

back in time, some questions cannot be addressed with morphological data. Amongst others, this 79 

includes intra-specific diversity which may be linked to different environmental conditions. 80 

The past decade has brought forward genetic surveys which have revealed substantially 81 

concealed diversity in diatoms, showing that widely distributed species can have ecotypes 82 

associated with, for example, different growth optima (Hamsher et al., 2013) that may not be 83 

detected morphologically (cryptic diversity) or only by exhaustive analysis (pseudo-cryptic) 84 

(Degerlund et al., 2012). In this regard, the analysis of sedaDNA is an advantage. Recently, 85 

sedaDNA was used as a proxy for sea-ice reconstructions by targeting diatom sedaDNA 86 

composition (Zimmermann et al., 2019), for tracing a sea-ice dinoflagellate east of Greenland (De 87 

Schepper et al., 2019) and to identify changes of ocean circulation patterns by targeting diatoms 88 

and non-fossilized foraminifers east of Svalbard (Pawłowska et al., 2020). Ancient DNA has 89 

profound advantages. First, it can detect species that are absent from microfossil records either due 90 

to dissolution or because they lack a biomineralized cell wall. Second, it allows for the detection 91 

of (pseudo-)cryptic diversity in morphological species complexes, which might be adapted to 92 
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different ecological conditions. Third, it is amongst the most applied barcoding gene and thus has 93 

a substantial reference database (Rimet et al., 2019; Zimmermann et al., 2014). However, ancient 94 

DNA is usually highly degraded (Corinaldesi et al., 2008; Pääbo, 1989). Hence, for DNA 95 

metabarcoding of diatoms, the marker should ideally target a short sequence stretch, and 96 

additionally avoid co-amplification of other taxonomic groups or co-amplification of highly 97 

similar paralogs. Targeting a part of the gene encoding for the large subunit of the RuBisCO (rbcL) 98 

on the chloroplast genome of diatoms is of advantage. The variability of the rbcL gene allows 99 

detection of diatoms to species level (Rimet et al., 2019).  100 

Our aim is to to trace temporal changes of diatom sedaDNA composition and diversity 101 

over the past 19.9 cal kyr BP, and to relate changes to environmental conditions to answer the 102 

following questions: (1) How has diatom composition changed since the LGM? And how are such 103 

changes related to past sea-ice conditions, subsurface salinities and incoming solar radiation 104 

(insolation)? (2) How did diatom sedaDNA richness change over time? 105 

 106 

2 Materials and Methods 107 

2.1 Study site 108 

The sediment core SO201-2-12KL was collected from the Kamchatka Strait near 109 

Kronotskii Peninsula at the eastern continental slope of Kamchatka where the shelf area is very 110 

narrow (Fig. 1). The study area is influenced by water masses transported via the East Kamchatka 111 

Current, which brings nutrient-rich waters from the Bering Sea to the subarctic North Pacific 112 

Ocean (Stabeno et al., 1999) and by the Alaskan Stream, which transports water masses from the 113 

Gulf of Alaska along the Aleutian Arc and water from the wind-driven, cyclonic western subarctic 114 

gyre (Nagano et al., 2016; Stabeno & Reed, 1994). As evaporation is lower than precipitation and 115 

runoff from Kamchatka, the water column is characterized by a stable halocline (Gebhardt et al., 116 

2008). Modern sea-surface temperatures in the area are about 1 °C in winter and range between 6 117 

and 10 °C in summer (Riethdorf et al., 2013a) with winter sea-ice formation only along the coast 118 

of Kamchatka (Matul’ et al., 2015), but is influenced by drifting sea ice (Polyakova, 2007). 119 

 120 



manuscript submitted to Paleoceanography and Paleoclimatology 

 

 121 

Figure 1. Map showing the study area with surface current patterns (EKC = East Kamchatka 122 

Current, AS = Alaskan Stream, ANSC = Aleutian North Slope Current; BSC = Bering Sea Current) 123 

indicated by gray arrows and the coring site SO201-2-12KL marked by a yellow dot. The white 124 

dashed line represents median sea-ice extent in March between 1981 and 2010 (Fetterer et al., 125 

2017). The map was produced with Ocean Data View (Schlitzer, 2002). 126 

 127 

2.2 Sample material 128 

Sediment material was retrieved with a piston corer (SO201-2-12KL) during RV Sonne 129 

cruise SO-201 (KALMAR) in (Max et al., 2012). The sediment core is 9.05 m long and mostly 130 

composed of sandy-silty-clayey mud. We here rely on the chronostratography established by (Max 131 

et al., 2012). Core material was stored at 4 °C since retrieval. Samples for ancient DNA analyses 132 

were collected in 2018 at GEOMAR, Kiel, in a laboratory devoid of any molecular biology work. 133 

To avoid contamination of the samples with modern DNA, sampling was performed from the 134 

oldest to the youngest samples while wearing a plastic coverall, face mask, hair net. Gloves were 135 

changed between each sample. The treatment of the equipment and the sampling procedure for 136 

ancient DNA analyses followed the protocol for non-frozen sediment cores explained in Epp et al. 137 

(2019). 138 
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2.3. DNA extraction and concentration 140 

The DNA extractions, PCR setups and reaction conditions were carried out in a dedicated 141 

laboratory for ancient DNA at AWI Potsdam, while PCRs and downstream preparations for 142 

sequencing were carried out in the genetics laboratories located in another building. Total DNA 143 

was extracted using the DNeasy PowerMax Soil kit (Qiagen, Hilden, Germany) as described in 144 

Zimmermann et al. (2017) from 63 samples (2–4 ml sediment). Each extraction batch contained 145 

up to 9 samples and one negative control (in total 7 negative controls). Subsequently, we measured 146 

the total DNA concentration on a Qubit 4.0 fluorometer (Invitrogen, Carlsbad, CA, USA) using 147 

the Qubit dsDNA BR Assay Kit (Invitrogen, Carlsbad, CA, USA). We concentrated for each 148 

sample 600 µl of the extracted DNA using the GeneJET PCR Purification KIT (Thermo Scientific, 149 

Carlsbad, CA, USA) and eluted twice with 15 µl elution buffer to retain a final volume of ~30 µl. 150 

The DNA concentration was measured again and the DNA was diluted to 3 ng/µl. The DNA 151 

extracts and aliquots were stored at -20 °C. 152 

 153 

2.4. SedaDNA metabarcoding 154 

SedaDNA metabarcoding was carried out using the rbcl_76 marker which was designed 155 

for both marine and freshwater species (Stoof-Leichsenring et al., 2012). Amplifications were 156 

carried out using the primers Diat_rbcL_705F (AACAGGTGAAGTTAAAGGTTCATAYTT) 157 

and Diat_rbcL_808R (TGTAACCCATAACTAAATCGATCAT), which were tagged for parallel 158 

sequencing (Binladen et al., 2007) as described in Dulias et al. (2017) and Huang et al. (2020). 159 

The PCR reaction mixes and conditions were prepared according to the adjusted protocol for 160 

tagged Diat_rbcL_705F and Diat_rbcL_808R primers as described in Dulias et al. (2017) with the 161 

exception that 3 µl DNA (DNA concentration 3 ng/µl) was used as a template. PCRs were carried 162 

out under the following conditions: 5 minutes at 94 °C (initial denaturation), then 50 cycles at 94 163 

°C (denaturation), 49 °C (annealing) and 68 °C (elongation) and a final elongation step at 72 °C 164 

for 5 minutes. Each PCR batch was composed of one extraction batch (9 samples and the 165 

corresponding extraction negative control) and a PCR negative control. Furthermore, each PCR 166 

batch was subjected to three independent PCRs, with distinct primer-tag combinations on different 167 
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days. PCR success was checked with gel-electrophoresis. Subsequently, the PCR products 168 

including all negative controls were purified using the MinElute purification Kit (Qiagen, Hilden, 169 

Germany). The DNA concentrations of the PCR products were measured again with the Qubit 170 

dsDNA BR Assay Kit and mixed in equal concentrations. As negative controls were below 171 

detection limit, 10 µl for negative controls were added to the sample pool. The sample pool was 172 

sent to Fasteris SA sequencing service (Switzerland) who carried out library preparation with the 173 

Mid Output kit v 2 according to the Fasteris Metafast protocol and sequencing (2 x 150 bp, paired-174 

end) on the Illumina NextSeq 500 platform (Illumina Inc., San Diego, CA, USA). The sequences 175 

are deposited at Dryad (Zimmermann et al., 2020a, 2020b). 176 

 177 

2.5 Bioinformatic processing 178 

The sequence reads were processed, filtered and assigned a taxonomic name according to 179 

the NCBI taxonomy using the OBITools package (Boyer et al., 2016) with the same bioinformatics 180 

parameter settings as described in (Dulias et al., 2017). Taxonomic assignment was applied via the 181 

EMBL nucleotide reference database (EMBL release 138 from November 2018 (Kanz et al., 182 

2005)) using a least common ancestor approach implemented in OBITools (Table S1). The 183 

resulting table was combined with samples sequenced on a previous run (Zimmermann et al., 184 

2020). Then, further denoising was carried out on the combined dataset using R v. 3.6.0 (R Core 185 

Team, 2018): PCR and sequencing errors are known to inflate diversity estimates, especially with 186 

ancient DNA, hence we kept only those amplicon sequence variants (ASVs) that (1) were assigned 187 

a taxonomic name based on 90-100% similarity to an entry in the reference database, (2) were 188 

represented with at least 100 read counts in total and (3) at least 10 read counts per PCR-product, 189 

(4) were present at least 3 times among all PCR-products, (5) showed taxonomic resolution at least 190 

to phylum level “Bacillariophyta”, and (6) were tagged as “internal” by obiclean in less than 50% 191 

of the different replicates per sample. After filtering, the PCR replicates of a sample were 192 

combined and subjected to rarefaction. We resampled the data based on the minimum number of 193 

sequences (8,882 counts) using a custom R script (https://github.com/StefanKruse/R_Rarefaction; 194 

Kruse, 2019). 195 
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The negative controls were mostly clean (Table S2). They contained, on average, 38 196 

sequence variants of which 90.4% occurred with only one or two read counts, which can most 197 

likely be attributed to tag jumps (Schnell et al., 2015). Only one PCR-product of an extraction 198 

negative control contained more reads, which was probably a pipetting mistake during PCR-setup, 199 

because the corresponding PCR negative control was clean and the other 2 PCR replicates of this 200 

negative control were clean as well. 201 

 202 

2.6 Statistical analysis 203 

2.6.1 Composition 204 

Constrained hierarchical clustering (CONISS; Grimm, 1987) was applied in which clusters 205 

were constrained stratigraphically by sample depth with the chclust-function from the R package 206 

“rioja” v. 0.9-21 (Juggins, 2012). Subsequently we used the bstick-function from the “vegan” 207 

package v. 2.5-6 (Oksanen et al., 2011) to compare the dispersion of the computed classification 208 

against the dispersion of a broken stick model in order to assess the number of significant zones. 209 

The stratigraphic diagram was plotted using strat.plot from “rioja” and based only on ASVs having 210 

proportions of at least 1% in the dataset. 211 

 212 

2.6.2 Environmental variables 213 

Environmental variables were retrieved from PANGAEA (Max et al., 2012b, 2012a; 214 

Meyer et al., 2016a; Riethdorf et al., 2013b), NGRIP 20-year means of δ18O 215 

(http://www.iceandclimate.nbi.ku.dk/data/2010-11-19_GICC05modelext_for_NGRIP.txt) and 216 

June insolation was calculated after Laskar et al. (2004). Environmental variables were 217 

interpolated using the methods described in Reschke et al. (2019). First, the environmental data 218 

were transformed using the function zoo from the “zoo” package v. 1.8-7 and used in the function 219 

CorIrregTimser using the package “corit” v. 0.0.0.9000 220 

(https://github.com/EarthSystemDiagnostics/corit). As environmental data were limited, we 221 

focused the multivariate analyses (package “vegan”) on the temporal interval from 7.56–16.48 cal 222 

kyr BP. ASVs with proportions of at least 1.5% were selected for multivariate statistical analysis. 223 
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To avoid double-zeros being regarded as similar between samples we used Hellinger 224 

transformation on the reduced proportion-based community matrix with decostand from “vegan”. 225 

To test for linear dependencies of the environmental variables we ran a constrained 226 

correspondence analysis (CCA) and calculated the variance inflation factor (VIF). Furthermore, 227 

we applied forward selection using ordistep for stepwise extension of the regression model and 228 

performed a permutation test to keep variables that significantly explain some of the variance of 229 

the community matrix. Subsequently, we tested the chosen variables with conditional variables for 230 

their unique explained variance as forward selection depends on the order by which the variables 231 

were put into the model.  232 

 233 

2.6.3 Taxonomic richness and beta-diversity 234 

Richness, the number of ASVs, was calculated as a measure of taxonomic alpha-diversity 235 

using the estimateD function from the iNEXT package v. 2.0.20 (Hsieh et al., 2016), which 236 

allowed rarefaction analysis for both centric and pennate diatom ASVs in parallel. Rarefied 237 

richness was tested for correlations with interpolated environmental variables using rcorr from the 238 

package “Hmisc” v. 4.4-0 (Harrell Jr, 2020) with the method “Pearson”. Taxonomic beta-diversity 239 

was calculated using the betapart.core and beta.pair functions of the “betapart” v. 1.5.1 package 240 

(Baselga & Orme, 2012), which allowed the split of pair-wise Jaccard dissimilarities into 241 

nestedness (sample composition is a subset of the previous sample composition) and turnover 242 

fractions (taxonomic replacement from one sample to the next). All analyses were carried out using 243 

R v. 3.6.0 (R Core Team, 2018).  244 

 245 

3 Results 246 

A total of 13,584,296 reads were assigned to 3,038 amplicon sequence variants (ASVs) at 247 

90–100% similarity to reference sequences. Of these, 2,191 ASVs were specific for diatoms and 248 

comprised 11,746,154 reads. After further filtering, 11,114,776 reads remained assigned to 232 249 

ASVs, which amounts to 94.6% of all reads assigned to diatoms. Of these, 47% are resolved to 250 

species level and 38% to genus level. The lowest number of diatom read counts (8,882 counts) 251 



manuscript submitted to Paleoceanography and Paleoclimatology 

 

was detected in the sample at 7.885 m depth (18.0 cal kyr BP) while the highest number (914,117 252 

counts) was detected in the sample at 3.0 m (11.1 cal kyr BP). The majority of diatom-derived 253 

reads were assigned to centric diatoms (92.7%), while 7.3% of reads were assigned to pennate 254 

diatoms. The sequence variants were assigned to 25 different families, of which Bacillariaceae (68 255 

ASVs), Chaetocerotaceae (40 ASVs), Naviculaceae (18 ASVs) and Thalassiosiraceae (54 ASVs) 256 

encompassed the majority of the 231 ASVs that remained after filtering and rarefaction.  257 

3.1 Diatom sedaDNA composition 258 

Throughout the past 19.9 cal kyr BP the sedaDNA composition of the 63 samples is 259 

dominated by ASVs assigned to cold-water and sea ice-associated species, such as Bacterosira 260 

sp., Nitzschia (cf.) frigida, Porosira sp., Thalassiosira antarctica and T. nordenskioeldii. 261 

Dominant ASVs are assigned to centric diatoms of the genera Chaetoceros, Thalassiosira, 262 

Porosira and Skeletonema.  263 

The proportions of ASVs assigned to pennate diatoms per sample ranges between a 264 

minimum of 1.4% (2.36 cal kyr BP) and a maximum of 15.1% (19.9 cal kyr BP). Pennate diatoms, 265 

predominantly pennate, raphid diatoms, have highest proportions during the end of the LGM 266 

(10.9%) and early deglacial (Heinrich Stadial 1 (HS1) (9.8%) and Bølling/Allerød (9%)). Their 267 

mean proportions decrease continuously until the Mid Holocene (4.7%), but increase again in the 268 

Late Holocene (5.5%) (Fig. 2).  269 

Constrained hierarchical clustering combined with the broken stick model suggested 270 

division into three stratigraphic zones that are consistent with typical climatic phases: the late 271 

glacial phase comprising samples dated to 19.91–15.26 cal kyr BP, the deglacial transition phase 272 

comprising samples dated to 14.95–10.73 cal kyr BP and the Holocene phase comprising samples 273 

dated to 10.43–1.08 cal kyr BP. We therefore used these phases for the description of the sedaDNA 274 

record. 275 

The glacial phase comprises several ASVs assigned to Thalassiosira which account for 276 

about 30–70% of the composition, Porosira (9.6–29.2%), Chaetoceros cf. contortus 1 SEH 2013 277 

ASV 980 (8.7–9.6%), Attheya ASV 58 (0.4–6.8%), Actinocyclus 1 MPA-2013 (0.9–5.1 %), and 278 

Chaetoceros socialis ASV 1280 (0.8–4.7%). Among pennate diatoms, ASVs assigned to 279 
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Bacillaria sp. ASV 139 (0.2–2.7%), Navicula ramosissima ASV 1651 (0–2.5%), and several 280 

Nitzschia ASVs have notable proportions. 281 

Although the deglacial phase encompasses climatically very different phases, 282 

Cymatosiraceae (0.02–0.7%) and Leptocylindrus minimus (0–1.4%) ASVs are mostly restricted to 283 

this zone. With the onset of this zone the proportions of most pennate diatoms as well as 284 

Thalassiosira nordenskioeldii ASV 2697 (mostly <0.1%) decrease. The Bølling/Allerød phase 285 

contains ASVs that have their peak proportions during this phase such as Paralia (0.6–16.8%) and 286 

Thalassiosira sp. 15BOF (0–1.2%). While Thalassiosira angulata (0.3–5.2%) and Nitzschia cf. 287 

frigida ASVs 1763 and 1764 (1.3–4.8%) increase, Chaetoceros socialis ASV 1280 (0–1.4%) and 288 

Minidiscus trioculatus (0–0.8%) show a marked drop during this phase. During the Younger 289 

Dryas, some ASVs that decreased during the Bølling/Allerød, increase again, such as Chaetoceros 290 

socialis ASV 1280 (3–5%), Thalassiosira sp. ASV 2241 (2.6–7.4%) and Attheya ASV 58 (0–291 

5.7%).  292 

The Holocene phase is marked by the reduction and sporadic presence of several ASVs 293 

assigned to pennate diatoms, yet increased but highly variable proportions of Haslea avium (0.02–294 

4%). Predominatly, the Holocene is composed of sequence types assigned to the genera 295 
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Chaetoceros and Thalassiosira as well as Porosira (4.4–33.9%) and Skeletonema ASV 2155 (0.3-296 

10.2%). 297 

 298 

  299 

Figure 2: Proportions of amplicon sequence variants assigned to centric diatoms (red) and 300 

pennate diatoms (blue) during the glacial/interglacial transition over of the past 19.9 cal kyr BP. 301 

 302 
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Figure 3: Stratigraphic diagram showing the proportions of the assigned amplicon sequence 304 

variants for each sample through time. Only sequence variants with more than 1% proportion in 305 

one or more samples are shown. If not indicated otherwise, the scales of proportions start with 0%. 306 

Centric diatoms are marked in light blue, while pennate diatoms are marked in dark blue, 5x 307 

exaggeration is shown in gray. The horizontal, dotted lines mark the boundaries of the three 308 

CONISS based stratigraphic zones. The CONISS dendrogram and the total sum of squares are 309 

given on the right side.  310 

 311 

3.2 Relationship of diatom sedaDNA composition with environmental variables 312 

We used multivariate statistics to determine to what degree abiotic factors have an effect 313 

on the sedaDNA composition. Based on variance inflation factors (VIFs) exceeding 10 and thus 314 

collinearity with other variables, we stepwise excluded UK’37-based SSTs, NGRIP δ18O and the 315 

BIT-index (branched and isoprenoid tetraether index, measuring the relative input of terrestrial 316 

and marine glycerol dialkyl glycerol teatraethers (GDGTs)) from the set of variables. June 317 

insolation, the sea-ice proxy IP25 and foraminiferal, ice-volume corrected δ18O (salinity proxy) 318 

displayed VIF values between 1.003 and 1.009 suggesting low levels of collinearity between each 319 

other. Decomposition of total variance (0.09383) showed that 33.9% of the variance is explained 320 

by the model containing the three explanatory variables (adjusted R2=0.321). RDA axis 1 captures 321 

22.6% of the variance, while RDA axis 2 captures 11.3%. June insolation is highly correlated with 322 

RDA axis 1 (Table 1). Samples located in the right quadrants of the triplot are characterized by 323 

high June insolation and mostly centric diatoms of the genera Chaetoceros, Thalassiosira and 324 

Skeletonema. While the upper left quadrant is characterized by high concentrations of the sea-ice 325 

biomarker IP25, the lower left quadrant is characterized by heavier δ18Oivc-sw. Especially in the 326 

genus Chaetoceros, our dataset shows several ASVs assigned to the same species. The RDA triplot 327 

shows, for example, that Chaetoceros socialis ASV 1280 is located in the upper left quadrant 328 

which is associated with late glacial samples and IP25 whereas Chaetoceros socialis ASV 1281 is 329 

located in the lower right quadrant which is associated with Early Holocene samples of the 330 

deglacial stratigraphic zone and high June insolation (Fig. 4). A second example is shown in the 331 

RDA triplot for two ASVs assigned to Chaetoceros cf. pseudobrevis 1 SHE-2013 with closest 332 
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match to the same GenBank accession number (KC985654). While ASV 1143 (98% match with 333 

reference) is located in the upper right quadrant and has its highest proportions during the Early 334 

Holocene and is strongly reduced since the Mid Holocene (Fig. 3), the proportions of ASV 1144 335 



manuscript submitted to Paleoceanography and Paleoclimatology 

 

(100% match with reference) increase in the early Mid Holocene and remain on a rather similar 336 

level until the Late Holocene. 337 

 338 

Table 1: Variation partitioning for the final set of explanatory variables with adjusted R2 and p-339 

values for the single and the individual fractions (conditional variance) which remain after 340 

eliminating the effects of the remaining explanatory variables. 341 

  single conditional 

 variance adj. R2 p-value adj. R2 p-value 

June insolation 0.0116 0.108 0.002 0.040 0.001 

IP25 0.0119 0.104 0.002 0.089 0.001 

salinity 0.0113 0.099 0.001 0.023 0.01 

 342 
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 343 

Figure 4: RDA triplot showing the abbreviated names of the 20 most explaining amplicon 344 

sequence variants (ASVs) and the vector ends of the most abundant ASVs as a gray plus symbol 345 

(+). Samples are marked by colour coded points to the three stratigraphic zones which they 346 

represent (dark blue = late glacial, light blue = deglacial, orange = Holocene). Environmental 347 

variables are shown by blue vectors. 348 

 349 

3.3 Diatom diversity changes 350 

Richness (number of ASVs after rarefaction) was lowest in the youngest sample dated to 351 

1.08 cal kyr BP (37 ASVs) and highest about 18.42 cal kyr BP (106 ASVs) (Fig. 5, Fig. S1). While 352 

the median richness among sequences assigned to centric diatoms varies only slightly over the past 353 

19.9 cal kyr BP, the richness of those assigned to pennate diatoms declines almost continuously 354 

throughout the record, except for an increase during the Younger Dryas (Fig. S1). The richness of 355 
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pennate diatom ASVs shows a moderate, positive correlation with IP25 (R=0.48, p=0.003), and 356 

moderate, negative correlations with June insolation (R=-0.49, p=0.002) and NGRIP δ18O (R=-357 

0.68, p<0.001). The richness of centric diatoms does not show any significant correlation with 358 

environmental variables Table S1). 359 

Beta-diversity, which is here used as a measure of dissimilarity between adjacent samples, 360 

is moderate overall (median=0.51). There are four strong declines in diatom richness in our record. 361 

The first occurred between 18.24 and 18 cal kyr BP and reduced centric diatom ASVs 362 

approximately by half (from 62 to 32 ASVs) and pennate ASVs by about a quarter (from 31 to 23 363 

ASVs). Slightly elevated values of beta-diversity (Jaccard dissimilarity=0.56) during this time in 364 

comparison to the median Jaccard dissimilarity correspond more to nestedness rather than turnover 365 

(Fig. 3). The second decline occurred between 15.6 and 14.24 cal kyr BP and affected pennate 366 

diatom ASVs (from 33 to 16 ASVs) more than centric ones (from 49 to 38 ASVs). Beta-diversity 367 

increases from 15.6 to 14.95 cal kyr BP and then slightly decreases again. The third decline affects 368 

both pennate and centric diatoms strongly and started after 11.95 until 11.1 cal kyr BP for pennate 369 

(from 27 to 6 ASVs) and after 11.42 until 11.1 cal kyr BP for centric diatom ASVs (from 58 to 30 370 

ASVs). Between 11.1 and 10.5 cal kyr BP, the turnover partition of beta-diversity is highest overall 371 

throughout the record. This corresponds predominantly to a loss of ASVs in both pennate and 372 

centric diatoms at 11.1 cal kyr BP followed by a gain of ASVs at 10.5 cal kyr BP (Fig.5). The 373 

fourth decline is detected between the youngest samples from 1.22 and 1.08 cal kyr BP (from 9 to 374 

6 pennate ASVs and from 53 to 27 centric ASVs) and shows slightly increased beta-diversity, of 375 

which the turnover partition is only slightly higher than the nestedness one. 376 

 377 
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Figure 5: Comparison of rarefied richness (horizontal green dashed line marks median richness 379 

of centric diatom ASVs, blue dashed line marks median richness of pennate diatom ASVs), beta-380 

diversity (Jaccard dissimilarity and its partitions into turnover and nestedness) and proportions of 381 

diatom sedaDNA indicator groups with Mg/Ca-based subsurface SSTs (Riethdorf et al., 2013a), 382 

alkenone-based surface SSTUK’37, biogenic silica (Max et al., 2012), IP25 (Méheust et al., 2015), 383 

stable oxygen isotopes from Greenland ice cores (NGRIP δ18O; Rasmussen et al., 2014), June 384 

insolation calculated after Laskar et al. (2004) and sea subsurface salinity appoximation (δ18Oivc-385 

sw; Riethdorf et al., 2013a). The vertical dotted lines mark the stratigraphic zonation. The shaded 386 

vertical area highlights the sample at ~11.1 cal kyr BP. 387 

 388 

4 Discussion 389 

4.1 General relationship between diatom sedaDNA composition and environmental 390 

change 391 

4.1.1 Late glacial phase (19.9–15.26 cal kyr BP) 392 

The diatom sedaDNA composition during the late glacial phase reflects sea ice as a key 393 

variable shaping the past diatom communities. The presence of winter sea ice is indicated by 394 

sequences assigned to sea ice-associated species such as the colony-forming pennate diatoms 395 

Pauliella taeniata (Grunow) Round & Basson (Lovejoy et al., 2002; Syvertsen, 1991) and 396 

Nitzschia cf. frigida (Grunow) (Hasle & Heimdal, 1998), or the epiphytic living Attheya 397 

septentrionalis (Østrup) R.M.Crawford (von Quillfeldt, 1997). These species are frequently 398 

detected in modern surveys of sea ice (Limoges et al., 2018; Lovejoy et al., 2002; Poulin et al., 399 

2011; von Quillfeldt, 2000), but can be absent or only sporadically found in surface sediments due 400 

to degradation during sinking through the water column (Limoges et al., 2018; Lopes et al., 2006). 401 

Here, the sedaDNA has an advantage over morphological data and can complement the picture we 402 

perceive of the past. Winter sea-ice conditions with ice-free summers were also reconstructed 403 

based on the sea-ice biomarker IP25 and abundant Fragilariopsis cylindrus and F. oceanica in local 404 

microfossil assemblages (Max et al., 2012; Méheust et al., 2016; Smirnova et al., 2015). Low 405 

proportions of sequences assigned to the productive genus Chaetoceros (Lopes et al., 2006) in our 406 
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record could reflect overall low productivity as also suggested by low biogenic silica (Max et al., 407 

2012) and low abundance of diatom microfossils during this phase (Smirnova et al., 2015). 408 

The high share of sequences assigned to Bacterosira (probably B. bathyomphala), 409 

Thalassiosira nordenskioeldii, T. antarctica and Porosira (probably P. glacialis) points to ice-410 

free, but cool, summers. These cold-water species are often found along the winter ice edge in the 411 

Bering and Okhotsk Seas and in coastal areas of Kamchatka (Ren et al., 2014), although the neritic 412 

species Bacterosira bathyomphala could also be associated with shallow slope depths down to 500 413 

m in the Sea of Okhotsk (Ren et al., 2014; Sancetta, 1982). In the subarctic North Pacific and 414 

adjacent seas, these species achieve maximum abundances where summer SSTs remain between 415 

5 to 8 °C, but they can generally be found where summer SSTs remain below 12.5 °C (Ren et al., 416 

2014). This is well within the range of previous reconstructions carried out on this sediment core 417 

indicating summer SSTs of about 8 to 9.5 °C during this phase (Meyer et al., 2016b). Late glacial 418 

diatom microfossil data of this core are characterized by dominance of the Thalassiosira trifulta 419 

and Actinocyclus curvatulus group. While our sedaDNA reveals much more complexity in the 420 

diatom assemblages during this time, our method is still restricted by the incompleteness of the 421 

reference database, as, for example, T. trifulta and A. curvatulus are not available and are 422 

potentially only resolved to genus level in our record. Still, Actinocyclus sp. 1 MPA-2013 displays 423 

higher proportions during the late glacial phase in comparison to the deglacial and Holocene 424 

phases, which is in agreement with Smirnova et al. (2015) as well as with microfossil records from 425 

Bowers Ridge and the western subarctic gyre (Katsuki & Takahashi, 2005). 426 

Sequences assigned to pennate, raphid diatoms have the highest proportions until 427 

approximately 15.7 cal kyr BP, which may be linked to bottom ice communities (Caissie et al., 428 

2010). Even though pennate diatoms are often poorly preserved as microfossils in sediments 429 

(Limoges et al., 2018), they are usually dominant in sea ice (Poulin et al., 2011; von Quillfeldt, 430 

2000). The benthic lifestyle, to which pennate diatoms are adapted to, includes the excretion of 431 

exopolymers via the raphe, which facilitate their attachment to surfaces and enables them to 432 

actively move along surfaces such as ice (Olsen et al., 2019; Round et al., 1990). As summer 433 

insolation is an important driver for SSTs in the subarctic North Pacific (Harada et al., 2014), it is 434 

conceivable that the low summer insolation during this time (Laskar et al., 2004) promoted pennate 435 

diatoms due to a long duration of sea-ice coverage with only a short summer. Short-term summers 436 

have also been reconstructed during this phase in the Bering Sea where sea ice was estimated to 437 
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have covered most of the Bering Sea for more than six months (Caissie et al., 2010; Méheust et 438 

al., 2016). 439 

 440 

4.1.2 Deglacial transition phase (14.95–10.73 cal kyr BP) 441 

The sedaDNA composition of samples dated to the Bølling/Allerød phase (14.7–12.7 cal 442 

kyr BP) can likely be related to increased local subsurface salinity conditions in comparison to the 443 

glacial phase as implied by an enrichment of foraminifera-derived stable oxygen isotopes 444 

(δ18Oivc-sw (Riethdorf et al., 2013a)). Peak proportions of sequences assigned to Paralia (sulcata) 445 

up to ~15% coincide with increasing subsurface salinities (positive δ18Oivc-sw) during this phase. 446 

Paralia sulcata (Ehrenberg) Cleve is a coastal species, which is a common part of benthic 447 

communities and increased abundance is often recorded in areas of upwelling (Abrantes, 1988; 448 

McQuoid & Nordberg, 2003; Stabell, 1986), or where the water column is less stable and subject 449 

to strong wind-driven or tidal mixing (McQuoid & Nordberg, 2003). 450 

Sequences assigned to Thalassiosira delicata, the cold-water indicator Porosira, and 451 

Bacterosira, but also to the sea-ice associated Nitzschia cf. frigida suggest a cold-water 452 

environment with frequent influence of sea ice despite recorded increases of SSTs by about 3–453 

5 °C (Max, Riethdorf, Tiedemann, Smirnova, Lembke‐Jene, et al., 2012; Riethdorf et al., 2013a). 454 

Such SSTs are still in the growth range of B. bathyomphala and P. glacialis which occur in the 455 

Bering and Okhotsk Seas in regions with summer SSTs between 5 and 12.5 °C (Ren et al., 2014). 456 

These species also occur in the marginal ice zone, where sea-ice concentration varies between 15 457 

and 80%, and achieve high abundances during the spring bloom (Hasle, 1990). Hence, proportions 458 

of sequences assigned to Nitzschia cf. frigida of more than 3% in this phase are not necessarily 459 

contradictory. While the absence of IP25 suggests ice-free conditions, gravel-sized ice rafted debris 460 

at about 13.86 cal kyr BP (560 cm depth; Levitan et al., 2015) point towards the presence of sea 461 

ice. As Nitzschia frigida is a common inhabitant of landfast ice communities (Medlin & Hasle, 462 

1990), a possible explanation could be the occurrence of drifting ice floes, which were transported 463 

away from the coast or southward by the East Kamchatka Current, and probably originated from 464 

enclosed bights and bays along the eastern coast of Kamchatka (Polyakova, 2007). 465 

The diatom sedaDNA composition of samples dated to the Younger Dryas (12.7–11.7 cal 466 

kyr BP) are characterized by the presence of sea ice-associated ASVs (Pauliella taeniata, Attheya 467 
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septentrionalis, Nitzschia cf. frigida) suggesting winter sea-ice coverage during this time. Sea ice-468 

associated ASVs in combination with a higher richness of pennate diatom ASVs in comparison to 469 

the Bølling/Allerød phase are in agreement with sea-ice diatom microfossils detected by Smirnova 470 

et al. (2015), high concentrations of the sea-ice biomarker IP25 (Méheust et al., 2016) and 471 

reconstructed subsurface SSTs between about 2–5 °C with lower seasonal contrasts and a reduced 472 

stratification of the mixed layer (Riethdorf et al., 2013a).  473 

Increased proportions of Chaetoceros socialis (ASV 1280) are characteristic in this phase 474 

and show comparable proportions with regard to the late glacial phase. This matches increasing 475 

proportions of Chaetoceros spp. detected in the microfossil record during this phase (Smirnova et 476 

al., 2015). Chaetoceros socialis is often dominant in coastal areas with sparse to no sea ice in the 477 

Greenland North Water Polynya, where it blooms in late summer; however, it can also achieve 478 

substantial abundances in sea ice (Booth et al., 2002; von Quillfeldt, 1997). We therefore assume 479 

that this ASV is derived from a lineage adapted to sea ice or marginal ice zone conditions and 480 

might actually represent the novel described C. gelidus Chamnansinp, Y.Li, Lundholm & 481 

Moestrup (Chamnansinp et al., 2013).  482 

The composition of samples dated to the onset of the Preboreal (11.7–10.73 cal kyr BP) 483 

are marked by a decrease in sequences assigned to cold-water diatoms and highest proportions of 484 

sequences assigned to freshwater species throughout the record. From about 11.2 cal kyr BP 485 

onwards, sequences assigned to Skeletonema subsalsum (Cleve-Euler) Bethge and Aulacoseira 486 

subarctica (Otto Müller) E.Y.Haworth increase strongly. Skeletonema subsalsum can be found in 487 

rivers, estuaries and coastal areas (Hasle & Evensen, 1975) while A. subarctica is a freshwater 488 

species occurring in rivers and turbulent, cool lakes on Kamchatka (Lepskaya et al., 2010). Their 489 

increased proportions in the sedaDNA record suggest an increased runoff from Kamchatka and 490 

possibly fresher sea-surface conditions. The timing coincides with the post-glacial opening of the 491 

Bering Strait (Jakobsson et al., 2017) and is marked by a high June insolation (Laskar et al., 2004). 492 

Fresher subsurface conditions are also indicated by peaks of lighter δ18Oivc-sw in this core 493 

(Gorbarenko et al., 2019; Riethdorf et al., 2013a). Even though terrestrial lipid biomarkers and 494 

titanium/calcium records of this core suggest low terrestrial input, the sum of terrestrial soil derived 495 

branched GDGTs peaks during this time (Meyer et al., 2016b, 2017) and might also point towards 496 

increased runoff from Kamchatka. 497 
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 498 

4.1.3 Holocene phase (10.43–1.08 cal kyr BP) 499 

The sedaDNA composition of the Early to Mid Holocene is characterized by reduced 500 

proportions of sequences assigned to cold-water species and correlate with high June insolation 501 

between ~11 and 6 cal kyr BP (Laskar et al., 2004). The timing fits well into the range of the 502 

Holocene Thermal Maximum between ~10 and 8 cal kyr BP (Meyer et al., 2017), with maximum 503 

SSTs ranging from 6–11 °C (SSTUK’37) as reconstructed by (Max et al., 2012) to 10–11 °C 504 

(SSTTEXL86 August temperatures of Meyer et al., 2016b). During this phase, the proportions of 505 

sequences assigned to centric diatoms, especially of the genera Chaetoceros, Thalassiosira and 506 

Skeletonema, increase at the expense of sequences assigned to pennate diatoms.  507 

High proportions of Chaetoceros are indicative of high productivity, which is supported 508 

by increasing biogenic opal (Max et al., 2012; Riethdorf et al., 2013a) and high diatom microfossil 509 

abundances (Smirnova et al., 2015). Sequences assigned as freshwater diatoms and negative 510 

δ18Oivc-sw values indicate long-term relatively fresh subsurface conditions (Riethdorf et al., 2013a). 511 

From about 6–1 cal kyr BP, increasing proportions of cold-water diatom ASVs reflect 512 

cooling, which is in agreement with the climate development recorded in the NGRIP Greenland 513 

ice core record (Rasmussen et al., 2014), reconstructed SSTs (Max et al., 2012; Meyer et al., 2016b, 514 

2017; Riethdorf et al., 2013a) and the advance of glaciers on Kamchatka (between 4.5 and 3.5 cal 515 

kyr BP) (Brooks et al., 2015). A drop in cold-water diatoms at ~3 cal kyr BP, suggests a short-516 

term interruption of this phase of cooling, which is synchronous with a short-term increase of 517 

SSTUK’37 (Max et al., 2012). 518 

An increase of sequences assigned to pennate diatoms in the Late Holocene and high 519 

proportions of cold-water diatom ASVs including the ice-associated Nitzschia cf. frigida suggest 520 

cooling and potentially an increasing influence of winter sea ice or at least drifting ice floes in the 521 

region. In support of this, grain-size analyses of this core suggest increased presence of potentially 522 

ice-rafted material (Levitan et al., 2015) and after 6 cal kyr BP the microfossil assemblage contains 523 

sea ice-associated species (Smirnova et al., 2015), whereas the sea-ice biomarker IP25 suggests ice-524 

free conditions (Méheust et al., 2016). Thus, sedaDNA has the potential to complement our 525 

understanding of past sea-ice distribution. 526 
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A second sequence variant of Chaetoceros socialis (ASV 1281) is linked with Holocene 527 

samples and suggests that different ASV are potentially derived from different lineages adapted to 528 

different growth conditions (Hamsher et al., 2013). In several cases, different ASVs which were 529 

assigned to the same species co-occurred while a few showed patterns consistent with changes in 530 

environmental conditions. Such co-occurrence of several ASVs could arise due to the degraded 531 

state of ancient DNA introducing erroneous nucleotides during PCR (Hofreiter et al., 2001), but it 532 

is also in agreement with the ecological hypothesis that genetic variation allows species to quickly 533 

adapt to changing environmental conditions (Godhe & Rynearson, 2017). The application of 534 

ASVs, in comparison to clustering into operational taxonomic units, thus has the advantage of 535 

revealing (pseudo-)cryptic species or ecotypes and should be considered more in biogeographic 536 

surveys.  537 

 538 

4.2 Changes in diatom sedaDNA richness and the relationship with environmental 539 

changes 540 

Richness of pennate diatom ASVs was higher during phases of strong Northern 541 

Hemisphere cooling, namely the late LGM, Heinrich Stadial 1 and the Younger Dryas and is 542 

significantly positively correlated with sea ice and significantly negatively correlated with June 543 

insolation and Northern Hemisphere temperatures. This points towards sea ice as a facilitating 544 

factor for pennate diatoms with regard to alpha-diversity in the subarctic NW Pacific. The negative 545 

correlation of pennate diatom richness with June insolation and temperatures in comparison to 546 

centric diatom richness might be related to the higher sensitivity of pennate diatoms to ultraviolet 547 

light in the absence of a thick sea-ice cover, whereas centric diatoms have developed strategies to 548 

prevent damage to their photosystems (Enberg et al., 2015). 549 

A strong decline of richness accompanied by increased beta-diversity occurred during the 550 

Preboreal phase of the Early Holocene around 11.1 cal kyr BP and could be attributed 551 

predominantly to turnover by loss of ASVs until 11.1 cal kyr BP and replacement by different 552 

ASVs towards 10.5 cal kyr BP. This decline of richness occurs simultaneously with a sharp drop 553 

in biogenic opal, suggesting strongly reduced productivity of siliceous organisms such as diatoms 554 

(Max, Riethdorf, Tiedemann, Smirnova, Lembke‐Jene, et al., 2012). This interval is characterized 555 

by a peak in summer insolation, rising SSTs (Max et al., 2012) and strong sea-level rise which 556 
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culminated in the opening of the Bering Strait (Jakobsson et al., 2017). A sharp increase in 557 

proportions of the freshwater group and foraminiferal stable oxygen isotopes points towards 558 

increased sea-surface freshening, potentially derived from increased runoff from Kamchatka 559 

(Gorbarenko et al., 2019; Riethdorf et al., 2013a) as suggested by a peak in terrestrial lipid 560 

biomarkers around 11.2 cal kyr BP (Meyer et al., 2016b, 2017). Fresher surface conditions could 561 

have resulted in enhanced vertical stratification limiting the mixing of nutrients from deeper water 562 

masses toward the euphotic zone and thus restricting primary productivity, manifested as a sharp 563 

drop of biogenic silica during this time (Max et al., 2012). 564 

To what extent changes in the diversity and composition of past diatom assemblages 565 

affected the past organismal community at the ecosystem level remains to be revealed. Diatoms 566 

have been shown to impact marine plankton structure by biotic interactions, for example by 567 

competition or selective grazing (Vincent & Bowler, 2020) and exopolymers excreted by sea-ice 568 

diatoms have been shown to be hotspots for enhanced bacterial activity (Meiners et al., 2008). 569 

Hence, changes might be linked to several trophic levels and could substantially impact marine 570 

food-webs and biogeochemical cycling in areas such as the Arctic where food-webs have evolved 571 

over millions of years. 572 

 573 

5 Conclusions 574 

We present the first diatom-derived sedaDNA metabarcoding record of the subarctic NW 575 

Pacific, which covers the past 19.9 cal kyr. 576 

The dominant components of the diatom sedaDNA composition fit well within the 577 

framework of reconstructed sea-ice dynamics, SSTs and subsurface salinities over the past 578 

millennia. High proportions of sea-ice and cold-water associated diatoms and generally high 579 

proportions of pennate diatoms point to sea ice as a main driver of diatom composition during the 580 

late glacial phase as well as during the Younger Dryas. A positive correlation of pennate diatom 581 

richness with the sea-ice biomarker IP25 suggests that an extended winter sea-ice cover during the 582 

late glacial and the Younger Dryas potentially acted as a diversifying force. 583 

Substantial proportions of Nitzschia cf. frigida in the absence of the sea-ice proxy IP25 584 

during the early deglacial phase point to a continued influence of drifting sea ice. This suggests 585 
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either that the ecology of N. frigida is not completely understood yet, or that our proxy can 586 

occasionally be more sensitive to the past presence of sea ice than IP25. 587 

Unfavorable conditions for pennate diatoms at the start of the Holocene is suggested by 588 

decreasing proportions and the negative correlation of pennate diatom richness with June 589 

insolation and temperature.  590 

The inferred loss of 42% of diatom ASVs at ~11.1 cal kyr BP is accompanied by freshwater 591 

diatoms implying the influence of runoff from Kamchatka to the local assemblage. It is likely that 592 

the freshwater input resulted in enhanced vertical stratification limiting the mixing of nutrients 593 

from deeper water masses toward the euphotic zone and thus restricting primary productivity – a 594 

scenario which is supported by near-zero biogenic silica during this time. As modern climate 595 

warming is anticipated to increase freshwater input into the Arctic from 11 to 30% by river 596 

discharge alone (Nummelin et al., 2016), an enhanced stratification with restricted nutrient supply 597 

could have tremendous consequences for the biological carbon pump, biogeochemical cycling and 598 

the food-web in the Arctic. 599 

Finally, our proxy revealed shifts of potential ecotypes of species from the genus 600 

Chaetoceros, which is in agreement with the concept that intra-specific variation facilitates an 601 

adaptive response to changing environmental conditions and is particularly relevant in high-602 

latitudinal ecosystems. Therefore, marine sedaDNA has the potential to answer ecological 603 

questions regarding selective or adaptive responses at an intra-specific level where morphological 604 

studies might be severely limited. 605 
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