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Abstract

In the paper, we devote to broadening the current global regularity results for the two-
dimensional magnetic Bénard fluid equations. We study three cases: (i) fractional Laplacian
dissipation (—A)%u, partial magnetic diffusion (Ozow,b1,02,4,b2) and Laplacian thermal d-
iffusivity Af; (ii) partial fractional dissipation (Aigul,Ai‘fuz), partial magnetic diffusion
(Ozgzob1, 02,2, b2) and Laplacian thermal diffusivity A@; (iii) partial fractional magnetic d-
iffusion (A20b1, A2%b), Laplacian thermal diffusivity Af and without Laplacian dissipation
Au (i.e., u = 0)), and establish the global regularity for each cases.

keywords: magnetic Bénard fluid equations; global regularity; fractional partial dissipation; frac-
tional partial magnetic diffusion.

1 Introduction

Consider the following generalized magnetic Bénard fluid equations:

ou

G+ (u-V)u+ pu(—A)*u+ Vp* = (b- V)b + fez, in R?x]0, 00,
(L1) P4 (u-V)b+v(=A)Pb = (b V)u, in R?x]0, 00,
. %—i—(u-V)H—i—m(—A)’W:uwg, in R?x]0, oo,

V-u=0=V-b, in R?x]0, o0,
with initial values
(1.2) u(z,0) = ug(z), b(x,0) = bo(x), O(x,0) = by(x) in R?.

Here t > 0, = (w1,22) € R% We respectively denote u(z,t) : R? x [0,00[— R?, b(x,t) : R? x
[0, 00[— R2, O(z,t) : R? x [0,00[— R the velocity, magnetic and temperature of the fluid, p* the
total pressure (in which p* = p+ %|b|2, p : R% x [0, 00[— R is the pressure), e; the unit vector along
the x5 direction. The term fes signifies the buoyancy force on fluid motion while u - es represents
the Rayleigh-Bénard convection in a heated inviscid fluid. o > 0, 8 > 0, v > 0 are three positive
constants. p > 0, v > 0, k > 0 separately represents the coefficients of kinematic viscosity, magnetic
diffusion and thermal diffusivity. Besides, (—A)? is the fractional operator, which is defined through

the Fourier transform: (TA\)S f(&) =1¢ \st(f). Obviously, (1.1) reduces to the standard magnetic
Bénard fluid equations when o = g =~ = 1.

Magnetic Bénard problem has attracted much attention in the past (cf. [5, 6, 18, 19, 24, 25]).
Experimental investigations regarding the heat transfer characteristic and temporal dynamics of
Rayleigh-Bénard convection subjected to a magnetic field have been conducted in the field of fluid
physics (see, e.g., [1, 3, 7]). The Bénard problem is concerned with the motion of a horizontal layer

*The research of L. Ma was supported by the National Natural Science Foundation of China (No. 11571243,
11971331) and the Teacher development Scientific Research Staring Foundation of Chengdu University of Technology
(No.10912-KYQD2019_07717).

TE-mail: mllpzh@126.com.



2 L. Ma

of viscous fluid heated from below and the magnetic Bénard problem similarly with the electrically
conducting viscous fluid. The magnetic Bénard problem in the presence of both rotation and a
magnetic field which is important in many physical situations (geophysics and astrophysics).

Whena = =v=1, 4> 0,v >0, K > 0, the global-in-time regularity of (1.1) is achieved
by Galdi and Padula [6]. (1.1) with generalized dissipative and diffusive terms, namely fractional
Laplacians and logarithmic supercriticality is studied in [26]. When a = =v=1, p >0, v > 0,
k = 0, in [28], the authors obtained the corresponding global well-posedness. Cheng and Du [4]
studied the global regularity with vertical or horizontal magnetic diffusion and without thermal
diffusivity. Recently, Ma proved global regularity and some conditional regularity of strong solutions
with mixed partial viscosity [14]. This work provides an extension of earlier results [4, 28|. In three-
dimensional space, we can mostly expect local-in-time solvability result with arbitrary initial data
and global-in-time result for sufficiently small initial data, like as Navier-Stokes fluid equations
[23]. Provided the initial data satisfy Hu0||§{1(R3 + [1bo |31 ey T ||00||H1(R3) < ¢, the author in [13]
showed the magnetic Bénard fluid equations Witil mixed partlal dissipation, magnetic diffusion and
thermal diffusivity admit global smooth solutions. For the ideal magnetic Bénard fluid equations
in both two and three dimensions, Manna and Panda [17] obtained the local-in-time existence and
uniqueness of strong solutions in H* for s > 3 + 1, n = 2,3. Additionally, regularity criteria and
blow-up criteria were also obtained for two and three-dimensional magnetic Bénard fluid equations
(see, i.e., [12, 14, 22|). It is worthwhile to note that some literatures are also available for the
two-and-half-dimensional magnetic Bénard fluid equations (e.g., [15, 16, 21]).

This paper focus on the global well-posedness for (1.1)-(1.2). We write the velocity equation and
magnetic equation of (1.1) in their two components, namely

4 (u- V)uy + p(—A)%u1 + 95, p* = (b- V)b1, in R?x]0, o0l
%z 4 (u- Vs + p(—A)uz + 8pp* = (b- V)by + 6, in Rx]0, o<,
(1 3) %‘F(U'V)bl +V<—A)ﬁb1 = (b-V)ul, in R2><]0,oo[7
' P2+ (u-V)by + v(=A)Pby = (b- V)ug, in R?x]0,00],
% +(u- V)0 + K(=A)70 = u - ez in R*x]0, 00,
V-u=0=V-b, in R?x]0, 00,

where v = (uy,u3), b = (b1,b2). We investigate three cases of (1.3) in this paper. We firstly
study (1.3) with fractional Laplacian dissipation, partial magnetic diffusion and Laplacian thermal
diffusivity. More precisely,

(1.4)
8{;‘; + (u-V)uy + p(—=A)%uy + 0, p* = (b- V)b, in R?2x]0, 00|,
92 4 (w- Vg + p(—A)ug + Oyp* = (b V)ba + 6, in R2x]0, 00l
P14 (u-V)by = v02 , b1 + (b- V)uy, in R?x]0, 00],
% + (u- V)by = 003 , ba + (b- V)usz, in R?x]0, 00|,

‘g? + (u- V)0 = KA + u - e3 in R?x]0, 0],
V-u=0=V-b, in R?x]0, 00,

uy(x,0) = ul(x), uz(z,0) = ud(x), bi(z,0) = bY(x), ba(x,0) = bY(x), O(x,0) = Op(x) in R2.

Theorem 1.1 Let >0, v >0, k > 0. Suppose 0 < a < 1, 8=+ =1, (ug, by, 0) € (H*(R?))>
with s > 3, V-ug=0=YV -bg, then for any T >0, (1.4) admits a unique global solution (u,b, ),
which satisfy
(1.5)

w e C([0,T[; H*(R?)) N L*([0, T[; H***(R?)), (b,0) € C([0,T[; H*(R?)) N L*([0, T[; H**'(R?)).

Secondly, we research (1.3) with partial fractional dissipation, partial magnetic diffusion and Lapla-
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cian thermal diffusivity:

(1.6)

91 4 (u- V)uy + pA3%u; + 9,,p* = (b- V)by, in R%x]0, 00],
+

6”2 w- V)ug + pA3%us + 95,p* = (b- V)ba + 0, in R?x]0, 00|,
abl + (u-V)by =03, ,,b1 + (b- V)uy, in R*x]0, 00|,
ab2 + (u- V)b = V@%lhbg + (b V)ug, in R?2x]0, o0,

‘g? + (u- V)0 = KAO + u - ez in R?2x]0, o0,
V-u=0=V-b, in R?x]0, 00,
uy(x,0) = uf(x), uz(z,0) = u(x), bi(z,0) = bY(z), ba(x,0) = bY(z), 6(x,0) = Op(z) in R?,

where we denote A; = (7831)%

Theorem 1.2 Let >0, v >0, k > 0. Suppose 0 < a < 1, 8 =~ =1, (ug, bo,0o) € (H*(R?))3
with s > 3, V-ug=0=V by, then for any T > 0, (1.4) admits a unique global solution (u,b,8),
which satisfy
(1.7)

w € C([0, T H*(R?)) 1 L([0, T; Er+2(R2), (b,6) € C([0, T]; H*(R?)) 1 L2([0, T; Fr*+ (R2)).

Thirdly, we investigate (1.3) with partial fractional magnetic diffusion and Laplacian thermal
diffusivity, and without dissipation. That is,

(1.8)
P4 (u- V)ug + 0y, p* = (b~ V)by, in R?x]0, 00l
W2 4 (u- V)ug + 0pyp* = (b- V)b + 60, in R%x]0, oo,
P14 (u-V)by 4+ 092, by = (b- V)uq, in R?x]0, 00],
% + (u-V)bg + 05 , by = (b- V)ug, in R?x]0, o0l
g? + (u- V)0 = KA + u - €3 in R?x]0, 0],
V-u=0=V-b, in R?x]0, 00,
uy(x,0) = ul(x), uz(z,0) = ud(x), bi(z,0) = bY(x), ba(x,0) = b3(x), 6(x,0) = Op(x) in R

Theorem 1.3 Let p =0, v > 0, k > 0. Suppose « =0, 3> 1, v =1, (ug,bo,0) € (H*(R?))>
with s >3, V-up=0=V by, then for any T > 0, (1.8) admits a unique global solution (u,b,0),
which satisfy

(1.9) (u,b,0) € C([0,T[; H*(R?)), be L*([0,T[; H**#(R?)), 6 € L*([0, T[; H***(R?)).

To prove Theorem 1.1-Theorem 1.3, the key steps are to obtain H®-estimates for u, b and 6. For the
sake of clarity, we split them into three sections, namely, Section 2, Section 3, Section 4. The paper
is composed as follows: In Section 1, we introduce the two-dimensional generalized incompressible
magnetic Bénard fluid equations and recall the related research progress about it. Then we state
our main results and introduce some notations for simplicity at the end of the section. In Section
2, we devote to prove Theorem 1.1. In Section 3, we prove Theorem 1.2. We complete the proof of
Theorem 1.3 in Section 4.

For the sake of simplicity, we denote
O(t) £ [lu(t) |72 + Ib(t) 172 + 10117

in the rest of the paper. Furthermore, applying operator Vx to the first two equations and V to
the temperature equation in (1.1), we derive

%Kt (u-V)Q+ pu(—A)*Q = (b- V)i + 0s,0,
(1.10) gg +(u-V)j+v(=A)Pj = (b-V)Q+ Q(u,b),
9N+ V[(u- V)] + £(—A)IVO = V(u-es),

where Q = V x u is the fluid vorticity, j = V x b is the electrical current, Q(u,b) = 20,, b1 (0, u1 +
O, u2) — 205, u1(0z,b1 + Oz, b2). we denote

U(t) £ 120172 + [5ON1Z: + VD)L,
T(t) = V)17 + IVI0)Z + A7

Last but not the least, we set © = v = k = 1 for simplicity.
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2 Proof of Theorem 1.1

In this section, we devote to prove Theorem 1.1. It contains five steps. Step 1: we prove the
classical L2-estimates for (u,b,6). Step 2: we establish the global H!-estimates for (u,b,#). Step
3: we present the global L¢-estimates for (2, Ab, Af) with ¢ €]1, c0]. Incidentally, we obtain the
global bounds for [|[A"*b||pee 2, [|b]l Lo L, HVjHLzLe lullLgepoes VOl L1 pee and [[VO|[ L1 . Step
4: we acquire the global L>®-bound for Vu. Lastly7 we obtain the global bound for Il (w, b 0)|| - -

It is not hard to derive the following basic energy estimate.

Proposition 2.1 Under the hypothesis of Theorem 1.1, the solution (u,b,0) to (1.4) satisfies

(2.1)
T
O+ [ 1A adrt [ (100t (7100 ba D)7+ [ 196(7) B < (1o b, )2,
0
Moreover,

T
1
22) a0+ [IAur)adr+ 5 [I9UOIEadr+ [ 1967) Eadr < CCluosbo, )],
0 0 0

Proposition 2.2 Under the hypothesis of Theorem 1.1, the solution (u,b,8) to (1.4) satisfies
(23) / 1A [Fadr + / |Ab(r) [3adr + / 180(7)|[Zadr < C(I( 0.0, Ao)32)

Proof of Proposition 2.2. From (1.10), we directly obtain

%‘Z +(u- V)Q+ (A)2Q = (b V)j + 0,0,
(24) + (U : V)j = aglmlzle - 6321‘21‘2()1 + (b ! V)Q + Q(’LL, b)7
WG + V[(u- V)] = VAI + V(u - e).

Before we go further, we recall the following vector identity [17]:

(2.5) V(- V)0] =(u- V)VO+ (Vu)! - V.

Dotting the equations in (2.4) with €, j and V@ respectively, integrating by parts and adding the
resultants together, we acquire

1W(t)

26 2 d +IAQYZs + [AblIT2 + 1A0)17: <T(E) + [IVul L2 (7] 221 Villzz + VO] 22| A8 £2)

. 1
<5 IVill3: + 1861 + CUQI3 +1)(0)

Additionally, we used the following identity in (2.6):
Remark 2.3 ([27])

/(ailzlzle - 852:102:1:2171) _deE = || w1x1b2||L2 + || :clzclblHLQ + || wzwszHLz + || zgwgblH%?)
R2
SEIN'S

Then Gronwall’s lemma leads to the desired estimate (2.3).
Proposition 2.4 Under the hypothesis of Theorem 1.1, the solution (u,b,0) satisfies
AFb € L([0, T L2 (R2), be L(0, T L= (82)), Vj € LA([0, T]; L2(R?)),
(2.7) Qe L>([0,T[; L2(R?)), u € L>=([0,T[; L™ (R?)), Abe L*([0,T[; L%(R?)),
Af € L*([0,T[; L%(R?)), Vb e L'([0,T[; L=(R?)), VO € L*([0,T[; L*°(R?)),

where T > 0, ¢ €]1, 00[.
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Proof of Proposition 2.4. Multiplying the third and forth equations of (1.4) with A%+2%p; and
A2+2ap, respectively, integrating over space domain and summing up the results, we get

(2.8)
1d A1+ab 2
5% + ||A1+a81'2b1”%2 4 HAlJrOtaﬂUleHZL2

<IA“D] Lo [IVarl L2 + [1Bll oo [|A*Vull 2 + A%l 2 VO]l 2+ [lull oo [|AVD]| 2) [ A 2
(due to [[A%bl[z= < [[bllzz + [[A%b][ 2, [[bllzee < [IBllzz + [ATFD] e,

IA%ull 2 < Jlullze + [A™ullzz, VO] 2. < CIA™bl|Le, [Jullre < [lullze + [|A™ul|L2)

2
T—a
1 [e3 (o34 [
<SIAZFD] L2 + C(IIblZ2 + A%BIIZ) QUL + CCIBIIZ: + AT 0] 72) AL
+ C(llullfz + 1A“QYZ) Al

With the help of Gronwall’s lemma, we achieve
t
(2:9)  JAMbE + [ AT [Fadr < exp{C(1+ O}(IAM bl + C(1+1),
0

which yields
(2.10) 100l o< (f0. 752 (m2)) < 00

Furthermore, taking the inner product of the first equation of (2.4) with |Q|2~2Q), we arrive at

1425

Q1) o g [ (-A)0 19107 0de < (Il Ve + 1050 IS

R2
thanks to [ (—A)*Q-|Q|2~2Qdz > 0(please refer to [2], for readers’s convenience, we shall give the
R2
detail proof of it in the Appendix), (2.11) gives
dl|) | e

(2.12) pr

<ol [Villze + [10x,0]l e

After integrating (2.12) from 0 to ¢, we acquire
t t
(213 1903, < 190]30+C [ IViZodr + [10:,00) o
0 0

From (2.13), we see that if we want to obtain the bound for ||| ere, we should obtain the
bounds for the last two terms on the right hand-side of (2.13). To achieve the goal, we first recall
the generalized heat equation and introduce some important properties about the heat equation
kernel.

Definition 2.5 ([27]) Let ¢ > 0 and t €]0,00[. The generalized heat equations can be expressed

as
du Ay =
(2.14) oo +(ZASu=],
u(z,0) = ug(x).
And the solution of above equation can be written as
t
(2.15) u(z,t) = Ke(-,t) *up + /K<(~,t —71)* f(-,7)dT,
0
where

Ke(a,t) = / exp{—t|¢[*} exp{iz - €}de.

R2
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Obviously, when ¢ = 1, (2.15) reduces to the classical heat equation, and K;(t) = K(t) is the
classical heat equation kernel.

Lemma 2.6 ([20]) Let K((x,t) be the kernel of (2.15), then for any t €]0, 00|,

Kc(l}t) = t_%KC ( l; ,1) .
t2¢

Moreover, for any t €]0,00], k €]0,00[ and g € [1, 00],

IV Ko ()] oy < Ct 53 (73),
We will make en extensive use of the following Maximal L] LP regularity for the heat kernel (see,
e.g., [11]).

Lemma 2.7 Define operator A as
t
Af(e.0) = [ expl(t=T)A)AS(r)dr,
0

which is bounded: LP([0,T[; L4(R?)) — LP([0,T[; LY(R?)) for any (p,q) € (]1,00[)? and T €]0,<].
More precisely,

t

/ exp{(t — T)A}Af(r, z)dr < Ol im0 Lz,
0 Lr([0,T[;L9(R2))

where C' is independent of T

We express the equations of by, by and @ in their integral forms:

(2.16a) by = K2(t).0b) + /Kz(t —7)a2[(b- V)ug — (u- V)bi](7)dr,
0
(2.16b) by = K (t).0b5 + /Kl(t —7)aal(b- V)ug — (u- V)bo](7)dr,
0
(2.16¢) 0= K(t) 6y + /K(t —7) % [u-es — (u-V)0|(1)dr.
0

Here K2 and K respectively represent the one-dimensional inverse Fourier transform of exp{—|&|*t},
exp{—|& [*t} and exp{—|¢|*¢}, that is,

K?(29,t) = /eXp{_t\&F}eXp{iﬂ?zfz}d&a

R?
K'(a1,1) = / exp{—t|61|*} expliz €1 }déy,
]R2
K(ait) = [ exp{~tlg?} explint)de.
R2
Thanks to
(2.17&) (b . V)u1 - (u . V)bl = (9m2 (b2u1 - Ule),

(217b) (b . V)Ug - (’LL . V)bl = 811 (bﬂLg - ulbg),
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we deduce
(2.18)

t
/ V3 o
/ 102 0,17 i + / 102,01 (7)o + / 102, o) o + / LARACIN

<c / 1K ()22, |2 udr + C / 16 Vs — (- V)b, (r)dr
e / IK2(P)124 102,012 + C / 10, (baus — waby) |3 (r)dr
/ 102, K (7)o Wl 2 dr + / 102, KL (E = 7)22l(b V)uz — (- Vool () [2dr
/ 102, K (7) 2l 2 dr + / 10,0, KLt — 7Yy (it — o)) () |27
<CIllis +C / ()2 V3 (7). + ()2 [T (7) 20

t
C/(Hazlbz(T)llizgIIul(T)IIQng + {162 (T) |70 102, w1 (7) | L
0

Ls

+ 110w, u2 (L 101 (P [7oe + [z (7)1 20 105, b1 (T) 20 )dr

t
+ b3l s + C/(Hb(T)II%ooIIVW(T)II%Q + lu(m) |72 [ Vo2(7) 720 ) dr

+ C/(H%bl(ﬂllize|Iu2(T)||2ng + 101 () e 10 w2 (7)1 7
+110aa b2 (T 2o lun (T 220 + 102(7) [T 10y ua (7)1 70 ) dr

<C+ C/ 1Q(7)||% . d7 + Ct,

where we used Lemma 2.6 and the maximal regularity property for the one-dimensional heat
operator in Lemma 2.7, and Young’s inequality for convolution.

We now focus on . In the first place, applying V to both sides of (2.16c), with the help of the
maximal regularity for the two-dimensional heat kernel in Lemma 2.7, we get

(2.19)
VOl L2re

<C(||Kll a2 IVOollLe + [[ubllz2re + IVE || Laza llullare)
<CUKLzralVOollze + (lullrzre + 1M 2pe) (10 2re + VOl 2re) + IVK | pipa llullere)
<C.

Integrating (2.19) with respect to time from 0 to ¢, we obtain

(2.20) [lozolar < [ Ivo(r)iar < .
0 0
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In second place, applying A to each side of (2.16¢), using the maximal regularity for the two-
dimensional heat operator in Lemma 2.7, Sobolev’s inequality and Hoélder’s inequality, we have

A0 2re <||K * Abollpzre + (02,0 — (u- V)0 L2Le
(2.21) <C|Abllre + [|02,0] L2 + ull L2 VO L2Le
<Cllo||rs + C(1 + (|2 z22)-

Integrating (2.21) with respect to time from 0 to ¢ again, it yields
¢ ¢
(222 J126mdr <+ [190)1B.ar
0 0
Combining (2.13), (2.18) and (2.20) together,

t
(2.23) 1902, < C+O/||Q(T)||§er+0t.
0

Then resorting to Gronwall’s lemma, we obtain ||| ez < 0o, which can infer [[u|zsepe < o0.

From (2.18), (2.22) and (2.23), we further acquire
(2.24) [Ab]|2re < o0, [[Af]|L2Le < oo,
which also imply

(2.25) VOl i <00, VO L1 < o0

Next, we pay our attention to the following crucial estimate.

Proposition 2.8 Under the hypothesis of Theorem 1.1, the solution (u,b,8) of (1.4) satisfies
t

(2.26) /||Vu(7‘)||2L2dT <0, t €10, o0,
0

where C' depends only on initial data and t.

Proof of Proposition 2.8: Testing the equations of (2.4) by AQ, Aj and (—A)?26, respectively,
summing up the resultants and integrating over R2, we have

(2.27)
PO a1Vl + AV,
IVl VR 2, + CIIVbl L[Vl 22 IV 2 + 92602292 2 + [Vl 12933
1 el 185 22 + 10l s V0] 4 |AVO] 12 + full o [V26] 12 |AVE] 12 + | Aul| 2] A6 2
<CQU " EZ |ACVQY T + ClIVb| 1 (IVQY2: + [Vi1122) + [1A60]2 + V2.
+ 1Vl 2 V31122 V25 22 + CIRNZ N VRUZ NIV 2 1A= + CIQIE 199

* [V 221 20]1 2. [AVE]| 12 + [[ull L= V0] 2| AV 2

1 1, .. 1 See ,
<5 IAVQUZ: + SIAGIE: + SIAVO: + CIRIEET +CUIQIZ: + 5]13= + VO
+ul3 + Vb + 1Y),
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Choosing s sufficiently large such that o > é, then Gronwall’s lemma yields

t ¢ t
T(t)—‘r/||AaVQ(T)||%2dT+/||Aj(T)||2L2dT+/HAVG(T)HQLQdT
0 0 0

(2.28) ¢
<Cexpq Ct+ / (120122 + (D172 + IVOZs + lu(r)|Ze + [VE(T) [z +1) pdr
0
<00,
where we used Proposition 2.2, Proposition 2.4, Gagliardo-Nirenberg’s inequality, Young’s inequal-
ity and Hélder’s inequality.

By (2.32), we can further acquire

t t
(2.29) /HVu(T)HLoodT < /(||Vu||Lz + [A*VQ|2)dT < .

0 0
Now, we are in a position to get the H*-estimate of (u,b,) and complete the proof of Theorem

1.1. Before we do this, we first recall the following commutator estimate and logarithmic Sobolev
inequality.
Lemma 2.9 ([8, 9]) Let f and g satisfies Vf € Lo, A°f € L?%, AS~1g € L2 and g € L7, then
1A%, flgllLe < CUIV flloe [A " gllLes +[|A° fllzea gl Lea,

where C = C(s,0,01,09,03,04), and

1 1 1 1 1

—=—+—=—+—, 09 6]1,00[, 09 G]].,OO[.

g g1 ()] g3 g4
Lemma 2.10 ([10]) Suppose f € H*(R?), then

IVfllee < CA+[[fll2 + IV % fllz2log(e + [ 1 12))-

Proposition 2.11 Under the hypothesis of Theorem 1.1, the solution (u,b,0) of (1.4) satisfies
(2.30) [[(w, 0,0) ()| 1 < C, £ €]0,00],

where C' depends only on initial data and t.
Proof of Proposition 2.11. Applying A® to each sides of (1.4), then multiplying them with A%uy,

ANsug, A%by, A®by and A®0, respectively, after integrating over the space domain and summing up
the resultants, we acquire

(2.31)
Ld([[A%ul7. + |A°b]Z2 + [[A%0]Z2) st s s s
5 L T L2 A 2e + A0, br |72 + [|A°a, bal| 7 + AV 2

<C(IVull L= |A%ull L2 + [IVOl| L= [|A%D]| 2) Al 2 + C(IVul| L= [|A%D]| L2 + [|A%ul| L2 [V <)
# [A%0]| L2 + C([[Vull Lo [[A0] 2 + [| Al 22 [ VO] L )[[A°0] L2 + 2[|A%u]| L2 [ A*6]] L2

<C+ llullzz + [Ibllzz + 10112 + (1920 o + [lillz + VO]l ) (log(e + [A%ul|Z> + [[A%D]Z-
+ A7) (1A% ull72 + [A%D]IZa + [|A0]72).

Consequently, Gronwall’s inequality yields

(2.32)

t t t
Jully + Bl + e + [ 1A ur) Badr + [ 1A%0n,b(r) o + [ 10°0,,ba(r) Fadr
0 0 0

+ / |ASVO(7)||32dT < exp{Cexp{C (1 +1)}}.
0

With Proposition 2.11 at our disposal, we can prove Theorem 1.1 via a standard procedure. Thus,
Theorem 1.1 is completed.
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3 Proof of Theorem 1.3

The results of Theorem 1.2 and Theorem 1.1 are similar, the difference between them is the
dissipation term (—A)® in (1.4) replaced by (A2%uy, A2%us) in (1.6). For this case, the proof is
similar as the proof of Theorem 1.1. The difference is that we will resort to other powerful analyze

techniques (resp., the maximal regularity property for the two-dimensional heat operator).

It worths to mention that we will obtain more other estimates when we present the global L¢-
estimates for (2, Ab, Af) with ¢ €]2, 00[, such as ||Vu|pe e, 16]|%° F=" and VOl s Le-

Proposition 3.1 Under the hypothesis of Theorem 1.2, then for any T > 0, the solution (u,b, )
of (1.6) satisfies

(3.1)
t T T
B(t)+C" / A u(r)|2adr+ / (1901 ()22 + Dy ba(r) |22 dr+ / IV0(r) [22dr < C(1|(u0. bo. 60)]22).
0 0 0
Moreover,

T T T
1
(32) ®(t)+C / 1A () [3adr + 3 / IVb(r)|2adr + / IV0(r) [22dr < C(|(u0, bo. 00)]22).
0 0 0

Proof of Proposition 3.1.Testing the first five equations in (1.6) by w1, ug, b1, b2 and 6, respec-
tively, integrating by parts and adding the results, we then obtain

1do(t
63 L s s + NS el 100t 3 + 102, bal3 + VO < CR(0)
Additionally,

A w2, = / 61120126 2 [an e + / (€al22€a] 262 [ e
R2 R2
34 < [ (gl + clariesP) @apae + [ (gl + ClalleaP ) e
R2 R2

1 1
=5 IA% wlle + S1AZuallZ + Cla)(IAZ, w272 + AL, wallZe).
Here C(«) is a positive constant depending only on a. Then Gronwall’s lemma yields the desired
estimates in Proposition 3.1.

Proposition 3.2 Under the hypothesis of Theorem 1.1, the solution (u,b,0) to (1.6) satisfies

T T T
(35) w(e)+C" [ IAVur)adr o+ [ 180 Fadr + [ 18000 Fadr < C(1 (0o Aol
0 0 0

Proof of Proposition 3.2. By (1.10), we directly obtain the vorticity Q@ = V X u, electrical
current j = V x b and V@ satisfy

92+ (u- V)Q+ A290,,up — A220p,u1 = (b- V)j + 04,0,
(3.6) S (- V) = by = 02,0t + (b V)2 + Q(u,b),

% + V[(u- V)0 = VA + V(u - e3).
The rest part of the proof is much similar as the proof of Proposition 2.2. Here we just list the
different parts. In fact, we use the following two identities:

37 [ 200002 N20sm) - 0 =2, Fuals + A2, T
R2

and

a 1 a 1 a a @
(38)  [A*Vul: < SIIAZ V|72 + SIIAZ, Vua|IZe + Ca)(IAZ, VuallZ: + [[AZ, Vun [172).
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Proposition 3.3 Under the hypothesis of Theorem 1.1, the solution (u,b,0) of equations (1.6)
satisfies

(3.9)  Vue L*>([0,T[; L4(R?)), u € L>([0, T[; L= (R?)), A'T*b € L>°([0, T[; L*(R?)),
be L¥([0,T[; L=(R?)), Vj € L*([0, T[; L*(R*)), @ € L>([0,TT[; L*(R?)),
Ab € L*([0,T[; L4(R?)), A0 € L*([0,T[; L2(R?)), Vb e L'([0,T[; L>=(R?)),
Vo € L'([0,T[; L>=(R?)), 6 € L>([0,T[; L°(R?)), VO € L° ([0, T[; L%(R?)),

where T > 0, g €]2,00], 0 €]1,00].

Proof of Proposition 3.3. By (2.16¢), for any o €]2,00[, making use of Proposition 3.1 and
Proposition 3.2 and Young’s inequality for convolution, we acquire

[0 zoree <C||K||Leer1[|0ollLgeree + CHVKHLILQS1

tHx

[ubllLeore + CIK || L1 p2 [[uzl e e

(3.10) <O+ (Jullizrs + 190 e 22) 1Ol e 12 + 196]1112))
<C.

Applying V to both sides of (2.16¢), we then obtain

(3.11)
VOl s e <CIK|Lgr2 IVO0l e + V2K || a (ellog 2 + 1920 2g 2) (1601l g L2 + V]| g £2)

+ VK| pip1 [[uzllzoze)
<C.

We write the equations of u; and wus in their integral forms
(3.12a) up = K2(t) %9 ud + /Ki(t —7)*9 [(b- V)b — (u- V)uy](7)dr
(3.12b) uy = KL(t) %1 ud + /Kolt(t —7) %1 [(b- V)by — (u- V)ug](7)dr,

where K2 and K} denote the one-dimensional inverse Fourier transform of exp{—|£2|?*t} and
exp{—|&1|*¥t}, respectively. More precisely,

Ki(xg,t) /exp{ t|§2|20‘ exp{izala}dss, K, (scl,t) = /exp{—t|§1\2a exp{iz1& .

R2 R2

Resorting to (3.12a) and (3.12b), we deduce
(3.13a) Vuy = V(K2(t) %o ul) + /VKi(t —7)x2 [(b- V)b1 — (u - V)uq](7)dr,

(3.13b) Vug = V(KL (t) %1 ul) + / VKLt —7) %1 [(b-V)by — (u- V)ug + 0](7)dr.
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Taking L-norm with respect to x on both sides of equations (3.13a) and (3.13b), we acquire

IVl e

t
SISOl Vel e + 1Ko )l [IVuslze + / IV2E&(E =)z, [[(0by — wer) (7)| edr
0

t t
b [ IV K= Dl I0b2 = w) (e + [ 19K =Dl 16]edr
0 0

(3.14) .
<C+ C/(t =)= (uln)2 + 190132 + 6132 + 15(7)][32)dr
0
t
+/(t77)*ﬁ 0| Ledr
0
<C+Ct'"a,

where we used Lemma 2.6, Holder and Sobolev’s inequalities.

Thus, we have

(3.15) 192)| o e < | V]| e e < C + Ot 75

Furthermore, taking advantage of Sobolev’s inequality, we obtain

(3.16) Jull e < C(lullzz + || VullLe) < C+ Ct' ==, g €]2,00].

Proposition 3.4 Under the assumptions of Theorem 1.2, the solution (u,b,8) of equations (1.6)
satisfies

(3.17) / IVa(r) | Ledr < C
0

for each t €]0,00[, here C is a constant depends only on the initial data and t.

Proof of Proposition 3.4. Follow the proof of Proposition 2.8, we can easily deduce the most
parts of the proof. In the following we just give the different parts. In fact, due to

(3.18) / (A2, ug — A200,,u1) - AQde = —|[ A%, V2usll3a — A%, V2ur [
R2

and

1 1 N N
(3.19) A*VZul7z < SAZ VA lZe + SIIAZ, VPusllZe + C(@)(IAZ, V72 + AL, VEur]72)-

Then term I = — [ (Vu)!VQ - VQdz can be bounded as
R2

2(cp—1)

_6
(320) I < [[Vulle[VQI? 2 < ClQllp, =™ A°V2ul 37 <
Le—

3ap

IA“V2ul|72 + ClIQUIZE -

DN | =

Finally, we can also obtain the global H*-bound for (u,b, ), namely,
Proposition 3.5 Under the assumptions of Theorem 1.2, the solution (u,b,8) of (1.6) satisfies

(3.21) I(w,b,0)(#) || s < C, t €]0,00],

where C' depends only on initial data and t.

Therefore, we complete the proof of Theorem 1.2.
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4 Proof of Theorem 1.3

In this section, we devote to prove Theorem 1.3. With the efforts made by Yuan and Qiao in [27], we
can prove Theorem 1.3 resorting to the methods in [27] and the previous two sections. We can divide
the proof process into four steps. Firstly, we acquire the energy estimates (i.e., L? and H'-bounds
for (u,b,0)). Secondly, we give some estimates derived from the integral form of the equations
of by, by and 6. In [27], the authors used the spacial structure of the vorticity Q and w, where w
denotes the micro-rotational velocity, they considered a combined quantity Z = 24w and deduced
the global bounds for ||| e e, [|Abl[1z¢ and ||Aw]|pe . Here, we resort to Proposition 4.2 and
take advantage of vorticity equation, we can deduce the global bounds for [[Qf|pecre, [|ullre e,
[|Abl[1ze and [|Af|Ls e Lastly, we prove the crucial global bounds for ||Vl L1 and ||| e ee,
which will help us get the global H*-bounds for u, b and 6. In order to prevent redundancy, we
simplify the prove processes as follows.

Proposition 4.1 Under the assumptions of Theorem 1.3, the solution (u,b,0) of equations (1.8),
then for each t €]0, 0],

t t
(4.1) (1) + " / |APD(r) |2adr + / IV0() [22dr < C(1|(u0. b0 60)]22).
0 0
t t
(4.2) B(t) + " / |APTB(r) | 2o + / 180 [2adr < (1@, jo, Vo0)|22).
0 0

Proposition 4.2 Under the hypothesis of Theorem 1.3, then the solution (u,b,0) of equations
(1.8) satisfies

(4.3)

Vb e L>([0,T[; L2(R?)), b € L>([0,T[; L>°(R?)), 6 € L>°([0,T[; L>°(R?)), V@ € L7 ([0, T[; L*(R?)),

where T > 0, ¢ €]2, 0], o €]1, 0.

Proposition 4.3 Under the hypothesis of Theorem 1.3, the corresponding solution (u,b,0) of (1.8)
satisfies, for each T > 0,

(4.4)

Q€ L>([0,T]; L2(R?)), u € L=([0, T[; L= (R?)), Ab € L'([0,T[; L4(R?)), A0 € L7([0,T[; L2(R?)),

where ¢ €]2,00[, o €]1, 0.

Proof of Proposition 4.3. By virtue of (1.10), we acquire the vorticity, electrical current and
V0 of equations (1.10) obeys

92 4 (u-V)Q=(b-V)j+ 9,0,
V0 +V[(u-V)0] — AVO = V(u - e3).

Here, we just clarify the process of obtaining the global L°°-bound for 2. Multiplying the first
equation of (4.5) by |©2|272Q and integrating over space domain, we have

1d||Q(t)||¢
(4.6) ;% :/(b.V)j.|Q|9—29dx+/ame.|Q|9—2de,
R2

R2

integrating it with respect to time 7 from 0 to t, we acquire

t t
1902e < 190lze + bl [ 195 Eledr + [ V0 |zedr
(4.7) 0 0

t
<C+ b= [ 195 ued
0

where we have used the result of Proposition 4.2.



14 L. Ma

Proposition 4.4 Under the hypothesis of Theorem 1.8, the corresponding solution (u,b,0) of e-
quations (1.8) satisfies

(4.8) Vj € L'([0,T[; L*(R?)), @ € L=([0,T[; L*(R?)), (u,b,0) € C([0,T[; H*(R?)),

where T > 0.

In conclusion, we finish the proof of Theorem 1.3.

Appendix
In this section, for reader’s convenience, we give the detail proof of the previous fact stated in
Section 2. For the sake of completeness, we give it as a lemma.

Lemma 4.5 (Positivity Lemma [2]) Let 0 < o < 1, z € R?, Q, (—A)*Q € L2(R?) with
0 € [1,00[, we have

/(—A)"Q|Q|9_2dx > 0.

R2

Proof of Lemma 4.5. For 0 < a < 1, we acquire

/(fA)aQ|Q|9*2d9:

R2
= lim (—A "‘Q‘Q|Q—2dx
s—>0
(¥) 2
(4.9) =Cs, PV hm/ / ‘2+2a S 0|00 2 dyda
R? |z —y|>e
02 aPV y) B )
i [ [ T2 w2 - ool wdyds
R2 |z—y|>e
>0
>0

)

where C , > 0, PV standards for the Cauchy principle value. Thus, Lemma 4.5 is proved.
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