References
Acosta-González, A., & Marqués, S. (2016). Bacterial diversity in
oil-polluted marine coastal sediments. Current Opinion in
Biotechnology , 38 , 24–32. doi: 10.1016/j.copbio.2015.12.010
Agouridis, C. T., Wesley, E. T., Sanderson, T. M., & Newton, B. L.
(2015). Aquatic Macroinvertebrates : Biological Indicators of
Stream Health . 5 , 1–5.
Andersen, K. S., Kirkegaard, R. H., Karst, S. M., & Albertsen, M.
(2018). Ampvis2: an R package to analyse and visualise 16S rRNA amplicon
data. BioRxiv , 299537 . doi: 10.1101/299537
Aylagas, E., Mendibil, I., Borja, Á., & Rodríguez-Ezpeleta, N. (2016).
Marine Sediment Sample Pre-processing for Macroinvertebrates
Metabarcoding: Mechanical Enrichment and Homogenization. Frontiers
in Marine Science , 3 (October), 1–8. doi:
10.3389/fmars.2016.00203
Baattrup-Pedersen, A., Friberg, N., Pedersen, M. L., Skriver, J.,
Kronvang, B., & Larsen, S. E. (2004). Anvendelse af Vandrammedirektivet
i danske vandløb. Danmarks Miljøundersøgelser. In Faglig rapport
fra DMU . Retrieved from http://faglige-rapporter.dmu.dk
Battin, T. J., Besemer, K., Bengtsson, M. M., Romani, A. M., &
Packmann, A. I. (2016). The ecology and biogeochemistry of stream
biofilms. Nature Reviews Microbiology , 14 (4), 251–263.
doi: 10.1038/nrmicro.2016.15
Bengtsson, L., Fortin, V., Gronewold, A. D., Tanino, Y., Surridge, B.,
Watson, N., … Herschy, R. W. (2012). Water Framework Directive.Encyclopedia of Lakes and Reservoirs , 872–876. doi:
10.1007/978-1-4020-4410-6_217
Birk, S., Bonne, W., Borja, A., Brucet, S., Courrat, A., Poikane, S.,
… Hering, D. (2012). Three hundred ways to assess Europe’s
surface waters: An almost complete overview of biological methods to
implement the Water Framework Directive. Ecological Indicators ,18 , 31–41. doi: 10.1016/j.ecolind.2011.10.009
Blackman, R., Mächler, E., Altermatt, F., Arnold, A., Beja, P., Boets,
P., … Deiner, K. (2019). Advancing the use of molecular methods
for routine freshwater macroinvertebrate biomonitoring – the need for
calibration experiments. Metabarcoding and Metagenomics ,3 , 49–57. doi: 10.3897/mbmg.3.34735
Braak, C. J. F. F., & Verdonschot, P. F. M. M. (1995). Canonical
correspondence analysis and related multivariate methods in aquatic
ecology. Aquatic Sciences , 57 (3), 255–289. doi:
10.1007/BF00877430
Bradey, D. C., & Ormerod, S. J. (2002). Evaluating the precision of
kick-sampling in upland streams for assessments of long-term change: the
effects of sampling effort, habitat and rarity. Archiv Für
Hydrobiologie , 155 (2), 199–221. doi:
10.1127/archiv-hydrobiol/155/2002/199
Elbrecht, V., & Leese, F. (2017). Validation and Development of COI
Metabarcoding Primers for Freshwater Macroinvertebrate Bioassessment.Frontiers in Environmental Science , 5 , 1–17. doi:
10.3389/fenvs.2017.00011
Elbrecht, V., Vamos, E. E. E., Meissner, K., Aroviita, J., & Leese, F.
(2017). Assessing strengths and weaknesses of DNA metabarcoding-based
macroinvertebrate identification for routine stream monitoring.Methods in Ecology and Evolution , 8 (10), 1265–1275. doi:
10.7287/PEERJ.PREPRINTS.2759V2
Engelbrektson, A., Kunin, V., Wrighton, K. C., Zvenigorodsky, N., Chen,
F., Ochman, H., & Hugenholtz, P. (2010). Experimental factors affecting
PCR-based estimates of microbial species richness and evenness.The ISME Journal , 4 (5), 642–647. doi:
10.1038/ismej.2009.153
Francy, D. S., Helsel, D. R., & Nally, R. A. (2000). Occurrence and
distribution of microbiological indicators in groundwater and stream.Water Environment Research , 72 (2), 152–161. doi:
10.2307/25045352
Gibson, J., Shokralla, S., Porter, T. M., King, I., van Konynenburg, S.,
Janzen, D. H., … Hajibabaei, M. (2014). Simultaneous assessment
of the macrobiome and microbiome in a bulk sample of tropical arthropods
through DNA metasystematics. Proceedings of the National Academy
of Sciences of the United States of America , 111 (22),
8007–8012. doi: 10.1073/pnas.1406468111
Hoshino, T., & Inagaki, F. (2019). Abundance and distribution of
Archaea in the subseafloor sedimentary biosphere. ISME Journal ,13 (1), 227–231. doi: 10.1038/s41396-018-0253-3
Jinbo, U., Kato, T., & Ito, M. (2011). Current progress in DNA
barcoding and future implications for entomology. Entomological
Science , 14 (2), 107–124. doi: 10.1111/j.1479-8298.2011.00449.x
Kuntke, F., de Jonge, N., Hesselsøe, M., & Nielsen, J. L. (2020).
Stream water quality assessment by metabarcoding of invertebrates.Ecological Indicators , 111 , 105982. doi:
https://doi.org/10.1016/j.ecolind.2019.105982
Lear, G., Washington, V., Neale, M., Case, B., Buckley, H., & Lewis, G.
(2013). The biogeography of stream bacteria. Global Ecology and
Biogeography , 22 (5), 544–554. doi: 10.1111/geb.12046
Leese, F., Altermatt, F., Bouchez, A., Ekrem, T., Hering, D., Meissner,
K., … Zimmermann, J. (2016). DNAqua-Net: Developing new genetic
tools for bioassessment and monitoring of aquatic ecosystems in Europe.Research Ideas and Outcomes , 2 , e11321. doi:
10.3897/rio.2.e11321
Leff, J. W., Bardgett, R. D., Wilkinson, A., Jackson, B. G., Pritchard,
W. J., de Long, J. R., … Fierer, N. (2018). Predicting the
structure of soil communities from plant community taxonomy, phylogeny,
and traits. ISME Journal , 1–12. doi: 10.1038/s41396-018-0089-x
Li, F., Peng, Y., Fang, W., Altermatt, F., Xie, Y., Yang, J., & Zhang,
X. (2018). Application of Environmental DNA Metabarcoding for Predicting
Anthropogenic Pollution in Rivers. Environmental Science and
Technology , 52 (20), 11708–11719. doi: 10.1021/acs.est.8b03869
Mlejnková, H., & Sovová, K. (2010). Impact of pollution and seasonal
changes on microbial community structure in surface water. Water
Science and Technology , 61 (11), 2787–2795. doi:
10.2166/wst.2010.080
Pawlowski, J., Kelly-Quinn, M., Altermatt, F., Apothéloz-Perret-Gentil,
L., Beja, P., Boggero, A., … Kahlert, M. (2018). The future of
biotic indices in the ecogenomic era: Integrating (e)DNA metabarcoding
in biological assessment of aquatic ecosystems. Science of The
Total Environment , 637 –638 , 1295–1310. doi:
10.1016/j.scitotenv.2018.05.002
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
… Glockner, F. O. (2013). The SILVA ribosomal RNA gene database
project: improved data processing and web-based tools. Nucleic
Acids Research , 41 (D1), D590–D596. doi: 10.1093/nar/gks1219
R Development Core Team. (2020). R: A language and environment for
statistical computing. R Foundation for Statistical Computing, Vienna,
Austria. Retrieved from https://www.r-project.org/
Skriver, J. (1999). Danish Stream Fauna Index (DSFI) as an indicator of
rare and threatened benthic macroinvertebrates. In N. Friberg & J. D.
Carl (Eds.), Biodiversity in Benthic Ecology. Proceedings from
Nordic Benthological Meeting in Silkeborg, Denmark, 13-14 November
1997 . National Environmental Research Institute, Denmark.
Skriver, J., Friberg, N., & Kirkegaard, J. (2000). Biological
assessment of running waters in Denmark: introduction of the Danish
Stream Fauna Index (DSFI). Verh. Internat. Verein. Limnol. ,27 , 1822–1830.
Urakawa, H., Garcia, J. C., Barreto, P. D., Molina, G. A., & Barreto,
J. C. (2012). A sensitive crude oil bioassay indicates that oil spills
potentially induce a change of major nitrifying prokaryotes from the
Archaea to the Bacteria. Environmental Pollution , 164 ,
42–45. doi: 10.1016/j.envpol.2012.01.009
Wang, H., Wei, Z., Mei, L., Gu, J., Yin, S., Faust, K., … Yin, S.
(2017). Combined use of network inference tools identifies ecologically
meaningful bacterial associations in a paddy soil. Soil Biology
and Biochemistry , 105 , 227–235. doi:
10.1016/j.soilbio.2016.11.029
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis .
Springer-Verlag New York.