References
Ana Alonso-Simón, Encina A E, & Penélope García-Angulo. (2004). FTIR spectroscopy monitoring of cell wall modifications during the habituation of bean (Phaseolus vulgaris L.) callus cultures to dichlobenil. Plant Science (Oxford) . 167(6), 1280-1281. https://doi.org/10.1016/j.plantsci.2004.06.025
Balvardi M, Rezaei K, & Mendiola J A. (2015). Optimization of the Aqueous Enzymatic Extraction of Oil from Iranian Wild Almond.Journal of the American Oil Chemists’ Society . 92(7), 985-992. https://doi.org/10.1007/s11746-015-2671-y
Barros A S, Mafra I, & Ferreira D. (2002). Determination of the degree of methylesterification of pectic polysaccharides by FT-IR using an outer product PLS1 regression. Carbohydrate Polymers . 50(1), 85-94. https://doi.org/10.1016/S0144-8617(02)00017-6
Bisht T S, Sharma S K, & Sati R C. (2015). Improvement of efficiency of oil extraction from wild apricot kernels by using enzymes. Journal of Food Science and Technology . 52(3), 1543-1551. https://doi.org/10.1007/s13197-013-1155-z
Campbell, K. A., Glatz, & C. E. (2011). Advances in aqueous extraction processing of soybeans. Journal of American Oil Chemist’s Society . 88(4), 449–465. https://doi.org/10.1007/s11746-010-1724-5
Chatjigakis A K. (1998). FT-IR spectroscopic determination of the degree of esterification of cell wall pectins from stored peaches and correlation to textural changes. Carbohydr. Polym. 37(4), 395-408. https://doi.org/10.1016/S0144-8617(98)00057-5
Coimbra M A, Barros A, & Barros M. (1998). Multivariate analysis of uronic acid and neutral sugars in whole pectic samples by FT-IR spectroscopy. Carbohydrate Polymers.37(3), 241-248. https://doi.org/10.1016/S0144-8617(98)00066-6
Fellah A, Anjukandi P, & Waterland M R. (2009). Determining the degree of methylesterification of pectin by ATR/FT-IR: Methodology optimisation and comparison with theoretical calculations. Carbohydrate Polymers . 78(4), 847-853. https://doi.org/10.1016/j.carbpol.2009.07.003
Ferreira D, Barros A, & Coimbra M A. (2001). Use of FT-IR spectroscopy to follow the effect of processing in cell wall polysaccharide extracts of a sun-dried pear. Carbo hydrate Polymers. 45(2), 175-182. https://doi.org/10.1016/S0144-8617(00)00320-9
Frankova L & Fry S C. (2013). Biochemistry and physiological roles of enzymes that ‘cut and paste’ plant cell-wall polysaccharides.Journal of Experimental Botany , 64(12):3519-3550. https://doi.org/10.1093/jxb/ert201
Fry S C & Fry S. (1988). The Growing Plant Cell Wall: Chemical and Metabolic Analysis. Growing Plant Cell Wall Chemical & Metabolic Analysis , 27(12), 4008.
Gao J F. (2006). Experimental guidance on plant physiology. Higher Education Press. Beijing, China. pp. 140-150.
Gaur R, Sharma A, & Khare S K. (2007). A novel process for extraction of edible oils: Enzyme assisted three phase partitioning (EATPP).Bioresource Technology , 98(3): 696-699. https://doi.org/10.1016/j.biortech.2006.01.023
Gnanasambandam R & Proctor A. (2000). Determination of pectin degree of esterification by diffuse reflectance Fourier transform infrared spectroscopy. Food Chemistry . 68(3), 327-332. https://doi.org/10.1016/s0308-8146(99)00191-0
Han Y S. (1992). Food chemistry experiment guide. Beijing agricultural university press. Beijing, China. pp. 19-21.
He C W. (2015). Chemical evidence and functional study of silicon - hemicellulose complex in cell wall of rice (Oryza sativa). Huazhong Agricultural University. Wuhan, China. https://doi.org/10.7666/d.Y2803337
He X Q. (2015). Multivariate statistical analysis, 4th Ed. China Renmin University Press. Beijing, China. pp. 114-128.
Hou M L. (2004). Food analysis. Chemical Industry Press. Beijing, China. vol. 5, pp. 89-90.
Hori R & Sugiyama J. (2003). A combined FT-IR microscopy and principal component analysis on softwood cell walls. Carbohydrate Polymers . 52(4), 449-453. https://doi.org/10.1016/s0144-8617(03)00013-4
Kačuráková M, Smith A C, & Gidley M J. (2002). Molecular interactions in bacterial cellulose composites studied by 1D FT-IR and dynamic 2D FT-IR spectroscopy. Carbohydrate Research . 337(12), 1145-1153. https://doi.org/10.1016/S0008-6215(02)00102-7
Latif S, Anwar F, & Hussain A I. (2011). Aqueous enzymatic process for oil and protein extraction from Moringa oleifera seed.European Journal of Lipid Science & Technology . 113(8), 1012-1018. https://doi.org/10.1002/ejlt.201000525
Li H, Han T, & Jin P. (2014). Study on degradation characteristics of cell wall polysaccharides during post-ripening and softening of winter jujube. Journal of Chinese Institute of Food Science and Technology . 14(2), 109-117. https://doi.org/10.16429/j.1009-7848.2014.02.016
Li T, Peng Y, & Li Q. (2015). Study on extraction and structure of four kinds of peanut proteins.Journal of Food Science and Technology. 33(3), 35-42. https://doi.org/10.3969/j.issn.2095-6002.2015.03.007
Li Y, Qi B K, & Sui X N. (2016). Study on high pressure steam demulsification of peanut oil extracted by enzyme-assisted aqueous extraction. China Oils and Fats . 41(7), 6-9. https://doi.org/10.3969/j.issn.1003-7969.2016.07.002
Liu J J, Gasmalla M A A, & Li P. (2016). Enzyme-assisted extraction processing from oilseeds: Principle, processing and application.Innovative Food Science & Emerging Technologies . 35, 184-193. https://doi.org/10.1016/j.ifset.2016.05.002
LIU Yan, ZHAO Guan-li, & SU Xin-guo. (2013). Functional and Conformational Properties of Arachin and Conarachin. Modern Food Science and Technology . 29(9), 2095-2101. https://doi.org/CNKI:SUN:GZSP.0.2013-09-011
Mat Yusoff, M., Gordon, M.H., & Niranjan, K. (2015). Aqueous enzyme assisted oil extraction from oilseeds and emulsion de-emulsifying methods: a review. Trends Food Sci. Technol . 41 (1), 60-82. https://doi.org/10.1016/j.tifs.2014.09.003
Mccann M C, Defernez M, & Urbanowicz B R. (2007). Neural Network Analyses of Infrared Spectra for Classifying Cell Wall Architectures.Plant Physiology . 143(3), 1314-1326. https://doi.org/10.1104/pp.106.093054
Sukhotu R. (2014). Aqueous enzymatic extraction method of Maize Germ oil bodies and their physiochemical properties. China Agricultural University. Beijing, China.
Synytsya A, J Čopı́ková, & P Matějka. (2003). Fourier transform Raman and infrared spectroscopy of pectins. Carbohydrate Polymers . 54(1), 97-106. https://doi.org/10.1016/S0144-8617(03)00158-9
Szymanska-Chargot M & Zdunek A. (2013). Use of FT-IR spectra and PCA to the bulk characterization of cell wall residues of fruits and vegetables along a fraction process. Food biophysics . 8(1), 29-42. https://doi.org/10.1007/s11483-012-9279-7
Szydłowska-Czerniak A, Karlovits G, & Hellner G. (2010). Effect of enzymatic and hydrothermal treatments of rapeseeds on quality of the pressed rapeseed oils: part II. Oil yield and oxidative stability.Process Biochemistry , 45(2): 247-258. https://doi.org/10.1016/j.procbio.2009.09.014
Winning H, Viereck N, & Salomonsen T. (2009). Quantification of blockiness in pectins-A comparative study using vibrational spectroscopy and chemometrics. Carbohydr Res . 344(14), 1833-1841. https://doi.org/10.1016/j.carres.2008.10.015
XU Fei, LIU Li, & SHI Aimin. (2016). Composition, structures and functional properties of peanut seed protein at subunit level: a review. Food Science . 37(7), 264-269. https://doi.org/10.7506/spkx1002-6630-201607047
Yapo B M & Koffi K L. (2008). The polysaccharide composition of yellow passion fruit rind cell wall: chemical and macromolecular features of extracted pectins and hemicellulosic polysaccharides. Journal of the Science of Food and Agriculture , 88(12):2125-2133. https://doi.org/info:doi/10.1002/jsfa.3323
Zúñiga M E, Soto C, & Mora A. (2003). Enzymic pre-treatment of Guevina avellana mol oil extraction by pressing. Process Biochemistry , 39(1): 51-57. https://doi.org/10.1016/s0032-9592(02)00286-8