References
[1] Wei Zhou, Xiaoxiao Meng, Jihui Gao, Akram N. Alshawabkeh.
Hydrogen peroxide generation from O2 electroreduction
for environmental remediation: A state-of-the-art review. Chemosphere.
2019; 225: 588-607.
[2] J.M. Campos-Martin, G. Blanco-Brieva, J.L.G. Fierro. Hydrogen
Peroxide Synthesis: An Outlook Beyond the Anthraquinone Process. Angew.
Chem.2006;45: 6962–6984.
[3] R. Hage, A. Lienke, Applications of Transition-Metal Catalysts
to Textile and Wood-Pulp Bleaching. Angew. Chem. Int. Ed. 2006; 37:
206–222.
[4] M. Ksibi, Chemical oxidation with hydrogen peroxide for domestic
wastewater treatment. Chem. Eng. J. 2006; 119: 161–165.
[5] M.E. Falagas, P.C. Thomaidis, I.K. Kotsantis, K. Sgouros, G.
Samonis, D.E.Karageorgopoulos, Airborne hydrogen peroxide for
disinfection of the hospital environment and infection control: a
systematic review. Hosp. Infect. 2011; 78: 171–177.
[6] Yongcuan Guan, Weihua Li,Jinli Zhang. Advances in green
synthesis of hydrogen peroxide. Chemical progress. 2012; 31: 1641-1647.
[7] Zhimin Qiang, Jih-Hsing Chang, Chin-Pao Huang.
Electrochemical
generation of hydrogen peroxide from dissolved oxygen in acidic
solutions. Water Res. 2002; 36: 85–94.
[8] Yang, S., Verdaguer-Casadevall, A., Arnarson, L., Silvioli, L.,
Čolić, V., Frydendal, R., Rossmeisl, J., Chorkendorff, I., Stephens,
I.E.L. Toward the decentralized electrochemical production of
H2O2: Afocus on the catalysis. ACS
Catal.2018; 8: 4064-4081.
[9] Ciriminna, R., Albanese, L., Meneguzzo, F., Pagliaro, M.
Hydrogen peroxide: A key chemical for today’s sustainable development.
ChemSusChem. 2016; 9: 3374-3381.
[10] Siahrostami, S., Verdaguer-Casadevall, A., Karamad, M.,
Deiana,D., Malacrida, P., Wickman, B., Escudero-Escribano, M., Paoli, E.
A., Frydendal, R., Hansen, T. W., Chorkendorff, I., Stephens, I. E.,
Rossmeisl, J. Enabling direct H2O2production through rational electrocatalyst design. Nat. Mater. 2013;
12: 1137−1143.
[11] Shucheng Chen, Zhihua Chen, Samira Siahrostami, Drew Higgins,
Dennis Nordlund, Dimosthenis Sokaras, Taeho Roy Kim, Yunzhi Liu, Xuzhou
Yan, Elisabeth Nilsson, Robert Sinclair, Jens K. Nørskov, Thomas F.
Jaramillo, Zhenan Bao.
Designing
Boron Nitride Islands in Carbon Materials for Efficient Electrochemical
Synthesis of Hydrogen Peroxide. Am. Chem. Soc. 2018; 140: 7851−7859.
[12] Xinjian Shi, Samira Siahrostami, Guo-Ling Li, Yirui Zhang,
Pongkarn Chakthranont, Felix Studt, Thomas F Jaramillo, Xiaolin Zheng,
Jens K Nørskov. Understanding activity trends in electrochemical water
oxidation to form hydrogen peroxide. Nat. Commun. 2017; 8: 701-706.
[13] Weifeng Tu, Xinli Li , Renquan Wang , Haripal Singh Malhi ,
Jingyu Ran , Yanling Shi , Yi-Fan Han. Catalytic consequences of the
identity of surface reactive intermediates during direct hydrogen
peroxide formation on Pd particles. Journal of Catalysis. 2019; 377:
494–506.
[14] Pengfei Tian , Doudou Ding , Yang Sun , Fuzhen Xuan , Xingyan
Xu , Jing Xu , Yi-Fan Han. Theoretical study of size effects on the
direct synthesis of hydrogen peroxide over palladium catalysts. Journal
of Catalysis. 2019; 369: 95–104.
[15] Yi Wang , Mi Yi , Kun Wang , Shuqin Song. Enhanced
electrocatalytic activity for H2O2production by the oxygen reduction reaction: Rational control of the
structure and composition of multi-walled carbon nanotubes. Chinese
Journal of Catalysis. 2019; 40 : 523–533.
[16] Dr. Jennifer K. Edwards; James Pritchard; Li Lu; Marco
Piccinini; Greg Shaw; Dr. Albert F. Carley; David J. Morgan; Prof.
Christopher J. Kiely; Prof. Graham J. Hutchings. The direct synthesis of
hydrogen peroxide using platinum-promoted gold-palladium catalysts.
Angew. Chem., Int. Ed. 2014; 53: 2381−2384.
[17] Shibata, S.; Suenobu, T.; Fukuzumi, S. Direct synthesis of
hydrogen peroxide from hydrogen and oxygen by using a watersoluble
iridium complex and flavin mononucleotide. Angew. Chem.,Int. Ed. 2013;
52: 12327−12331.
[18] Samanta, C. Direct synthesis of hydrogen peroxide from hydrogen
and oxygen: An overview of recent developments in the process. Appl.
Catal. A. 2008; 350: 133−149.
[19] Park, J.; Nabae, Y.; Hayakawa, T.; Kakimoto, M.-a. Highly
Selective Two-Electron Oxygen Reduction Catalyzed by Mesoporous
Nitrogen-Doped Carbon. ACS Catal. 2014; 4: 3749−3754.
[20] Anam Asghar, Abdul Aziz Abdul Raman , Wan Mohd Ashri Wan Daud,
Anantharaj Ramalingam.
Reactivity,
Stability, and Thermodynamic Feasibility of
H2O2/H2O at Graphite
Cathode: Application of
Quantum Chemical Calculations in MFCs. American Institute of Chemical
Engineers Environ Prog. 2017; 00: 1–14.
[21] William P. Mounfield, Aaron Garg, Yang Shao-Horn, Yuriy
Román-Leshkov. Electrochemical
Oxygen Reduction for the Production of Hydrogen Peroxide. Chem. 2018; 4:
18−19.
[22] Fellinger, Tim-Patrick; Hasche, Frederic; Strasser, Peter;
Antonietti, Markus. Mesoporous nitrogen-doped carbon for the
electrocatalytic synthesis of hydrogen peroxide. Am. Chem. Soc. 2012;
134: 4072−4075.
[23] Yanming Liu; Prof. Xie Quan; Xinfei Fan; Dr. Hua Wang; Dr. Shuo
Chen.
High-yield
electrosynthesis of hydrogen peroxide from oxygen reduction by
hierarchically porous carbon.
Angew. Chem., Int. Ed. 2015; 54:
6837−6841.
[24] Yanyan Sun, Shuang Li, Zarko Petar Jovanov, Denis Bernsmeier,
Huan Wang, Benjamin Paul, Xingli Wang, Stefanie Kühl, Peter Strasser.
Structure,
activity, and faradaic efficiency of nitrogen-doped porous carbon
catalysts for direct electrochemical hydrogen peroxide production.
ChemSusChem. 2018; 11: 3388−3395.
[25] Minjie Wang, Tao Zhao, Wei Luo, Zhanxin Mao, Siguo Chen, Wei
Ding, Yonghui Deng, Wei Li, Jing Li, Zidong Wei. Quantified Mass
Transfer and Superior Antiflooding Performance of Ordered
Macro-Mesoporous Electrocatalysts. AIChE J. 2018; 64: 2881–2889.
[26] Perazzolo, V., Durante, C., Pilot, R., Paduano, A., Zheng, J.,
Rizzi, G.A., Martucci, A., Granozzi, G., Gennaro, A.
Nitrogen and sulfur doped mesoporous
carbon as metal-free electrocatalysts for the in situ production of
hydrogen peroxide. Carbon. 2015; 95: 949–963.
[27] Tingting Jiang, Yi Wang, Kun Wang, Yeru Liang, Dingcai Wu,
Panagiotis Tsiakaras, Shuqin Song. A
novel sulfur-nitrogen dual doped ordered mesoporous carbon
electrocatalyst for efficient oxygen reduction reaction.
Appl. Catal. B-Environ.2016; 189:
1–11.
[28] Lobyntseva, E.; Kallio, T.; Alexeyeva, N.; Tammeveski, K.;
Kontturi, K. Electrochemical synthesis of hydrogen peroxide: Rotating
disk electrode and fuel cell studies. Electrochim. Acta. 2007; 52:
7262−7269.
[29] Tammeveski, K.; Kontturi, K.; Nichols, R. J.; Potter, R.
J.;Schiffrin, D. J. Surface redox catalysis for O2reduction on quinonemodified glassy carbon electrodes. Electroanal.
Chem. 2001; 515: 101−112.
[30] Rensheng Zhong, Yuanhang Qin, Dongfang Niu, Jingwei Tian,
Xinsheng Zhang, Xingui Zhou, Shigang Sun, Weikang Yuan. Effect of carbon
nanofiber surface functional groups on oxygen reduction in alkaline
solution. J. Power Sources. 2013; 225: 192–199.
[31] Hasché, F., Oezaslan, M., Strasser, P., Fellinger, T.P.
Electrocatalytic hydrogen peroxide
formation on mesoporous non-metal nitrogen-doped carbon catalyst. J.
Energy Chem. 2016; 25: 251–257.
[32] Yanyan Sun, Ilya Sinev, Wen Ju, Arno Bergmann, Sören Dresp,
Stefanie Kühl, Camillo Spöri, Henrike Schmies, Huan Wang, Denis
Bernsmeier, Benjamin Paul, Roman Schmack, Ralph Kraehnert, Beatriz
Roldan Cuenya, Peter Strasser. Efficient electrochemical hydrogen
peroxide production from molecular oxygen on nitrogen-doped mesoporous
carbon catalysts. ACS Catal. 2018; 8: 2844–2856.
[33] Kun Zhao, Xie Quan, Shuo Chen, Hongtao Yu, Yaobin Zhang, Huimin
Zhao. Enhanced electro-Fenton performance by fluorine-doped porous
carbon for removal of organic pollutants in wastewater. Chem. Eng. J.
2018; 354: 606–615.
[34] Kun Zhao, Yan Su, Xie Quan, Yanming Liu, Shuo Chen, Hongtao Yu.
Enhanced H2O2 production by selective
electrochemical reduction of O2 on fluorine-doped
hierarchically porous carbon. Catal. 2018; 357: 118–126.
[35] Kunquan Li, Jiamin Liu, Jun Li, Zeqing Wan. Effects of N mono-
and N/P dual-doping on H2O2, OH
generation, and MB electrochemical degradation efficiency of activated
carbon fiber electrodes. Chemosphere. 2018; 193: 800–810.
[36] Sarapuu, A.; Vaik, K.; Schiffrin, D. J.; Tammeveski, K.
Electrochemical reduction of oxygen on anthraquinone-modified glassy
carbon electrodes in alkaline solution. Electroanal. Chem. 2003; 541:
23−29.
[37] Vaik, K.; Sarapuu, A.; Tammeveski, K.; Mirkhalaf, F.;
Schiffrin, D. J. Oxygen reduction on phenanthrenequinone-modified glassy
carbon electrodes in 0.1 M KOH. Electroanal. Chem. 2004; 564: 159−166.
[38] Strasser, P.; Gliech, M.; Kuehl, S.; Moeller,
T. Electrochemical processes on
solid shaped nanoparticles with defined facets. Chem.Soc. Rev. 2018; 47:
715−735.
[39] Beermann, V.; Gocyla, M.; Kuhl, S.; Padgett, E.; Schmies,
H.;Goerlin, M.; Erini, N.; Shviro, M.; Heggen, M.; Dunin-Borkowski,
R.E.; Muller, D. A.; Strasser, P.
Tuning the Electrocatalytic Oxygen
Reduction Reaction Activity and Stability of Shape-Controlled Pt-Ni
Nanoparticles by Thermal Annealing - Elucidating the Surface Atomic
Structural and Compositional Changes. Am. Chem. Soc. 2017; 139:
16536−16547.
[40] Shucheng Chen, Zhihua Chen, Samira Siahrostami, Taeho Roy Kim,
Dennis Nordlund, Dimosthenis Sokaras, Stanislaw Nowak, John W. F. To,
Drew Higgins, Robert Sinclair, Jens K. Nørskov, Thomas F. Jaramillo,
Zhenan Bao. Defective Carbon-Based
Materials for the Electrochemical Synthesis of Hydrogen Peroxide.
ACS
Sustainable Chem. Eng. 2018; 6: 311−317.
[41] Shuang Li, Chong Cheng, Hai‐Wei Liang, Xinliang Feng, Arne
Thomas. 2D Porous Carbons prepared from Layered Organic-Inorganic
Hybrids and their Use as Oxygen-Reduction Electrocatalysts. Adv. Mater.
2017; 29: 700-707.
[42] Yiran Yang, Fei He, Yanfei Shen, Xinghua Chen, Hao Mei, Songqin
Liu, Yuanjian Zhang. A biomass derived N/C-catalyst for the
electrochemical production of hydrogen peroxide. Chem. Commun. 2017; 53:
9994−9997.
[43] Shuang Li, Chong Cheng, Xiaojia Zhao, Johannes Schmidt, Arne
Thomas. Active Salt/Silica-Templated 2D Mesoporous FeCo-Nx-Carbon as
Bifunctional Oxygen Electrodes for Zinc-Air Batteries. Angew. Chem. Int.
Ed. 2018; 57: 1856−1862.
[44] Iglesias, D.; Giuliani, A.; Melchionna, M.; Marchesan,
S.;Criado, A.; Nasi, L.; Bevilacqua, M.; Tavagnacco, C.; Vizza, F.;
Prato,M.; Fornasiero, P. N-Doped Graphitized Carbon Nanohorns as a
Forefront Electrocatalyst in Highly Selective O2Reduction to H2O2. Chem. 2018; 4:
106−123.
[45] Kruusenberg, I.; Leis, J.; Arulepp, M.; Tammeveski, K. Oxygen
Reduction on Carbon Nanomaterial Modified Glassy Carbon Electrodes in
Alkaline Solution. Solid State Electrochem. 2010; 14: 1269−1277.
[46] Lei Han, Yanyan Sun, Shuang Li, Chong Cheng, Christian E.
Halbig, Patrick Feicht, Jessica Liane Hübner, Peter Strasser, Siegfried
Eigler. In-Plane Carbon Lattice-Defect Regulating Electrochemical Oxygen
Reduction to Hydrogen Peroxide Production over Nitrogen-Doped Graphene.
ACS Catal. 2019; 9: 1283−1288.
[47] Haijian Luo, Chaolin Li, Chiqing Wu, Wei Zheng, Xiaoqing Dong.
Electrochemical
degradation of phenol by in situ electro-generated and electro-activated
hydrogen peroxide using an improved gas diffusion cathode.
Electrochim. Acta. 2015; 186:
486–493.
[48] Jun Li, Guangxu Chen, Yangying Zhu, Zheng Liang, Allen Pei,
Chun-Lan Wu, Hongxia Wang, Hye Ryoung Lee, Kai Liu, Steven Chu, Yi Cui.
Efficient electrocatalytic CO2 reduction on a
three-phase interface. Nature Catalysis. 2018; 1: 592-600.
[49] Shiming Chen, Siglinda Perathoner, Claudio Ampelli, Chalachew
Mebrahtu, Dangsheng Su, Gabriele
Centi. Room-temperature
electrocatalytic synthesis of NH3 from
H2O and N2 in a gas-liquid-solid
three-phase reactor. ACS Sustain. Chem. Eng. 2017; 5: 7393–7400.
[50] Zarei, M., Salari, D., Niaei, A., Khataee, A.
Peroxi-coagulation degradation of C.I. Basic Yellow 2 based on
carbon-PTFE and carbon nanotube-PTFE electrodes as cathode. Electrochim.
Acta .2009; 54: 6651–6660.
[51] Khataee, A.R., Safarpour, M., Zarei, M., Aber, S.
Electrochemical generation of H2O2 using
immobilized carbon nanotubes on graphite electrode fed with air:
Investigation of operational parameters. Electroanal. Chem. 2011; 659:
63–68.
[52] Babaei-Sati, R., Basiri Parsa, J. Electrogeneration of
H2O2 using graphite cathode modified
withelectrochemically synthesized polypyrrole/MWCNT nanocomposite for
electro-Fenton process. Ind. Eng.Chem. 2017; 52: 270–276.
[53] Flores, N., Thiam, A., Rodríguez, R.M., Centellas, F., Cabot,
P.L., Garrido, J.A., Brillas, E., Sirés, I. Electrochemical destruction
of trans-cinnamic acid by advanced oxidation processes: kinetics,
mineralization, and degradation route. Environ. Sci. Pollut. Res. 2017;
24: 6071–6082.
[54] Darvishi, R., Soltani, C., Rezaee, A., Khataee, A. Combination
of carbon black− ZnO/UV process with an electrochemical process equipped
with a carbon black −PTFE-coated gas-diffusion cathode for removal of a
textile dye. Ind. Eng. Chem. Res. 2013; 52: 14133–14142.
[55] Soltani, R.D.C., Rezaee, A., Khataee, A.R., Godini, H.
Electrochemical generation of hydrogen peroxide using carbon black-,
carbon nanotube-, and carbon black/ carbon nanotube-coated gas-diffusion
cathodes: effect of operational parameters and decolorization study. Res
Chem Intermed. 2013; 39: 4277–4286.
[56] Fangke Yu, Minghua Zhou, Xinmin Yu. Cost-effective
electro-Fenton using modified graphite felt that dramatically enhanced
on H2O2 electro-generation without
external aeration. Electrochim. Acta. 2015; 163: 182-189.
[57] Yiping Sheng, Shili Song, Xiuli Wang, Laizhou Song, Chunjia
Wang, Honghong Sun, Xueqing Niu.
Electrogeneration
of hydrogen peroxide on a novel highly effective acetylene black-PTFE
cathode with PTFE film. Electrochim. Acta. 2011; 56: 8651–8656.
[58] Yiping Sheng, Yue Zhao, Xiuli Wang, Rui Wang, Ting
Tang.
Electrogeneration of H2O2 on a composite
acetylene black-PTFE cathode consisting of a sheet active core and a
dampproof coating. Electrochim. Acta.2014; 133: 414–421.
[59] Thi Xuan Huong Le, Mikhael Bechelany, Joffrey Champavert, Marc
Cretin. A highly active based graphene cathode for the electro-Fenton
reaction. RSC Adv. 2015; 5: 42536–42539.
[60] Thi Xuan Huong Le, Mikhael Bechelany, Stella Lacour, Nihal
Oturan, Mehmet A. Oturan, Marc Cretin. High removal efficiency of dye
pollutants by electron-Fenton process using a graphene based cathode.
Carbon. 2015; 94: 1003–1011.
[61] Weilu Yang, Minghua Zhou, Jingju Cai, Liang Liang, Gengbo Ren,
Lili Jiang. Ultrahigh yield of hydrogen peroxide on graphite felt
cathode modified with electrochemically exfoliated graphene. Mater.
Chem. A. 2017; 5: 8070–8080.
[62] Divyapriya, G., Thangadurai, P., Nambi, I. Green Approach To
Produce a Graphene thin film on a conductive LCD matrix for the
oxidative transformation of ciprofloxacin. ACS Sustainable Chem. Eng.
2018; 6: 3453–3462.
[63] Hyo Won Kim, Michael B. Ross, Nikolay Kornienko, Liang Zhang,
Jinghua Guo, Peidong Yang, Bryan D. McCloskey.
Efficient
hydrogen peroxide generation using reduced graphene oxide-based oxygen
reduction electrocatalysts. Nature Catalysis. 2018; 1: 282–290
[64] Lei Zhou, Minghua Zhou, Chao Zhang, Yonghai Jiang, Zhaoheng Bi,
Jie Yang. Electro-Fenton degradation of p-nitrophenol using the anodized
graphite felts. Chem. Eng. J. 2013; 233: 185–192.
[65] Jie Miao, Hui Zhu, Yang Tang, Yongmei Chen, Pingyu Wan.
Graphite felt electrochemically modified in
H2SO4 solution used as a cathode to
produce H2O2 for pre-oxidation of
drinking water. Chem. Eng. J. 2014; 250: 312–318.
[66] Zhiyi Lu, Guangxu Chen, Samira Siahrostami, Zhihua Chen, Kai
Liu, Jin Xie, Lei Liao, Tong Wu, Dingchang Lin, Yayuan Liu, Thomas F.
Jaramillo, Jens K. Nørskov, Yi Cui. High-efficiency oxygen reduction to
hydrogen peroxide catalysed by oxidized carbon materials. Nature
Catalysis. 2018; 1: 156-162.
[67] Fellinger, T.P., Hasché, F., Strasser, P., Antonietti, M.
Mesoporous nitrogen-doped carbon for the electrocatalytic synthesis of
hydrogen peroxide. Journal of the American Chemical Society. 2012; 134:
4072–4075.
[68] Yinghui Lee, Feng Li, Kuohsin Chang, Chichang Hu, Takeo Ohsaka.
Novel synthesis of N-doped porous carbons from collagen for
electrocatalytic production of H2O2.
Appl. Catal. B-Environ. 2012; 126: 208–214.
[69] Roldán, L., Truong-Phuoc, L., Ansón-Casaos, A., Pham-Huu, C.,
García-Bordejé, E. Mesoporous carbon doped with N,S heteroatoms prepared
by one-pot auto-assembly of molecular precursor for electrocatalytic
hydrogen peroxide synthesis. Catal. Today. 2018; 301: 2–10.
[70] Arman Bonakdarpour, Daniel Esau, Hillary Cheng, Andrew Wang,
Elöd Gyenge, David P. Wilkinson. Preparation and electrochemical studies
of metal-carbon composite catalysts for small-scale electrosynthesis of
H2O2. Electrochim. Acta. 2011; 56:
9074–9081
[71] Jussara F. Carneiro, Maria J. Paulo, Mohamed Siaj, Ana C.
Tavares, Marcos R.V. Lanza. Nb2O5nanoparticles supported on reduced graphene oxide sheets as
electrocatalyst for the H2O2electrogeneration. Catal. 2015; 332: 51–61.
[72] Chuan Xia, Seoin Back, Stefan Ringe, Kun Jiang , Fanhong Chen,
Xiaoming Sun,Samira Siahrostami , Karen Chan , Haotian Wang. Confined
local oxygen gas promotes electrochemical water oxidation to hydrogen
peroxide. Nature Catalysis. 2020; 3: 125–134.
[73] Qian Zhao, Jingkun An, Shu Wang, Yujie Qiao, Chengmei Liao,
Cong Wang, Xin Wang, Nan Li. Superhydrophobic Air-Breathing Cathode for
Efficient Hydrogen Peroxide Generation through Two-Electron Pathway
Oxygen Reduction Reaction. ACS Appl. Mater. Interfaces. 2019; 11:
35410−35419.