References:
Ahmad, N., Jones, R.L., 1967. Forms of occurrence of inorganic
phosphorus and its chemical availability in the limestone soils of
Barbados. Soil Sci. Soc. Am. J. 31(2), 184-188.
doi:10.2136/sssaj1967.03615995003100020013x
Anderson, B.H., Magdoff, F.R., 2005. Autoclaving soil samples affects
algal-available phosphorus. J. Environ Qual. 34(6), 1958-1963.
doi:10.2134/jeq2005.0024
Arfania, H., Samadi, A., Asadzadeh, F., Sepehr, E., Jaisi, D., 2018.
Distribution of phosphorus pools in western river sediments of the Urmia
Lake basin, Iran. Environ Sci. Pollut Res. 25(12), 11614-11625.
https://doi.org/10.1007/s11356-018-1191-3
Boekhold, A.E., Temminghoff, E.J.M., Van der Zee, S.E.A.T.M., 1993.
Influence of electrolyte composition and pH on cadmium sorption by an
acid sandy soil. J Soil Sci. 44(1), 85-96.
https://doi.org/10.1111/j.1365-2389.1993.tb00436.x
Bray, R.H., Kurtz, L.T. 1945. Determination of total, organic, and
available forms of phosphorus in soils. Soil Sci. 59(1), 39-46.
http://dx.doi.org/10.1097/00010694-194501000-00006
Brendel, C.H., Soupir, M.L., Long, L.A.M., Helmers, M.J., Charles D.
Ikenberry C.D., Kaleita, A.L. 2019. Catchment-scale Phosphorus Export
through Surface and Drainage Pathways. J. Environ. Qual. 48:117–126.
doi:10.2134/jeq2018.07.0265
Colwell, J.D., 1963. The estimation of the phosphorus fertilizer
requirements of wheat in southern New South Wales by soil analysis.
Aust. J. Exp Agri. 3(10),190-197.
https://doi.org/10.1071/EA9630190
Drylie, T.P. Needham, H.R. Lohrer, A.M., Hartland, A., Pilditch, C.A.
2019. Calcium carbonate alters the functional response of coastal
sediments to eutrophication-induced acidification. Scientific Reports.
9,12012.
Dijkstra, N., Kraal, P., Séguret, M.J.M., Flores, M.R., Gonzalez, S.,
Rijkenberg, M.J., Slomp, C.P., 2018. Phosphorus dynamics in and below
the redoxcline in the Black Sea and implications for phosphorus burial.
Geochim Cosmo Acta. 222, 685-703.
https://doi.org/10.1016/j.gca.2017.11.016
Dorich, R.A., Nelson, D.W., Sommers, L.E., 1984. Availability of
phosphorus to algae from eroded soil fractions. Agric. Ecosyst. Environ.
11(3), 253-264. https://doi.org/10.1016/0167-8809(84)90034-3
Ekholm, P., Krogerus, K., 2003. Determining algal-available phosphorus
of differing origin: routine phosphorus analyses versus algal assays.
Hydrobiologia. 492(1-3), 29-42. https://doi.org/10.1023/A:1024857626784
Ellison, M.E., Brett, M.T., 2006. Particulate phosphorus bioavailability
as a function of stream flow and land cover. Water Res. 40(6),
1258-1268. https://doi.org/10.1016/j.watres.2006.01.016
Hartzell, J.L., Jordan, T.E., Cornwell, J.C., 2010. Phosphorus burial in
sediments along the salinity gradient of the Patuxent River, a
subestuary of the Chesapeake Bay (USA). Estuaries Coasts. 33(1), 92-106.
https://doi.org/10.1007/s12237-009-9232-2
Huettl, P.J., Wendt, R.C., Corey, R.B., 1979. Prediction of
Algal-Available Phosphorus in Runoff Suspensions. J Environ Qual. 8(1),
130-132. https://doi.org/10.2134/jeq1979.00472425000800010028x
Jalali, M., Jalali, M., 2016. Relation between various soil phosphorus
extraction methods and sorption parameters in calcareous soils with
different texture. Sci Total Environ. 566, 1080-1093.
https://doi.org/10.1016/j.scitotenv.2016.05.133
Loeppert R.H., Suarez D.L., 1996. Carbonate and Gypsum, in: Sparks,
D.L., Page, A.L., Helmke, P.A., Loeppert, P.N., Tabatabai, M.A.,
Johnston, C.T., Summers, M.E. (Eds.), Methods of Soil Analysis. Part 3.
Chemical Methods. SSSA, NO.5, Madison, pp. 437-474.
Kamprath, E.J., Watson, M.E., 1980. Conventional soil and tissue tests
for assessing the phosphorus status of soils. The role of phosphorus in
agriculture, pp, 433-469.
https://doi.org/10.2134/1980.roleofphosphorus.c17
Kortzinger, A., Hedges, J.I., Quay, P.D. 2001. Redfield ratios
revisited: Removing the biasing effect of anthropogenic CO2. Limnol.
Oceanogr. 46: 967-970. https://doi.org/ 10.4319/lo.2001.46.4.0964
Kuo, S., 1996. Phosphorus. In: Sparks, D.L. (Ed.),Methods of Soil
Analysis. Part 3. Chemical Methods SSSA Book Ser. 5. SSSA, Madison, WI,
pp. 869–919.
Li, W., Joshi, S.R., Hou, G., Burdige, D.J., Sparks, D.L., Jaisi, D.P.,
2015. Characterizing phosphorus speciation of Chesapeake Bay sediments
using chemical extraction, 31P NMR, and X-ray absorption fine structure
spectroscopy. Environ. Sci. Technol. 49(1), 203-211.
https://doi.org/10.1021/es504648d
Liu, J., Luo, X., Zhang, N., Wu, Y., 2016. Phosphorus released from
sediment of Dianchi Lake and its effect on growth of Microcystis
aeruginosa. Environ. Sci. Pollut. Res. 23(16), 16321-16328.
https://doi.org/10.1007/s11356-016-6816-9
McDowell, R., Sharpley, A., Brookes, P., Poulton, P., 2001. Relationship
between soil test phosphorus and phosphorus release to solution. Soil
Sci. 166(2), 137-149.
https://doi.org/10.1097/00010694-200102000-00007
McDowell, R., Dodd, R., Pletnyakov, P., Noble, A. 2020. The ability to
reduce soil legacy phosphorus at a country scale. Front. Envrion. Sci.
8:6. https://doi.org/ 10.3389/fenvs.2020.00006
Mehlich, A., 1984. Mehlich 3 soil test extractant: A modification of
Mehlich 2 extractant. Commun Soil Sci Plant Anal. 15(12), 1409-1416.
https://doi.org/10.1080/00103628409367568
Morgan, M.F., 1941. Chemical soil diagnosis by universal soil testing.
Bull. 450. Connecticut Agricultural Experiment Station. New Haven.
Murphy, J.A.M.E.S., Riley, J.P., 1962. A modified single solution method
for the determination of phosphate in natural waters. Anal chim acta.
27, 31-36. https://doi.org/10.1016/S0003-2670(00)88444-5
Okubo, Y., Inoue, T., Yokota, K., 2012. Estimating bioavailability of
soil particulate phosphorus to Microcystis aeruginosa. J. Appl Phycol.
24(6), 1503-1507. https://doi.org/10.1007/s10811-012-9809-1
Olsen, S. R., C. V. Cole, F. S. Watanabe., L. A. Dean. 1954. Estimation
of available phosphorus in soils by extraction with sodium bicarbonate.
USDA, Cire. 939, U. S. Gover. Prin. Office, Washington DC.
Orihel, D.M., Baulch, H.M., Casson, N.J., North, R.L., Parsons, C.T.,
Seckar, D.C., Venkiteswaran, J.J., 2017. Internal phosphorus loading in
Canadian fresh waters: a critical review and data analysis. Can. J.
Fish. Aquat. Sci. 74(12), 2005-2029.
https://doi.org/10.1139/cjfas-2016-0500
Rowell, D.L., 1994. Soil science: methods and application, part 7:
Measurement of the composition of soil solution.
Ruttenberg, K.C., 1992. Development of a sequential extraction method
for different forms of phosphorus in marine sediments. Limnol Oceanogr.
37(7), 1460-1482. https://doi.org/10.4319/lo.1992.37.7.1460
Sharpley, A.N., 1993. An innovative approach to estimate bioavailable
phosphorus in agricultural runoff using iron oxide-impregnated paper. J.
Environ. Qual. 22(3), 597-601.
https://doi.org/10.2134/jeq1993.00472425002200030026x
Sims, J.T., 2000. Soil test phosphorus: Mehlich 3. In: Pierzynski, G.M.
(Ed.), Methods of Phosphorus Analysis for Soils, Sediments, Residuals,
and Waters Southern Cooperative Series Bulletin no. 396. North Carolina
State University, pp. 17–19.
Sims, J.T., Maguire, R.O., Leytem, A.B., Gartley, K.L., Pautler, M.C.,
2002. Evaluation of Mehlich 3 as an agri-environmental soil phosphorus
test for the Mid-Atlantic United States of America. Soil Sci. Soc. Am.
J. 66(6), 2016-2032. https://doi.org/10.2136/sssaj2002.2016
Soltanpour, P.A., Schwab, A.P., 1977. A new soil test for simultaneous
extraction of macro‐and micro‐nutrients in alkaline soils. Commun. Soil.
Sci. Plant Anal. 8(3),195-207. https://doi.org/10.1080/00103627709366714
Sotomayor-Ramírez, D., Martínez, G.A., Mylavarapu, R.S., Santana, O.,
and Guzman, J.L., 2004. Phosphorus soil tests for environmental
assessment in subtropical soils. Commun. Soil. Science. Plant Anal.
35(11-12), 1485-1503. https://doi.org/10.1081/CSS-120038550
Torbert, H.A., Daniel, T.C., Lemunyon, J.L., Jones, R.M., 2002.
Relationship of soil test phosphorus and sampling depth to runoff
phosphorus in calcareous and noncalcareous soils. J. Environ. Qual.
31(4), 1380-1387. https://doi.org/10.2134/jeq2002.1380
USEPA, 1986. Quality Criteria for Water. USEPA Report 440/5-86-001.
Office of Water Regulations and Standards, Washington, DC.
Van der Zee, S.E.A.T.M., Fokkink, L.G.J., van Riemsdijk, W.H., 1987. A
new technique for assessment of reversibly adsorbed phosphate, Soil Sci.
Soc. Am. J. 51, 599-604.
https://doi.org/10.2136/sssaj1987.03615995005100030009x
Van Rotterdam, A.M.D., Bussink, D.W., Temminghoff, E.J.M. and Van
Riemsdijk, W.H., 2012. Predicting the potential of soils to supply
phosphorus by integrating soil chemical processes and standard soil
tests. Geoderma. 189, 617-626.
https://doi.org/10.1016/j.geoderma.2012.07.003
Wang, Y.T., Zhang, T.Q., O’Halloran, I.P., Tan, C.S., Hu, Q.C., Reid,
D.K., 2012. Soil tests as risk indicators for leaching of dissolved
phosphorus from agricultural soils in Ontario. Soil Sci. Soc. Am. J.
76(1), 220-229. https://doi.org/10.2136/sssaj2011.0175
Wang, Y.T., Zhang, T.Q., O’Halloran, I.P., Hu, Q.C., Tan, C.S.,
Speranzini, D., Macdonald, I., Patterson, G., 2015. Agronomic and
environmental soil phosphorus tests for predicting potential phosphorus
loss from Ontario soils. Geoderma. 241, 51-58.
https://doi.org/10.1016/j.geoderma.2014.11.001
Williams, J.D.H., Shear, H., Thomas, R.L., 1980. Availability to
Scenedesmus quadricauda of different forms of phosphorus in sedimentary
materials from the Great Lakes1. Limnol Oceanogr. 25(1),1-11.
https://doi.org/10.4319/lo.1980.25.1.0001
Xiao-Fei, W., Da-Peng, L., Ming, W., Ren, W., 2015. Bioavailability of
sedimentary phosphorus under repeated sediment resuspension with the
addition of algae. Environm Sci. Pollut Res. 22(17), 13004-13013.
https://doi.org/10.1007/s11356-015-4554-z
Young T. C. 1982. Algal-availability of particulate phosphorus from
diffuse and point sources in the lower Great Lakes basin. Hydrobiologia.
91:111–119. https://doi.org/10.1007/BF02391926
Young, T.C., DePinto, J.V., Martin, S.C., Bonner, J.S., 1985.
Algal-available particulate phosphorus in the Great Lakes Basin. J.
Great Lakes Res. 11(4), 434-446.
https://doi.org/10.1016/S0380-1330(85)71788-1
Zalba, P., Galantini, J.A., 2007. Modified Soil‐Test Methods for
Extractable Phosphorus in Acidic, Neutral, and Alkaline Soils. Commun.
Soil. Sci. Plant Anal. 38(11-12),1579-1587.
https://doi.org/10.1080/00103620701378508
Zhou, Q., Gibson, C.E., Zhu, Y., 2001. Evaluation of phosphorus
bioavailability in sediments of three contrasting lakes in China and the
UK. Chemosphere. 42(2), 221-225.
https://doi.org/10.1016/S0045-6535(00)00129-6