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Abstract1

Processing and visualising trends in the binary data obtained from fragment analysis methods in molecular2

biology can be a time-consuming, and often cumbersome process. Scoring and processing binary data3

(from methods such as AFLPs, ISSRs, and RFLPs) entails complex workflows that require a high level4

of computational and/or bioinformatic skills. The application presented here (BinMat) is a free, open-5

source, and user-friendly R Shiny program that automates the analysis pipeline on one platform. BinMat6

is presented as a Graphical User Interface (GUI) via the Shiny package in R that is available online across7

different operating systems. It is also available as an R package. BinMat consolidates replicate sample8

pairs in a dataset into consensus reads, produces summary statistics, and allows the user to visualise9

their data as ordination plots and clustering trees without having to use multiple software programs and10

input files, or rely on previous programming experience.11
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1 Introduction14

Fragment analysis is a broad term used in molecular biology which encompasses the processes by which15

fragments of DNA are separated by size in order to generate characteristic band-profiles. Bands are de-16

tected and scored through either the traditional method of viewing them on polyacrylamide gels (Bassam17

et al., 1991), or through the use of fluorescent markers (such as FAMTM or ROX®) that tag fragments18

so that they can be detected by capillary electrophoresis (Dresler-Nurmi et al., 2000; AppliedBiosystems,19

2014). There are a number of techniques associated with fragment analysis, including AFLP (Ampli-20

fied Fragment Length Polymorphism) (Vos et al., 1995), RAPD (Random Amplified Polymorphic DNA)21

(Koeleman et al., 1998), and ISSR (Inter-Simple Sequence Repeats) (Wolfe and Liston, 1998; Abbot,22

2001). Fragment analysis offers a wide range of applications, such as DNA fingerprinting, SNP (single23

nucleotide polymorphism) genotyping, and microsatellite profiling (AppliedBiosystems, 2014), which are24

used across a broad range of disciplines.25

Processing and analysing the binary data obtained from fragment analysis methods can quickly become26

challenging due to the large size of datasets and the time required to organise and format them to suit27

the needs of different programs used down the analysis-pipeline. Common practice is to independently28

replicate each Polymerase Chain Reaction (PCR) sample in order to consolidate the output into one29

1



consensus read per individual (see for example Taylor et al. (2011) and Sutton et al. (2017)). The term30

‘consolidate’, as used here, refers to the process of checking the binary value scored at each locus position31

across every replicate pair, and creating one representative consensus output for that sample. For exam-32

ple, if both replicates show the presence of a band at a particular locus, a ‘1’ is recorded as ‘present’ at33

that locus. If a band was absent in both replicates, a ‘0’ is recorded. If one replicate shows the presence34

of a band, but the other shows an abscence, a ‘?’ is recorded to denote an ambiguous read.35

Manually consolidating the replicate pairs of large binary matrices in this way is not only impractical, but36

it also lends itself to human error. Even after fragments have been scored and processed, the downstream37

analyses of these data are complex. For example, a number of different programs are often required for38

different analyses; each of which require a different input file format. This requires a certain level of39

computational and/or bioinformatic skills, and can be both difficult and time-consuming, and can result40

in further potential errors when changing between file formats.41

The R programming language (R Core Team, 2019) is becoming an increasingly popular means of42

analysing genetic data (Paradis et al., 2004; Schliep, 2011; Archer et al., 2017), as it can read in multiple43

file formats and perform a number of analyses all on one platform. Packages in R can, however, often be44

challenging to utilise for newcomers to programming. The development of GUI (Graphical User Inter-45

face) software can address this by collating multiple processing tools into one place, and make complex46

computational tasks more accessible to researchers (see for example Reyes et al. (2019)).47

Here I present BinMat, an R package and R Shiny application that automates the analysis of fragment48

data. Named ‘BinMat’, from ‘Binary Matrix’, the application offers researchers a user-friendly, open-49

source platform that does not require multiple programs and file input formats (Fig. 1). Moreover, a50

GUI was developed to make data processing easier and more accessible. BinMat is available on three51

platforms; namely the shinyapps.io server, GitHub, and as an R package on CRAN. The following sec-52

tions detail the functionality of BinMat, how its output compares to PAST (Hammer et al., 2001) and53

SplitsTree (Huson, 1998) (which are standalone software typically used to analyse genetic data), and how54

it can be accessed.55

2 Shiny Graphical User Interface (GUI)56

2.1 File input57

BinMat reads in binary data that has already been processed from raw electropherograms using programs58

such as GeneMarker (SoftGenetics®) and RawGeno (Arrigo et al., 2012). This needs to be uploaded59

as a comma-separated values (CSV (Comma delimited)) file in the format shown in Table 1. Column60
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headings are required, but are not limited to the exact labels shown in the example. If the data consists61

of replicate pairs, these need to be organised so that they appear consecutively, with a unique name62

for each sample. It is important to check the data to ensure that there are no single samples without63

their replicate. When the ‘Consolidate matrix’ button is clicked, each replicate pair in the dataset is64

consolidated into a consensus output.65

Table 2 shows the output if the data in Table 1 was used as input. The resulting consolidated binary66

matrix can be downloaded as a CSV file using the ‘Download Matrix’ button once the message ‘COM-67

PLETE. READY FOR DOWNLOAD’ appears on the screen. The ‘Check my data for unwanted values’68

button checks the data for any values in the dataset other than a ‘1’, ‘0’, or ‘?’, and returns the column69

and row index for the unwanted character/s.70

2.2 Data analysis and visualisation71

Once the data has been consolidated, the user can view and download information in the ‘SUMMARY’72

tab at the top of the window; showing the average number of peaks (± standard deviation (sd)), the73

maximum and minimum number of peaks, and the total number of loci. The ‘ERROR RATES’ tab shows74

the Euclidean (EE) (± sd) and Jaccard (JE) (± sd) error rates. See Bonin et al. (2004), Pompanon et al.75

(2005), and Holland et al. (2008) for detailed reviews regarding error rates and their calculation.76

The ‘Remove samples with a jaccard error greater than:’ button removes samples with a Jaccard error77

(ranging from 0 to 1) greater than or equal to a specified value. This can give the user an idea of how78

filtering their data can affect overall error rates. The default value is set at zero.79

Clustering methods, such as the UPGMA (Unweighted Pair Group Method with Arithmetic Mean)80

and neighbour-joining, are frequently used in the analyses of fragment data to create dendrograms (see81

for example Van Eldere et al. (1999); Ticknor et al. (2001); Liu et al. (2009); Timm et al. (2010)).82

Additionally, ordination methods such as those offered by non-metric multidimensional scaling (nMDS)83

plots are also often used (see for example Denaro et al. (2005); Zhang et al. (2008); Vašek et al. (2017)).84

2.2.1 Hierarchical clustering tree: UPGMA85

The ‘UPGMA TREE’ tab in BinMat allows the user to upload a consolidated binary matrix as a CSV86

file (in the format shown in Table 2), specify the number of bootstrap replications, and download the87

resulting hierarchical clustering tree as a scalable vector graphics (SVG) file. This function makes use of88

the pvclust function in the pvclust package (Suzuki et al., 2019), and uses the UPGMA clustering method.89

The uploaded binary data is converted into a distance matrix applying the Jaccard transformation (dJi)90

(Jaccard, 1908) shown below. f11 represents the total number of times that a band occurred at the same91
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locus in both samples, f00 represents the shared absence of bands, and f10 and f01 represents the number92

of times that a band was present in only one of the two sample replicates. The Jaccard transformation93

was applied using the .dist function, applying the ‘binary’ method. This transformation was prefered94

because it does not treat the shared absence of bands as being biologically meaningful.95

dJ i =
f01 + f10

f01 + f10 + f11

2.2.2 Ordination: nMDS Plot96

The ‘nMDS PLOT’ tab allows the user to upload a consolidated binary matrix with grouping information97

as a CSV file. The input file format is shown in Table 3, where grouping information needs to appear98

in the second column. The distance methods available are ‘binary’ (Jaccard’s distance), ‘euclidean’,99

‘maximum’, ‘manhattan’, ‘canberra’, and ‘minkowski’. The ‘No. of dimensions (k)’ option can be set at100

‘2’ or ‘3’, and can be determined using the ‘nMDS Validation’ tab using the ‘Scree plot’ and ‘Shepard101

plot’ buttons. The resulting distance matrix can be downloaded as a CSV file, and the plot itself as a102

SVG file. Once the user has uploaded their data, an editable table will appear to allow for the selection103

of colours and symbols for each group. The user can adjust symbol size, and can select whether sample104

labels should appear on the graph or not. The nMDS plot is created using the isoMDS function in the105

MASS package (Venables and Ripley, 2002).106

2.2.3 Scree plot107

The optimal number of dimensions to use for the nMDS plot should minimise the resulting stress value.108

Clarke (1993) suggest that stress values < 0.05 = excellent, < 0.10 = good, < 0.20 = usable, > 0.20 =109

not acceptable, while Dugard et al. (2010) suggest that a stress value below 0.15 represents a good fit for110

the data. BinMat indicates the 0.15 threshold as a dotted red line on the resulting scree plot.111

2.2.4 Shepard plot112

Shepard plots are graphical representations of how well the ordination fits the original distance data113

(Leeuw and Mair, 2014). BinMat plots the original Jaccard distances (x-axis) against the transformed114

distances used to create the nMDS ordination plot (y-axis). R2-values are shown on the plot for the115

regression line of best fit.116
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2.2.5 Filter data117

The ‘Filter data’ tab allows the user to filter their dataset by setting a threshold value for the number of118

peaks present. The new subsetted data, and the removed samples, can be downloaded as a CSV file and119

re-uploaded to create a new nMDS plot and/or hierarchical clustering tree.120

2.3 Testing BinMat121

2.3.1 Comparing BinMat’s output to PAST and SplitsTree122

Two AFLP datasets were downloaded from the Dryad Digital Repository, available at https://datadryad.123

org/stash/dataset/doi:10.5061/dryad.b5d6b and https://datadryad.org/stash/dataset/doi:10.124

5061/dryad.c3g80. These comprised data generated by Arias et al. (2014) and Tewes et al. (2018) for125

Heliconius (Lepidoptera: Nymphalidae) and Bunias orientalis L. (Brassicaceae) specimens, respectively.126

With the authors’ permission, a subset of each were used to compare output from BinMat to that of PAST127

v4.0 (Paleontological Statistics Software Package for Education and Data Analysis) (Hammer et al., 2001)128

and SplitsTree v4.14.6 (Huson, 1998) (raw data are available as supplementary files). Replicate pairs were129

consolidated in BinMat where applicable, and used to create nMDS plots and UPGMA hierarchical clus-130

tering trees (1000 bootstrap repetitions). The lowest number of dimensions were used for nMDS plots (k131

= 2), and their stress- and R2 values recorded. SplitsTree was used to create a NeighborNet tree applying132

Jaccard’s distance transformation.133

The nMDS plots created by BinMat and PAST showed comparable clustering patterns (Fig. 2 A1-A2,134

and B1-B2). The SplitsTree output for the data taken from Tewes et al. (2018) (Fig. 2 B4) corroborated135

the corresponding nMDS plot from the original paper (Fig. 2 B3), and from that created by BinMat136

(Fig. 2 B1). Both hierarchical clustering trees using the UPGMA method showed equivalent topologies137

and bootstrap support values for clades (Fig. 3). BinMat, PAST, and SplitsTree perform equally as138

well for the visualisation of fragment analysis output, where BinMat offers the advantage of a quicker,139

automated process on one platform.140

3 BinMat as an R package on CRAN141

There are two example binary matrices embedded in the BinMat package, called “BinMatInput reps”142

and “BinMatInput ordination” that can be accessed by creating objects with names such as:143

> data1 = BinmatInput reps144

> data2 = BinmatInput ordination145

5

https://datadryad.org/stash/dataset/doi:10.5061/dryad.b5d6b
https://datadryad.org/stash/dataset/doi:10.5061/dryad.b5d6b
https://datadryad.org/stash/dataset/doi:10.5061/dryad.b5d6b
https://datadryad.org/stash/dataset/doi:10.5061/dryad.c3g80
https://datadryad.org/stash/dataset/doi:10.5061/dryad.c3g80
https://datadryad.org/stash/dataset/doi:10.5061/dryad.c3g80


which can be used to test the various functions as a demonstration example, as shown in the vignette146

supplied with the package.147

3.1 Worked example148

3.1.1 Binary matrix comprising replicate pairs149

The data1 object contains a binary data frame with replicate pairs (i.e. two replicate reads per sample).150

The check.data(), consolidate(), peaks.original(), peak.remove(), and upgma() functions can be151

applied to this object.152

> check.data(data1) checks the matrix for any possible unwanted characters. If found, the function153

returns the row and column index where they occur. The output for the above line is154

> None found.155

The next step is to consolidate the replicate pairs in the matrix using the consolidate() function.156

157

A summary of peak information can be obtained using the peaks.original() function. This averages158

the peak number across all replicates in the data set. If the user has a data set that does not need to be159

consolidated by BinMat, and they want to find the peak summary for it, this same function can be used.160

Once the matrix has been consolidated, a UPGMA hierarchical clustering tree can be created. The de-161

6



fault bootstrap repetition is set to 10. If the user wishes to upload their own matrix that they want to162

use to create the clustering tree, this needs to be read in first, and then specified in the upgma() function163

as fromFile = TRUE. For example:164

> mydata = read.csv("C:/Users/General/Desktop/mydata.csv")165

> upgma(mydata, fromFile = TRUE)166

167

A peak summary for the consolidated matrix created in BinMat can be obtained by using the peaks.consolidated()168

function.169

3.1.2 Consolidated binary matrix with grouping information170

The data2 object contains a binary data frame with a consolidated matrix and grouping information in171

the second column. The errors(), group.names(), nmds(), peak.remove(), scree(), and shepard()172

functions can be applied to this object.173
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In order to create an nMDS plot, the user needs to create an object specifying colours and shapes of their174

choice, shown below as clrs and shps. These are passed as the colours and shapes arguments in the175

nmds() function, and are assigned to groups in the order appearing in the output from the group.names()176

function. In this example, Africa, Australia, and Europe will be red, blue, and dark green, respectively.177

Labels can be displayed by adding labs = TRUE as an argument.178

Scree and shepard plots are used to confirm the number of dimensions chosen to create the nMDS plot.179

The scree plot shows a dotted red line at y = 15% to indicate that dimensions with stress values below180

this are acceptable to use to create an nMDS plot.181
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4 Obtaining BinMat182

The R Shiny application platform allocates a maximum memory of 1 GB, and is accessible at https:183

//clarkevansteenderen.shinyapps.io/BINMAT/. The online version may time-out due to insufficient184

memory if a particularly large file is uploaded. In such a case, the program can alternatively be run185

directly from R on the user’s local machine by typing186

> shiny::runGitHub("BinMat", "CJMvS")187

into the console. The program’s code is freely available via Github at https://github.com/CJMvS/188

BinMat. The BinMat R package is also available on CRAN (Comprehensive R Archive Network), and is189

command-line driven. More information about the package can be obtained by typing190

> library(help = BinMat)191

after it has been installed. This details all the functions available (Table 4). More information about192

each function, and the parameters it requires, can be accessed by typing193
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> ?functionName194

into the console.195

To my knowledge, this is the only freely-available application offering the functionality presented here.196

Suggestions for improvement (for example via pull-requests on GitHub), and feedback from the commu-197

nity, are welcomed and encouraged.198
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Figure 1: Flowchart of the utility of the BinMat program, starting with input that has been processed
in programs such as GeneMarker® and RawGeno, to the rapid visualisation of a hierarchical clustering
tree and non-metric dimensional scaling (nMDS) plot.
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Figure 2: Comparisons of non-metric multidimensional scaling (nMDS) plots in BinMat (A1 and B1),
and PAST (A2 and B2). Both nMDS plots are plotted for k = 2 dimensions. Data were taken from Arias
et al. (2014) (A1 and A2) and Tewes et al. (2018) ( B1, B2, and B4). Stress-and R2 values are shown
above each plot. Diagram B3 shows the original nMDS plot presented by Tewes et al. (2018), which
depicts the same clustering pattern of the native range samples (T1, T3, and T4). Diagram B4 shows
the SplitsTree representation of the same data (NeighborNet, Jaccard distance).
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Table 1: File input for a dataset containing replicate pairs that needs to be consolidated.

Sample label Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

Sample A rep. 1 0 0 1 1 1
Sample A rep. 2 0 0 1 1 1
Sample B rep. 1 1 1 0 0 0
Sample B rep. 2 0 1 0 0 1

Table 2: Consolidated matrix if Table 1 was used as input.

Sample label Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

Sample A rep. 1 + rep. 2 0 0 1 1 1
Sample B rep. 1 + rep. 2 ? 1 0 0 ?

Table 3: Data input required for the creation of a non-metric multidimensional scaling (nMDS) plot.
Grouping information needs to be in the second column. Data represents binary replicate pairs that have
already been consolidated into a consensus.

Sample label Group Locus 1 Locus 2 Locus 3 Locus 4 Locus 5

Sample A Africa 0 0 1 1 1
Sample B Asia ? 1 0 0 ?

Table 4: BinMat R package functions, available on CRAN. Typing ?functionName into the console
provides more information about each function.

Function Description

check.data() Checks for unwanted characters.
consolidate() Consolidates replicate pairs. 1&1 →1; 1&0 →?; 0&0 →0
errors() Calculates Jaccard and Euclidean error rates.
group.names() Outputs groups in the uploaded binary matrix.
nmds() Creates a non-metric multidimensional scaling (nMDS) plot.
peak.remove() Removes samples with peaks equal to, or less than, a specified threshold value.
peaks.consolidated() Peak summary for a consolidated binary matrix.
peaks.original() Peak summary for replicate data, or consolidated data from file.
scree() Creates a scree plot of stress values vs ordination dimensions.
shepard() Creates a shepard plot for goodness of fit for ordination data.
upgma() Draws a hierarchical clustering tree (UPGMA) with bootstrapping.
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