Kunyang Wang

and 3 more

ReferenceAbdi, H., Williams, L.J. (2010). ”Principal component analysis”. Wiley Interdisciplinary Reviews: Computational Statistics. 2 (4): 433–459. arXiv:1108.4372. doi:10.1002/wics.101Agriculture and forestry department of Nara, (2018). Nara Forestry Statistics Report 2016. http://www.pref.nara.jp/1218.htmArnold, J. G., Moriasi, D. N., Gassman, P. W., Abbaspour, K. C., White, M. J., Srinivasan, R., et al., (2012). SWAT: Model use, calibration, and validation. Transactions of the ASABE, 55(4), 1491-1508.Arnold Jr, C. L., & Gibbons, C. J. (1996). Impervious surface coverage: the emergence of a key environmental indicator. Journal of the American planning Association, 62(2), 243-258.Baker, T.J., Miller, S.N., (2013). Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. Journal of Hydrology 486, 100-111.Bauer, M. E., Loffelholz, B. C., & Wilson, B. (2007). Estimating and mapping impervious surface area by regression analysis of Landsat imagery. In Remote sensing of impervious surfaces (pp. 31-48). CRC Press.Boquet, Y. (2015). Metro Manila’s challenges: Flooding, housing and mobility. In Urban development challenges, risks and resilience in Asian mega cities (pp. 447-468). Springer, Tokyo.Brath, A., Montanari, A., Moretti, G., (2006). Assessing the effect on flood frequency of land use change via hydrological simulation (with uncertainty). Journal of Hydrology 324, 141-153.Brun, S. E., & Band, L. E. (2000). Simulating runoff behavior in an urbanizing watershed. Computers, Environment and Urban Systems, 24(1), 5-22.Bosch, J. M., & Hewlett, J. D. (1982). A review of catchment experiments to determine the effect of vegetation changes on water yield and evapotranspiration. Journal of hydrology, 55(1-4), 3-23.Boyd, M. J., Bufill, M. C., & Knee, R. M. (1993). Pervious and impervious runoff in urban catchments. Hydrological Sciences Journal, 38(6), 463-478Burman, P. K. D., Sarma, D., Morrison, R., Karipot, A., & Chakraborty, S. (2019). Seasonal variation of evapotranspiration and its effect on the surface energy budget closure at a tropical forest over north-east India. Journal of Earth System Science, 128(5), 127.Cabral, P., & Zamyatin, A. (2009). Markov processes in modeling land use and land cover changes in Sintra-Cascais, Portugal. Dyna, 76(158), 191-198. Calder, I.R., (1993). Hydrologic effects of land-use change. In: Maidment, D.R. (Ed.), Handbook of Hydrology. McGraw-Hill, New York, pp. 13.1-13.50.Changnon, S.A., Huff, F.A., Hsu, C.F., (1988). Relation between precipitation and shallow groundwater in Illinois. American Meteorological Society. December, pp1239–1250.Felix N, Simon S, Markus W. 2002. A process based assessment of the potential to reduce flood runoff by land use change. Journal of Hydrology 267: 74–79. DOI: 10.1016/S0022-1694(02)00141-5.Fohrer, N., Haverkamp, S., Eckhardt, K., & Frede, H. G. (2001). Hydrologic response to land use changes on the catchment scale. Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere, 26(7-8), 577-582.Gaertner, B. A., Zegre, N., Warner, T., Fernandez, R., He, Y., & Merriam, E. R. (2019). Climate, forest growing season, and evapotranspiration changes in the central Appalachian Mountains, USA. Science of The Total Environment, 650, 1371-1381.Gatwaza, O.C., Cao, X. and Beckline, M. (2016) Impact of Urbanization on the Hydrological Cycle of Migina Catchment, Rwanda. Open Access Library Journal, 3: e2830. http://dx.doi.org/10.4236/oalib.1102830Guttenberg, A.Z., Urban Structure and Urban Growth. Journal of the American Institute of Planners, 1960. 26(2): p. 104-110.Ghaffari, G., Keesstra, S., Ghodousi, J., & Ahmadi, H. (2010). SWAT‐simulated hydrological impact of land‐use change in the Zanjanrood basin, Northwest Iran. Hydrological Processes: An International Journal, 24(7), 892-903..Goswami, S., Gamon, J., Vargas, S., & Tweedie, C. (2015). Relationships of NDVI, Biomass, and Leaf Area Index (LAI) for six key plant species in Barrow, Alaska (No. e1127). PeerJ PrePrints.Hardison, E. C., O’Driscoll, M. A., DeLoatch, J. P., Howard, R. J., & Brinson, M. M. (2009). Urban Land Use, Channel Incision, and Water Table Decline Along Coastal Plain Streams, North Carolina 1. JAWRA Journal of the American Water Resources Association, 45(4), 1032-1046.Hatt, B. E., Fletcher, T. D., Walsh, C. J., & Taylor, S. L. (2004). The influence of urban density and drainage infrastructure on the concentrations and loads of pollutants in small streams. Environmental management, 34(1), 112-124.Herold, M., Scepan, J., & Clarke, K. C. (2002). The use of remote sensing and landscape metrics to describe structures and changes in urban land uses. Environment and Planning A, 34(8), 1443-1458.Hirata, T., Ii, H., Hasebe, M., Egusa, N., Sakamoto, Y., Hasabe, M., et al. (1999). The effect of land use upon river water chemistry, the ishi river basin in Osaka prefecture (in Japanese). Proceedings of Japan Society of Civil Engineers, (614), 97-107Hoshino, S. (1996). Statistical analysis of land-use change and driving forces in the Kansai District, Japan.Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International journal of forecasting, 22(4), 679-688.Johnson, K.H. (1977). A predictive method for ground water levels. Master’s Thesis, Cornell University, Ithica, N.Y.Kadoya, M., Chikamori, H., & Ichioka, T. (1993, January). Some characteristics of heavy rainfalls in the Yamato river basin found by the principal component and cluster analyses. In Extreme hydrological events. Proc. international symposium, Yokohama, 1993 (pp. 75-85). IAHS; Publication, 213.Kannan, N., White, S. M., Worrall, F., & Whelan, M. J. (2007). Hydrological modelling of a small catchment using SWAT-2000–Ensuring correct flow partitioning for contaminant modelling. Journal of Hydrology, 334(1-2), 64-72.Kayane I, Takeuchi A (1971) On the Annual Runoff Ratio of Japanese Rivers (in Japanese). Geographical Review, 44-5,1971Khalid, K., Ali, M. F., Rahman, N. F. A., Mispan, M. R., Haron, S. H., Othman, Z., & Bachok, M. F. (2016). Sensitivity analysis in watershed model using SUFI-2 algorithm. Procedia engineering, 162, 441-447.Kimaro, T.A., Tachikawa, Y., & Takara, K. (2003). Evaluating land-use change effects on flood peaks using a distributed rainfall-runoff model in Yasu River, Japan. Weather Radar Information and Distributed Hydrological Modelling. IAHS Publ. no. 282, 2003.Kvalseth, T.O., (1985). Cautionary Note about R2, The American Statistician Vol. 39, No. 4, Part 1 (Nov., 1985), pp. 279-285Li, Z., Liu, W. Z., Zhang, X. C., & Zheng, F. L. (2009). Impacts of land use change and climate variability on hydrology in an agricultural catchment on the Loess Plateau of China. Journal of hydrology, 377(1-2), 35-42.McGrane, S. J. (2016). Impacts of urbanisation on hydrological and water quality dynamics, and urban water management: a review. Hydrological Sciences Journal, 61(13), 2295-2311.Mehan, S., Neupane, R. P., & Kumar, S. (2017). Coupling of SUFI 2 and SWAT for improving the simulation of streamflow in an agricultural watershed of South Dakota. Hydrol. Curr. Res, 8(3).Menking, K. M., Syed, K. H., Anderson, R. Y., Shafike, N. G., & Arnold, J. G. (2003). Model estimates of runoff in the closed, semiarid Estancia basin, central New Mexico, USA. Hydrological sciences journal, 48(6), 953-970.Moriasi, D.N., Arnold, J.G., Van Liew, M.W., Bingner, R.L., Harmel, R.D., Veith, T.L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE. 50(3):885-900Muller, M. R., & Middleton, J. (1994). A Markov model of land-use change dynamics in the Niagara Region, Ontario, Canada. Landscape Ecology, 9(2), 151-157.Nara Prefecture Agriculture and Forestry Department, (2018). Nara Prefecture Forestry Statistics of 2016 (in Japanese)Nash, J., Sutcliffe, J.V., (1970). River flow forecasting through conceptual models’ part I-A discussion of principles. Journal of Hydrology 10, 282-290Neitsch, S. L., Arnold, J. G., Kiniry, J. R., & Williams, J. R. (2011). Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources Institute.Nepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., et al., (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372(6507), 666.Ogasawara, Y., (1955). Land Utilization in Japan (in Japanese). Japanese Journal of Human Geography, 7(3), 169-182.Osaragi, T., & Aoki, Y., (2006). A Method for Estimating Land Use Transition Probability Using Raster Data. 10.1007/978-1-4020-5060-2_5.Osman, N., & Barakbah, S. S. (2006). Parameters to predict slope stability—soil water and root profiles. Ecological Engineering, 28(1), 90-95.Pattanayak, S. K., & Kramer, R. A. (2001). Worth of watersheds: a producer surplus approach for valuing drought mitigation in Eastern Indonesia. Environment and Development Economics, 6(1), 123-146Pearson, K. (1901). On Lines and Planes of Closest Fit to Systems of Points in Space. Philosophical Magazine. 2 (11): 559–572. doi:10.1080/14786440109462720Rautiainen, A., Wernick, I., Waggoner, P. E., Ausubel, J. H., & Kauppi, P. E. (2011). A national and international analysis of changing forest density. PLoS one, 6(5), e19577.Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351, 309.Rudnicky, J. L., & McDonnell, M. J. (1989). Forty-eight years of canopy change in a hardwood-hemlock forest in New York City. Bulletin of the Torrey Botanical Club, 52-64.Sharma, K., & Saikia, A. (2018). How green was my valley: forest canopy density in relation to topography and anthropogenic effects in Manipur valley, India. Geografisk Tidsskrift-Danish Journal of Geography, 118(2), 137-150.Shuster, W. D., Bonta, J., Thurston, H., Warnemuende, E., & Smith, D. R. (2005). Impacts of impervious surface on watershed hydrology: A review. Urban Water Journal, 2(4), 263-275.Skovsgaard, J. P., Bald, C., & Nord-Larsen, T. (2011). Functions for biomass and basic density of stem, crown and root system of Norway spruce (Picea abies (L.) Karst.) in Denmark. Scandinavian Journal of Forest Research, 26(S11), 3-20.Su Mon, M., Mizoue, N., Htun, N. Z., Kajisa, T., & Yoshida, S. (2012). Estimating forest canopy density of tropical mixed deciduous vegetation using Landsat data: a comparison of three classification approaches. International journal of remote sensing, 33(4), 1042-1057.Sun, H., Cornish, P.S., (2005). Estimating shallow groundwater recharge in the headwaters of the Liverpool Plains using SWAT. Hydrological Process. 19, 795–807 (2005)Sangrey, D. A., Harrop-Williams, K. O., & Klaiber, J. A. (1984). Predicting ground-water response to precipitation. Journal of Geotechnical Engineering, 110(7), 957-975.Staelens, J., Herbst, M., Hölscher, D., & De Schrijver, A. (2011). Seasonality of hydrological and biogeochemical fluxes. In Forest Hydrology and Biogeochemistry (pp. 521-539). Springer, Dordrecht.Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., et al., (2015). Planetary boundaries: Guiding human development on a changing planet. Science, 347(6223), 1259855. Taniguchi, M (1994). Estimated recharge rates from groundwater temperature in the Nara basin, Japan. Applied Hydrogeology 4/94. pp7-13Ukita, T. (1957). Land use in the Nara basin in the Tokugawa Shogunate (in Japanese). Geographical Review of Japan, 30(10), 927-946.UNDP, (2015). Sustainable Development Goals. https://www.un.org/sustainabledevelopment/USDA (1980). CREAMS, A Field Scale Model for Chemicals, Runoff, and Erosion from Agricultural Management Systems. Conservation research report No.26.USDA, Washing, D.C.1980:643~644Vörösmarty, C., Lettenmaier, D., Leveque, C., Meybeck, M., Pahl‐Wostl, C., Alcamo, J., et al., (2004). Humans transforming the global water system. Eos, Transactions American Geophysical Union, 85(48), 509-514.Wang, Q., Adiku, S., Tenhunen, J., & Granier, A. (2005). On the relationship of NDVI with leaf area index in a deciduous forest site. Remote sensing of environment, 94(2), 244-255.Weng, Q. (2012). Remote sensing of impervious surfaces in the urban areas: Requirements, methods, and trends. Remote Sensing of Environment, 117, 34-49.Wu, H.J., Chen, B., (2015). Evaluating uncertainty estimates in distributed hydrological modeling for the Wenjing River watershed in China by GLUE, SUFI-2, and ParaSol methods. Ecological Engineering 76, 110-121.Wu, S., Neupane, S.M., Kumar, S., (2017). Coupling of SUFI 2 and SWAT for improving the simulation of streamflow in an agricultural watershed of South Dakota. Hydrology Current Research, 8, 3. DOI: 10.4172/2157-7587.1000280.Yamato River Water Environment Council, (2016). Yamato River Water Environment Improvement Plan (in Japanese). https://www.kkr.mlit.go.jp/yamato/index.phpYuan, F., & Bauer, M. E. (2007). Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery. Remote Sensing of environment, 106(3), 375-386.