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Analysis of population genetic data often includes the search

for genomic regions with signs of recent positive selection.

One of the approaches involves the concept of Extended

Haplotype Homozygosity (EHH) and its associated statistics.

These statistics typically need phased haplotypes and, some

of them, polarized variants. Here, we unify and extend pre-

viously proposedmodifications to loosen these requirements.

We compare the modified versions with the original ones

by measuring the False Discovery Rate on simulated whole-

genome scans and quantifying the overlap of inferred can-

didate regions on empirical data. We find that phasing in-

formation is indispensable for the accurate estimation of

within-population statistics for all but very large samples

and of cross-population statistics for small samples. An-

cestry information, in contrast, is of lesser importance for

both. Our publicly available R package rehh incorporates

the modified statistics presented here.
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1 | INTRODUCTION21

The ease with which genomic sequences can be obtained contrasts sharply with the challenge to discern their func-22

tional elements. Finding molecular signatures of recent selection can help prioritizing regions for further investigation.23

The search for them is often performed by means of statistical tests refuting the null hypothesis of neutral evolu-24

tion. Here we focus on the classical case of detecting recent strong positive selection in form of a hard “selective25

sweep”. Differential selection across populations can be detected by means of conceptually simple statistics such as26

FST (Akey, 2002), but may be corroborated by more sophisticated approaches, including those presented here, which27

exploit other aspects of the selection signal. In contrast, the detection of selection within a single population has28

proven more challenging, with various methods trying to capture an aspect of reduction in genetic variation (Oleksyk,29

Smith, & O’Brien, 2010; Sabeti, 2006). Measures for the average sample homozygosity and length of “runs of ho-30

mozygosity” in individuals can be regarded, in our opinion, as pre-stages of the frequency spectrum- and EHH-based31

statistics presented here, respectively. Hands-on overviews are provided by (Cadzow et al., 2014; Utsunomiya, Pérez32

O’Brien, Sonstegard, Sölkner, & Garcia, 2015; Weigand & Leese, 2018). We focus on the following three approaches33

which have been widely applied for more than a decade (Haasl & Payseur, 2016):34

• Tajima’s D (Tajima, 1989), Fay &Wu’s H (Fay &Wu, 2000) and related metrics (Achaz, 2009) compare the observed35

site frequency spectrum of a genomic regionwith its expectation under neutrality. Theywere intended for regions36

short enough to neglect recombination. Although easy to apply and fast to compute, they are highly vulnerable to37

the confounding effects of demography and population structure. They are implemented in various software such38

as dnasp (Rozas et al., 2017) and the R package PopGenome (Pfeifer, Wittelsbürger, Ramos-Onsins, & Lercher,39

2014).40

• SweepFinder (DeGiorgio, Huber, Hubisz, Hellmann, & Nielsen, 2016; Nielsen et al., 2005) and SweeD (Pavlidis,41

Živković, Stamatakis, & Alachiotis, 2013) are two programs implementing the same method. They calculate the42

frequency spectrum around specific chromosomal positions and compare the likelihood of a fitted sweep model43

(assuming gradual erosion of the signal of selection with increasing genetic distance) with the likelihood of a44
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position-independent null spectrum. The latter is taken either from the empirical genome-wide “background” or45

derived from an explicit demographic model.46

• Sabeti et al. (2002) introduced the concept of Extended Haplotype Homozygosity (EHH) on top of which Voight,47

Kudaravalli, Wen, and Pritchard (2006) built a statistic called iHS, with later variations by Sabeti et al. (2007) and48

Tang, Thornton, and Stoneking (2007). The quantity measures the decay of linkage around a specific site due to49

both recombination and mutations. iHS was first implemented in an eponymous program by the authors them-50

selves (Voight et al., 2006). Subsequently improved implementations have been Selscan (Szpiech & Hernandez,51

2014), hapbin (Maclean, Chue Hong, & Prendergast, 2015) and the R package rehh (Gautier, Klassmann, & Vitalis,52

2017; Gautier & Vitalis, 2012).53

In our view, there are two major points that distinguish EHH-based from frequency spectrum approaches (see our54

Supplementary Information on Site Frequency Spectrum-based methods for a short review):55

• the latter are constructed to detect completed selective sweeps while the former are focussed on on-going selec-56

tive sweeps. At least in the human species, completed selective sweeps seem to be rare (Hernandez et al., 2011)57

and prime examples of selection, such as variants influencing the expression of the LCT gene (discussed below),58

are yet far from fixation (Vitti, Grossman, & Sabeti, 2013).59

• Tajima’s D and similar quantities refer to genomic intervals and although SweepFinder/SweeD compute scores60

for exact genomic positions, these are not directly associated with any particular polymorphism. In contrast,61

EHH-based statistics are tied to specific sites.62

The methods listed above, except Tajima’s D in its original version, exploit that alleles are polarized, i.e. that the ances-63

tral vs. derived state of each allele is known. Polarization is typically achieved by using an outgroup: if a homologous64

site is monomorphic in the outgroup and coincides with one of the alleles in the investigated population, then that65

variant is called ancestral. However, an outgroup species needs to be chosen properly: if on the one hand the outgroup66

is phylogenetically too distant, then the probability of multiple mutations is high; if on the other hand the outgroup67



4 Klassmann and Gautier

is too close then the probability of shared polymorphisms is high. Both situations lead to a mis-specified ancestry68

status (Baudry & Depaulis, 2003; Hernandez, Williamson, & Bustamante, 2007). Furthermore, a reference genome69

of that species has to be available. Even so, the genomes of the outgroup and the focal species may not completely70

overlap, thereby leaving unpolarized chunks. For example, although considerable effort has been undertaken to infer71

the “ancestral sequence” of present-day humans, about 4% of the SNPs found by the 1000 Genomes Project cannot72

be polarized (see below).73

In addition to polarization, the calculation of EHH as described by Sabeti et al. (2002) requires genotype data to74

be phased, i.e. that is known for di- or polyploid individuals which variant of a heterozygous locus belongs to which75

chromosome. While phased haplotypes are expensive to obtain experimentally, computational methods to infer them76

probabilistically often yield satisfactory results (Browning & Browning, 2011). Nevertheless, two studies with the77

same basic approach stated that phasing can be omitted in case of diploid individuals: Wang, Kodama, Baldi, and78

Moyzis (2006) for a within-population and Tang et al. (2007) for a cross-population test. Both assessed the statistical79

power by simulations, yet they did not directly compare phased and unphased estimators; the latter merely reported80

a coefficient of correlation r 2 of 65-73% on empirical data.81

The aim of this article is to assess the robustness of EHH-based statistics against loss of information about phase82

or variant ancestry status. We first recapitulate and unify the definition of the three statistics we want to investigate.83

Then, we present how the statistics can be adapted to account for unphased and/or unpolarized data. For the within-84

population test we compare the False Discovery Rate for original and modified statistics on simulated whole-genome85

scans and set them in relation to the above-mentioned frequency spectrum-based methods. For all three statistics86

we calculate the overlap of candidate regions found by original and modified versions on empirical data. Along the87

way, we aim at providing potential users with some intuition for the various quantities involved.88
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2 | MATERIALS AND METHODS89

2.1 | The definition of the statistics iHS, XP-EHH and Rsb90

At start, we want to clarify that the term homozygosity as part of the name EHH refers to the probability that two91

randomly chosen chromosomes from a population are identical (at a certain locus or region) which does not imply any92

statement about individuals.93

Let s denote a site of interest within a chromosome. We call s the focalmarker (equivalent to primary locus in (Wang94

et al., 2006)) and its variants core alleles. Let na refer to the number of sequences with core allele a and ns =
∑
a na95

the total number of sequences. If there are no missing data at the focal marker, then ns equals the sample size n .96

All chromosomes sharing a core allele are by definition homozygous at the focal marker. The Extended Haplotype97

Homozygosity (EHH)measures the decay of this homozygosity with increasing distance to the marker and is calculated98

independently in each direction (upstream/downstream) from the marker. More precisely, let t be another marker on99

the same chromosome and consider the region between s and t . Any two (or more) chromosomes identical in that100

region constitute a shared haplotype. Let Ks,t denote the number of all distinct shared haplotypes in the sample and101

K as,t the subset with allele a at the focal marker s . nk refers to the number of sequences sharing haplotype k . The102

quantity EHH a as defined by Sabeti et al. (2002) is calculated for chromosomes carrying the core allele a :103

EHHas,t =
1

na (na − 1)

K as,t∑
k=1

nk (nk − 1) . (1)

In order to summarize EHH as,t to a single number assignable to the allele a at site s , Voight et al. (2006) opted for104
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an integration of EHH and named the resulting quantity integrated Haplotype Homozygosity (iHH):105

iHHa (s) =
∫
EHH as,t d t . (2)

The integration is performed numerically and stopped when EHH , monotonically decreasing with increasing distance106

to the focal marker, reaches a lower threshold or cut-off, usually chosen as 0.05.107

Note that, although i H S was historically defined in this two-step way, it is equivalent, but conceptually simpler108

to perceive it as the average of the lengths l i j (s) of shared haplotypes over all chromosomes i , j carrying core allele109

a :110

iHHa (s) = 1

na (na − 1)

na∑
i,j

l i j (s) . (3)

Given i HH for ancestral (A) and derived (D) alleles of a focal marker, Voight et al. (2006) favoured a log-ratio for their111

comparison, yielding the (as-yet unstandardized) integrated Haplotype Homozygosity Score (iHS)112

uniHS(s) = ln
(
iHHA(s)
iHHD (s)

)
. (4)

Finally, this quantity is standardized:113

iHS(s) = uniHS(s) −mean(uniHS |ps )
sd(uniHS |ps )

. (5)
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Since the expected values under neutrality of uniHS depend strongly on the derived allele frequency ps at the focal114

marker s , the standardization is ideally performed separately for all markers with the same frequency. In practice, the115

standardization is carried out over small frequency bins. Voight et al. (2006) stated that iHS follows approximately a116

standard normal distribution.117

In order to detect selection using iHS, both alleles of a site must be present on enough sequences to reliably118

estimate their respective EHH a . Typically, a Minor Allele Frequency (MAF) of at least 5% is required which excludes119

variants near fixation.120

To overcome this limitation Sabeti et al. (2007) and Tang et al. (2007) independently modified the above statistic121

in order to compare two populations instead of two alleles. While Sabeti et al. (2007) kept the designation EHH, we122

follow Tang et al. (2007) in distinguishing site-specific EHH by EHHS:123

EHHSs,t =
1

ns (ns − 1)

Ks,t∑
k=1

nk (nk − 1) . (6)

Note that EHH Ss,s is an estimate for the focal marker homozygosity. The subsequent statistics are build analo-124

gously to Equations (2-5). Sabeti et al. (2007) first integrated this quantity to yield integrated EHHS (iES)125

iES(s) =
∫
EHH Ss,t d t , (7)

which is then compared between two populations to obtain the as-yet unstandardized XP-EHH126

unXP-EHH(s) = ln
( iESpop1(s)
iESpop2(s)

)
, (8)
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which, in turn, is standardized to yield127

XP-EHH(s) = unXP-EHH(s) −mean(unXP-EHH)
sd(unXP-EHH) . (9)

The approach of Tang et al. (2007) differs in so far as EHH Ss,t is normalized by its value at marker t = s . We thus128

refer to the integral as integrated normalized EHHS score:129

inES(s) = 1

EHH Ss,s

∫
EHH Ss,t d t =

i E S (s)

EHH Ss,s
(10)

to obtain first the (unstandardized) Ratio between populations (Rsb) 1130

unRsb(s) = ln
( inESpop1(s)
inESpop2(s)

)
, (11)

and, finally, standardizing by the median instead of the mean,131

Rsb(s) = unRsb(s) −median(unRsb)
sd(unRsb) . (12)

Importantly, for standardization of the cross-population statistics XP-EHH and Rsb no binning with respect to core132

1Note that for the sake of uniformity our notation differs slightly from that given in Tang et al. (2007), where (12) was referred to as ln(Rsb)
and the unlogarithmized value used only for plotting.
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allele frequencies is undertaken and thus no variant polarization is presupposed.133

2.2 | Modifications for unphased sequences134

The probability that two sequences of a population are identical can not only be estimated by the pairwise comparison135

of all sequences in a sample (as formulated above), but also by the fraction of homozygous diploid individuals, assuming136

Hardy-Weinberg equilibrium. The latter does not require phase information and Wang et al. (2006) and Tang et al.137

(2007) used the idea to estimate EHH (under a different name) and EHH S , respectively: the crucial difference to138

Equations (1) and (6), respectively, is that only the two chromosomes of each individual are compared. The quantities139

EHH and EHH S are then estimated as above by the fraction of shared haplotypes among all sequence comparisons.140

Let Is,t denote the number of individuals homozygous in the region between s and t and I as,t those among them that141

carry the core allele a . At marker t the quantities EHH a and EHH S , respectively, are estimated by142

EHHas,t =
I as,t

I as,s
(13)

143

EHHSs,t =
Is,t

Is,s
. (14)

[Figure 1 about here.]144

Figure 1 illustrates the original and modified way to estimate EHH (and i HH ). All subsequent steps to obtain145

iHS, XP-EHH and Rsb remain the same as above. Since EHHS calculated by Equation (14) is normalized (to yield 1 at146

the focal marker), for unphased data XP-EHH is essentially identical to Rsb; the only difference consists in the use of147
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median and mean, respectively, in the standardization step.148

Importantly, only the chromosomes of individuals homozygous at that focal marker can share a haplotype. The149

resulting set of mutual chromosome comparisons is hence a (typically much smaller and possibly even empty) subset150

of those made by the original approach.151

[Figure 2 about here.]152

Figure 2 shows why this entails a major problem: the length of shared haplotypes is distributed very unevenly153

among the chromosomes of a sample and even in the absence of selection a few shared haplotypes of extreme length154

can occur. In small samples, these can easily yield “outlier” values of the final statistics, confounding the signal arising155

from selection. As an attempt to reduce this statistical noise, we imposed the following restrictions:156

• only focal markers with at least 10 homozygous sequences (5 individuals) are considered: sample-wise for XP-157

EHH and Rsb, and independently for each core allele in case of iHS (the latter on top of the original requirement158

of a Minor Allele Frequency of at least 0.05),159

• the cut-off value which stops integration of EHH/EHHS is increased from its original value of 0.05 to 0.10,160

• another integration cut-off is added, leading to a stop when less than four chromosomes (two individuals) remain161

homozygous (for the original statistics this condition follows from the former two).162

2.3 | Modifications for unpolarized variants163

There is only one stepwhere the information of allele ancestry status is exploited, namely the standardization ofuniH S164

in Equation (5), depending on the frequency of the derived core allele. In order to avoid an arbitrary assignment of165

ancestry status, we replace the ancestral and derived allele in Equation (4) by major (most frequent) and minor (second166
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most frequent) allele, respectively.167

uniHS(s) = ln
(
iHHMAJ (s)
iHHMIN (s)

)
. (15)

For unpolarized variants, the frequency-dependence of EHH under neutrality cannot be accounted for by a binning168

with respect to MAF, because such a binning would group derived alleles of frequency ps together with those of169

frequency p1−s whose respectively expected values differ increasingly with increasing distance |0.5 − s |. Hence, in170

lack of a better solution we suggest standardization to be performed without consideration of allele frequencies:171

iHS(s) = uniHS(s) −mean(uniHS)
sd(uniHS) . (16)

2.4 | Delineation of regions under selection172

Voight et al. (2006) showed that single markers with extreme values of iHS are less indicative of selective sweeps than173

a cluster of high values (see figure S2 of their Supporting Information). In effect, they determined candidate intervals174

of selection by requiring half of markers to have values above the 99% genome-wide percentile. We followed this175

approach with the modification that we adapted the threshold value in order to obtain a fixed number of candidate176

regions. We used overlapping sliding windows of width 250 kb with an offset of 50 kb and overlapping candidate177

windows were merged. For empirical data we required the number of markers in any window to exceed the (arbitrary)178

value of 150 in order to exclude regions with few genotyped markers; if phase was ignored, this number was halved179

for iHS, corresponding to a similar decrease of markers for which a score could be obtained.180

For ease of comparison, we applied sliding windows of same size and overlap to the values of the frequency-181

spectrum-based tests, although here we required single markers to exceed a given threshold. Because the values of182
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Tajima’s D and Fay & Wu’s H are calculated for intervals, we took the interval centers as corresponding positions.183

2.5 | Whole genome scans on simulated data184

We performed coalescent simulations using msms (Ewing & Hermisson, 2010). We assumed an effective population185

size of Ne ≈ 10, 000 for humans. In previous simulation studies both population scaled mutation rate and recombi-186

nation rate were set as θ = ρ = 0.001 per base per generation (Crisci, Poh, Mahajan, & Jensen, 2013; Gutenkunst,187

Hernandez, Williamson, & Bustamante, 2009) and we followed them for simplicity, although we acknowledge that,188

depending on the estimation method, rates of half that size can be inferred for both quantities (Dumont & Payseur,189

2008; Jónsson et al., 2017; Scally, 2016; Spence & Song, 2019).190

For our simulation we set the population-scaled rates of θ and ρ both to 50, 000 to correspond very roughly to a191

physical length of 50 Mb in humans. This large size proved necessary to reduce boundary effects because, as shown192

in Figure 2, shared haplotypes can span several Mb even under neutrality. We ignored that recombination events193

in reality occur within hot spots (McVean et al., 2004), because msms cannot handle varying recombination rates194

and other tools which can (e.g. msHOT (Hellenthal & Stephens, 2007)), are not able to simulate selection. In order to195

investigate distributional properties under neutrality, for iHSwe simulated chromosomes evolving in a single constant-196

size population and for XP-EHH/Rsb two neutrally evolving populations which split symmetrically from an ancestral197

population 4Ne · 0.05 generations ago (≈ 50,000 years in humans), without subsequent migration.198

In order to study selection signals, we created a “genome“ consisting of 100 independently simulated samples199

of chromosomes, each experiencing a single on-going selective sweep located at its center while otherwise evolving200

neutrally. The selected allele was set as dominant with a population-scaled selection coefficient of 2Ne s = 500, having201

reached at sampling time a population frequency of 50% (70%, 90%, respectively). The simulated sample size was202

n = 400 from which we took subsamples down to sample size n = 50. We applied on this genome the original as203

well as the modified iHS statistics. For the estimator on unphased data, we tried two cut-off values: the standard204

one of EHH = 0.05 and the more stringent of EHH = 0.10. Furthermore, we computationally re-established phase205

information from randomized genotypes using fastPHASE (Scheet & Stephens, 2006) with subsequent application of206



Klassmann and Gautier 13

the original statistics. Additionally, we computed values for Tajima’s D (Tajima, 1989) and Fay & Wu’s H (Fay & Wu,207

2000) as well as the Composite Likelihood Score (CLS) as implemented by SweepFinder (DeGiorgio et al., 2016) and208

SweeD (Pavlidis et al., 2013). The latter was calculated with and without allowance for variant ancestry status.209

To evaluate the performance of the tests, we estimated the False Discovery Rate (FDR) of delineated candidate210

regions for selection. A regionwas regarded as a “true positive”when it overlapped a true selected site. The FDRhence211

measures the proportion of mislocated regions among regions deemed significant. For each scan the significance212

threshold was adjusted so as to call exactly 100 candidate regions. With these settings, the lower the FDR, the more213

optimal the test. The FDR is equal to zero when each of the 100 simulated sites under selection is identified by a214

distinct candidate region. If, on the contrary, candidate regions are assigned to random places within the genome,215

then the probability of a “true positive” equals the combined length of all candidate regions divided by the length of216

the genome; in this case the expected FDR is 1 minus this probability. Note that the length of candidate regions is217

not fixed, because they may comprise several merged windows.218

See also the Supplementary Information on software and technical details.219

2.6 | Whole genome scans on empirical data220

We used data of Lowy-Gallego et al. (2019) who called variants on re-aligned reads from the 1000 Genomes Project221

(The 1000 Genomes Project Consortium, 2015) to human reference genome assembly GRCh38. The data comprise222

only autosomes and contain fully phased bi-allelic SNPs with imputed missing values. The ancestral alleles, inferred223

by an alignment of 12 primates, were obtained from ENSEMBL release 91 (Zerbino et al., 2018). Almost 91% of the224

73 million SNPs are covered by ancestral states classified as “high confidence” and a further 6% as “low confidence”;225

using both, we could polarize 95.8% of SNPs. We calculated the statistics for samples of European origin (CEU, GBR),226

Asian origin (CHB, JPT) and African origin (YRI), see Table 1. Additionally, we combined the samples of two closely227

related populations (see Supplementary Table 5 of The 1000 Genomes Project Consortium (2015)), namely the two228

European samples mentioned and the Chinese samples CHB and CHS, respectively.229

We assessed the robustness of the statistics against loss of phase or ancestry information by the number of230
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overlapping candidate regions.231

[Table 1 about here.]232

3 | RESULTS233

3.1 | General properties of the statistics under neutrality234

3.1.1 | Dependence on core allele frequencies under neutrality235

We examined the dependence (under neutrality) of the three original statistics on the frequency of the derived core236

allele ps . For uniH S this was already reported by Voight et al. (2006) (see their Figure 4). We present a similar, but237

more detailed plot in our Figure S1, left Panel. In order to exclude the possibility that the dependence is an artifact238

of the number of chromosomes carrying the derived allele in the sample, we re-calculated the uniHS values using at239

each marker a subsample containing an equal number of chromosomes with the derived and the ancestral variant,240

respectively. The middle panel shows clearly that uniHS indeed depends on the population frequency of the derived241

core allele and not its sample frequency.242

The cross-population statistics XP-EHH and Rsb are defined symmetrically with respect to the compared popu-243

lations and consequently the expected values have to be zero for markers with the same derived allele frequency244

from populations of identical demography. Figures S2 and S3 show for two recently diverged populations of equal245

size the averaged unstandardized XP-EHH and Rsb values in dependence on the derived core allele frequency in each246

population. The values follow a varied pattern which differs between the two statistics. This dependence was neither247

reported by Sabeti et al. (2007) nor Tang et al. (2007) and consequently not accounted for in the standardization step.248

Fortunately, the effect is smaller than for the uniHS statistics, making a correction less necessary. Furthermore, a249

frequency-dependent standardization in the vein of iHS would need two-dimensional bins and, contrary to iHS, the250

implicit assumption that each bin is dominated by neutral variants does not hold because large frequency differences251

are indicative of differential selection. Hence in lack of a better solution we continue to use these statistics as they are.252
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Note, however, that any such hypothetical bin-wise standardization would make XP-EHH and Rsb essentially identical,253

except for the respective usage of mean and median in Equations (9) and (12).254

3.1.2 | Distributions of the statistics under neutrality255

The statistics iHS, XP-EHH and Rsb have been constructed to be approximately standard-normal distributed under256

neutrality. Figures S4 and S6 show that for simulated data the distributions of the original statistics are approximated257

quite well by a Gaussian curve, while our modified scores show notable deviations: neglecting ancestry information258

leads to a skew in iHS values and using the estimator for unphased variants results in “heavier tails” in all three statistics.259

3.2 | Whole genome scans on simulated data260

3.2.1 | A single selective sweep in detail261

In Figure 3 we present an example of the iHS values obtained in the vicinity of a strongly selected variant, located262

at the middle of a chromosome which otherwise evolves neutrally. The variant has reached a population frequency263

of 70%. It is evident that omission of ancestry status entails a decrease of values around the selected site. A lack264

of phase, by contrast, primarily increases the statistical “noise” from the neutral part of the chromosome. This can265

be observed, too, for unstandardized iHS in the right panel of Figure S1. The relative lack of low values around the266

selected site is in each case a more prominent feature of the sweep than the attainment of extreme values, hence267

the reason to search for such “clusters”. Further examples, including those of the frequency spectrum-based tests268

and calculated for different sample sizes, are given in Figures S8-S13 in Supplementary Figures and Tables. These269

plots show that our requirement of at least 10 sequences per allele in unphased data is of lesser importance when the270

sample size is large, but reduces drastically the number of suitable markers in small samples. Note that the selected271

variant neither necessarily has the most extreme value nor lies in the exact center of the region with elevated values.272

[Figure 3 about here.]273
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3.2.2 | Comparison of the statistics by the False Discovery Rate274

Figure 4 summarizes the results of our whole-genome scan on simulated data. It shows the False Discovery Rate, the275

fraction of the 100 delineated candidate regions that did not overlap one of the 100 true selected sites. For each test276

and sample size the average area covered by the candidate regions comprised about 500 kb per chromosome, hence277

about 1%of its length, representing the probability to yield a “true positive” by chance alone. First, we can observe that278

on-going sweeps in early stages can be better recognized by iHS than by frequency spectrum-based tests. Second, a279

lack of polarization yields in every case, and almost independently of sample size, an increase of “false positives”, with280

the effect being smaller for iHS than for the other statistics. Third, lack of phase drastically increases the FDR for iHS281

for all but the largest sample sizes and an increased cut-off achieves only partial compensation. Lastly, computational282

phasing of genotypes is, at least in our high-density simulated data, much more effective than using the modified283

estimator for unphased sequences; to our surprise the FDR for the reconstructed phase turned out to be partially284

even lower than for the “true” data. We do not know the reason for this and can only speculate that fastPHASE does285

not recognize all recombination events, increasing thereby the length of shared haplotypes and hence the signal of286

selection.287

[Figure 4 about here.]288

3.3 | Whole genome scans on empirical data289

3.3.1 | Two selective sweeps in detail290

Several variants in the enhancer of the human gene LCT confer Lactase persistence which enables adults to digest291

fresh milk (Enattah et al., 2008, 2002; Tishkoff et al., 2007). Although undisputedly under strong selection, the precise292

advantage of this capability is still debated (Segurel et al., 2020). We are here concerned with the SNP rs4988235293

whose derived variant attains its highest frequency of 74% in population CEU, while it is virtually absent in all East294

Asian and non-admixed African populations of the 1000 Genomes Project. Figure 5 depicts EHH around this SNP for295
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its two alleles. It can be seen that EHH extends far further for the derived variant than for the ancestral one, a sign296

that the allele reached its current population frequency faster than under neutrality. The curves for EHH using the297

estimator for unphased data are more coarse-grained, but still quite similar in shape and scale. Figure 6 shows the298

genome-wide standardized iHS values around the LCT gene. As with simulated data, omission of polarization leads299

to a reduction of high values, but leaves the overall pattern intact. Omission of phasing, instead, leads to a notable300

increase of “noise” in the sense that many low values get inflated. Again, most conspicuous is the massive lack of301

values in the putative center of the sweep owing to the discard of sites with the minor allele present on less than 10302

sequences (or 5 individuals). In fact, only 7 individuals are homozygous for the minor, i.e. ancestral, allele of the SNP303

rs4988235 itself. Figures S14-S17 illustrate that the situation is similar in other candidate regions. Out of interest, we304

computed the standard iHS values for further populations as well (Figure S18): almost all European populations of the305

1000 Genomes Project show a similarly strong signal, while none of the African populations do. However, a further306

African population investigated within the HapMap3 project (The international HapMap Consortium, 2010) shows a307

signal like Europeans, as observed already by (Ferrer-Admetlla, Liang, Korneliussen, & Nielsen, 2014).308

The SNP rs1426654 within gene SLC24A5 translates to a Ala111Thr polymorhism in the corresponding protein309

and influences skin pigmentation (Lamason et al., 2005). The level of pigmentation needs to balance the opposing310

requirements of protecting from UV radiation as well as ensuring sufficient vitamin D production (Quillen et al., 2019).311

The derived variant has low frequency in the African populations, is almost fixed in the European populations and312

all but absent in the East Asian populations of the 1000 Genomes Project. Because the population sample CEU is313

monomorphic for the derived variant, only cross-population statistics are applicable. Figure 7 shows that EHHS in314

population CEU extends far further than in the populations CHB and YRI. Again, ignoring phase information, we obtain315

a coarser, but otherwise similar picture. Figure 8 compares the originalXP-EHH andRsb statisticswith their counterpart316

for unphased data (where both statistics are essentially identical) around the gene SLC24A5. The panels look quite317

similar, suggesting that the statistics are largely equivalent.318

[Figure 5 about here.]319

[Figure 6 about here.]320
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[Figure 7 about here.]321

[Figure 8 about here.]322

3.3.2 | Distribution of the statistics on empirical data323

Figures S5 and S7 show that the statistics from empirical data have more extreme values, or with other words, their324

distributions have heavier “tails” than those from simulated neutral evolution. This holds particularly when the esti-325

mators for unphased data are applied.326

3.3.3 | Overlap of delineated candidate regions327

We are interested in whether delineated putative regions under selection are robust with respect to the amendments328

we made to the original statistics. As discussed in section 2, we largely employed the settings of Voight et al. (2006),329

but adjusted the threshold value in order to yield exactly 20 candidate regions for each statistic. Table 2 shows the330

number of overlapping regions using i H S . It can be seen that overlap between the regions called from the original331

statistics with those neglecting ancestral information is considerable, while neglecting phase information yields scarce332

overlap, even for large sample sizes. Table 3 compares the standard statistics Rsb and XP-EHH with one another and333

each of the twowith the version for unphased data. Here, the overlap between themodified statistics with the original334

ones is not much less than between the two original statistics, except for the comparison of populations CHB and JPT.335

Because these two populations are rather similar, the signal of differential selection might be too small to be detected336

without phasing.337

The precise chromosomal locations of all ascertained candidate regions as well as the strengths of the signals are338

listed in Supplementary Figures and Tables.339

[Table 2 about here.]340

[Table 3 about here.]341
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The iHS, XP-EHH and Rsb values calculated for the 1000 Genomes Project populations are available on Dryad342

([dataset] Klassmann & Gautier, 2020).343

4 | DISCUSSION344

While ever more sophisticated methods to detect selective sweeps are being developed (Alachiotis & Pavlidis, 2018;345

Harris & DeGiorgio, 2020; Stern, Wilton, & Nielsen, 2019) and other, more subtle modes of selection (Stephan, 2016)346

are under increasing scrutiny, the comparatively simple summary statistics presented here will continue to be applied347

as a first-pass analysis to population genetic data. The aim of our study was to examine whether the established348

scores iHS, XP-EHH and Rsb can be used without the requirement of sequences to be phased and variants to be349

polarized. Although the issue of phasing can often be solved computationally and its importance is likely to wane350

further given the rapid improvement of sequencing technologies, in the meantime methods that can cope with un-351

phased data might find their niche. In contrast, the polarization of alleles will always remain imperfect and incomplete,352

notwithstanding rare cases of available ancient DNA. This holds even more so for cases of “reticulate” evolution such353

as hybridization/admixture where the very concept of an ancestral allele gets blurred. We hence expect any method354

apt to handle unpolarized variants to remain a useful complement to methods that cannot.355

We compared the different approaches to detect selective sweeps by the False Discovery Rate, because typically356

in whole-genome scans only a handful of most extreme “outlier” regions can be investigated in detail further on357

and it is more important that these are correctly identified than to know the overall level of selection as would be358

described by Statistical Power. We even want to caution that reporting large numbers of putative selective sweeps359

may inadvertently suggest a precision that cannot be warranted. The fine-scale plots of our candidate regions in360

Figures S14-S17 should remind that their delineation depends on various, often overlooked parameters such as the361

handling of gaps and boundary regions, the clustering of significant scores and not least the thresholds applied, which362

are notoriously uncertain given that in many cases null-models can be specified only roughly.363

The results presented in Figure 4 show that frequency spectrum-based methods, constructed for the detection364



20 Klassmann and Gautier

of sweeps near completion, are unable to detect on-going sweeps when the selected variant is still in intermediate365

frequency. For the same reason, polarization is more important for those approaches than for EHH-based ones. Sur-366

prisingly, sample size (at least in the range investigated) plays almost no role for the former.367

Concerning EHH-based statistics, we showed that although omission of ancestry information entails a substantial368

decrease in peak values, the conspicuous absence of low scores can still be exploited to delineate candidate regions.369

In contrast, the claims of (Wang et al., 2006) and (Tang et al., 2007) that phase can be neglected without major370

loss of information, must be regarded as too optimistic. The main reason is that the estimation of the statistics in this371

case relies solely on individuals which are homozygous at the respective focal markers. This is less of a problem for372

EHHS because under Hardy-Weinberg proportions more than half of individuals in a population can be expected to373

be homozygous for a given marker. Hence in a sample of 100 chromosomes, typically around 50 chromosomes are374

available to calculate EHHS and the derived XP-EHH and Rsb. This seems enough to yield a substantial similarity with375

their homologues for phased data as Table 3 shows for empirical data. For iHS, however, EHH has to be estimated for376

each allele independently which often renders estimation for the minor allele unreliable, because few sequences can377

be exploited.378

In order to increase the robustness of estimation on unphased data, we required a minimum number of 10 se-379

quences to be available for estimation at the focal site. However, the depletion of variantswith intermediate frequency380

is a major hallmark of a selective sweep near completion (Fay & Wu, 2000; Tajima, 1989) and hence, this seemingly381

mild condition can entail for iHS the exclusion of many markers around the selected site. This phenomenon can be382

seen most clearly at the LCT locus (Figure 6), but seems to be general (Figures S14-S17).383

Furthermore, we increased the cut-off level for EHH/EHHS integration from 0.05 to 0.1 and stopped integration384

as well, when only a single homozygous individual (a single shared haplotype) remained. These added restrictions385

aim at capping shared haplotype(s) with extreme length. However, as Figure 4 shows, the improvement is rather386

moderate. Both Wang et al. (2006) and Tang et al. (2007) invented more sophisticated measures: the former did not387

integrate EHH, but chose to fit a logistic function describing its decay with increasing distance to the focal marker388

(more precisely, they fitted the increase of 1
2 (1−EHH)). The latter repeated the whole genome scan 50 times on a389

bootstrapped sample to eliminate the most volatile 50% of significant markers. We doubt, however, that any such390
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noise reduction can overcome the general problem of few exploitable sequences.391

To summarize, without phasing information, selective sweeps can be located by iHS only on very large samples;392

consequently, phasing should be performed whenever possible. The poor overlap of inferred regions using iHS with393

and without phase on empirical data (Table 2) confirms this conclusion.394

On amore fundamental level, Figure 2 reveals the limits of any EHH-based approach: the extremely uneven length395

of shared haplotypes under neutrality produces a difficult to handle background noise. Were this length log-normal396

distributed as suggested by the right panels of the figure, a remedy could lie in replacing the arithmetic average in397

Equation 3 by a geometric one. We shortly probed such a replacement, but recognized that the cut-off parameters are398

more important than the type of averaging. Indeed, (Ferrer-Admetlla et al., 2014) concluded from a coalescent-based399

reasoning that this problem cannot have an “optimal” solution because the expected length of shared haplotypes is400

infinite. Hence we do not expect that our ad hoc cut-off rules can be substantially improved or even motivated by401

theory.402
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F IGURE 1 An example for the calculation of EHH using the estimator for phased (Equation (1)) and unphased
sequences (Equation (6)). The left panel depicts the variants seen in four aligned sequences belonging to two diploid
individuals. At the central marker (position 40), all sequences share the same allele and this marker is taken as focal in
the other two panels. The middle panel shows the range of shared extended haplotypes around the focal marker.
The boundaries of shared haplotypes are defined by the position of the marker that introduces a difference between
the hitherto identical sequences. Without phase information, only the two sequences of each individual can be
compared and the resulting shared haplotypes are visualized by dashed lines. For instance, the two sequences of
individual 1 become different at the first marker to the left of the focal marker and consequently, their shared
haplotype ends at position 30. In contrast, when variants are phased, all sequences can be compared with each
other, yielding at most 6 different shared haplotypes. The panel depicts for each sequence only its longest shared
haplotype, indicated by a solid line, with the constituting sequences in the same color. The remaining comparisons
yield (trivial) shared haplotypes, extending to position 30 and 50, respectively. The right panel shows the EHH
values, calculated at each marker position as the fraction of sequences sharing a haplotype among all comparisons.
Note that the EHH curve is typically defined as linearly interpolating between consecutive markers (as depicted),
although for completely sequenced data a stepwise constant function would be more appropriate. With the latter
definition, the integral over the EHH -curve, i HH , becomes identical to the average length of shared haplotypes:
30+40

2 = 35 and 180
6 = 30 for unphased and phased sequences, respectively
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F IGURE 2 Length of shared haplotypes. Simulated was a region of 50 Mb in a neutrally evolving population with
a sample size of n = 100. We considered only SNPs where both core alleles have a sample frequency of 50% and we
assumed that phase is known. Like in the middle panel of Figure 1, the lines in the left panel symbolize the range of
the longest shared extended haplotypes, here ordered by their length, for a single, “arbitrarily” chosen SNP (the most
central one on the first simulation “run”). Outstanding is the extreme length of a single shared haplotype. The center
left panel shows that this is not an exceptional feature: here, the shared haplotype lengths (restricted to those to the
“right” of the focal marker) are averaged over SNPs from 100 independent simulation runs, restricted to those less
than 5 Mb away from the center in order to minimize boundary effects. The ends of the bars represent the 5% and
95% quantiles, respectively. The center right panel shows for the same SNPs the length distributions of all pairwise
shared haplotypes ( 50·492 per SNP and allele). The distributions are overlayed with a fitted Gaussian curve. The right
panel shows Q-Q-plots of the distributions. Note that the largest lengths are actually capped, because in 11
simulation runs, shared haplotypes reached the chromosomal boundary
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F IGURE 3 iHS values of a single simulation “run” (arbitrarily chosen as the first of the 100 runs) around a site
with a selected variant of population frequency 70% using a sample of size n = 200. The value for the site with the
selected variant is marked in dark orange and delineated candidate regions for selection are marked in gray. See also
Figures S8-S13



32 Klassmann and Gautier

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.5

Sample size

F
D

R

Tajima's D
Fay & Wu's H

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.7

Sample size

F
D

R

Site Frequency Spectrum

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.9

Sample size

F
D

R

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.5

Sample size

F
D

R

unpolarized
polarized

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.7

Sample size

F
D

R

CLR (SweepFinder/SweeD)

50 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0

Selected allele frequency 0.9

Sample size

F
D

R

50 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Selected allele frequency 0.5

Sample size

F
D

R

unphased, cut−off = 0.05
unphased, cut−off = 0.1
unpolarized
phased & polarized
re−phased & polarized

50 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Selected allele frequency 0.7

Sample size

F
D

R

|iHS|

50 100 200 300 400

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Selected allele frequency 0.9

Sample size

F
D

R

F IGURE 4 Comparison of the False Discovery Rate for different statistics, different sample sizes and different
frequencies of the selected allele. 100 candidate regions for selection were delineated on a simulated genome
containing 100 sites under selection. The FDR represents the fraction of incorrectly located regions, i.e. regions that
do not overlap any “true” site under selection. An ideal test should yield a FDR of zero. Re-phasing was performed
only for sample sizes 50 and 100
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F IGURE 5 EHH for ancestral and derived alleles of SNP rs4988235 in population CEU of the 1000 Genomes
Project. The SNP is located on chromosome 2, about 13kb upstream (in 3’-direction) of the gene LCT
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F IGURE 6 iHS values in a region around the gene LCT in population CEU. The value of the putatively selected site
is marked in dark orange and delineated candidate regions for selection are marked in gray. That the putatively
causal site has a more prominent score using unpolarized estimation is, in our opinion, entirely accidental
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F IGURE 7 Normalized EHHS around SNP rs1426654 in populations CEU, CHB and YRI. The SNP is located within
gene SLC24A5
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F IGURE 8 XP-EHH and Rsb values in a region around the gene SLC24A5 for a comparison of population CEU with
YRI. The value of the putatively selected site is marked in dark orange and delineated candidate regions for selection
are marked in gray
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Sample Population # Individuals

CEU Central Europeans in Utah (CEPH individuals) 99

CHB Han Chinese in Beijing, China 106

CHS Han Chinese South, China 105

GBR British from England and Scotland 100

JPT Japanese in Tokyo, Japan 105

YRI Yoruba in Ibadan, Nigeria 107

TABLE 1 The population samples of the 1000 Genomes Project used in this study
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iHS phased iHS polarized

polarized/unpolarized phased/unphased

CEU 10 2

CHB 12 1

JPT 9 2

YRI 14 5

CEU+GBR 11 4

CHB+CHS 12 3

TABLE 2 The number of overlapping delineated candidate regions for selection using i H S . For each statistic a
threshold was fitted in order to yield exactly 20 candidate regions
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Rsb/XP-EHH XP-EHH Rsb Rsb/XP-EHH

phased phased/unphased phased/unphased unphased

CEU vs CHB 12 11 11 20

CEU vs JPT 11 9 14 18

CEU vs YRI 11 7 10 20

CHB vs JPT 13 4 3 20

CHB vs YRI 12 6 10 18

JPT vs YRI 11 8 11 20

CEU+GBR vs CHB+CHS 13 12 12 20

TABLE 3 The number of overlapping delineated candidate regions for differential selection using XP-EHH and
Rsb. For each statistic a threshold was fitted in order to yield exactly 20 candidate regions. Note that unphased
XP-EHH and Rsb are almost identical and so are the respective candidate regions
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