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Abstract A new rotating flux method based on moving grid is introduced to solve the two-dimensional Euler. We employ the adaptive moving grid method, which is based on the variational principle and uses the second-order accuracy of conservative-interpolation for physical quantities at the new grids, for the new grid distribution according to the solution property. Physically, the new rotating entropy stable numerical flux, which is obtained by Rotating Invariance and satisfies the second law of thermodynamics, is utilized as the numerical flux function at the new irregular quadrilaterial cell. The numerical results provides the remarkable evidence in stability and high-resolution. 
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Introduction
Computational fluid dynamics (CFD) refers to the numerical calculation of physical phenomena used the numerical methods such as heat conduction problem and fluid flow problem, and then the result of the numerical calculation is displayed in the graphics. In many problems, some physical quantities or boundary positions change dramatically in very small areas, such as blasting problems, shock waves in compressible flows, etc. The moving grid method is an effective way to solve this kind of problem, because it can effectively eliminate the oscillation of the solution caused by the dramatic change of the physical quantity, reduces the numerical viscosity, improves the numerical stability of the solution, and can reduced the number of grid nodes on the premise of ensuring reasonable accuracy, which improves the operation efficiency. So far, the moving mesh method is studied widely[1-16]. In 1976, Yanenko[1] firstly proposed a method to solve a class of problems with large deformation at the boundary region. In 1983, Harten[2] proposed the moving grid method of one-dimensional hyperbolic conservation laws, which improved the resolution of shock waves and contact discontinuities using an adaptive way at each time step. Since then, many literatures related to the hyperbolic problems have been put forward[3-16]. In 1997, Li[3] proposed to combine the moving grid methods and the upwind schemes to solve time-dependent partial differential equations. The method preserved the advantages of the r method (keeping the number of nodes constant) and the h method (the two parts of the algorithm are independent). In 1998, Liu[4] proposed an adaptive grid method based on cell volume. The method was applied to the Euler flow. It was proved that the method was an effective method to obtain sharp resolution of flow features with large gradients (shock waves etc.). In 1999, Cao[5] proposed an adaptive finite element method based on the moving grid method, who gave us some ideas about how to select monitor functions. In 2002, Azarenok[6] applied the variational method based on harmonic mapping to the hyperbolic problem of gas dynamics, and the method kept the same simple grid structure and required less computer costs. In 2003, Tang[7,8,9] proposed the moving grid algorithm for solving one and two dimensional hyperbolic conservation law equations, which can effectively solve the problem of shock discontinuity. In 2010, Qian[10] presented ENO finite volume scheme based on radial basis function on the moving grid for the two-dimensional Euler equations, it decreased the cost time, improved the calculation accuracy and ensured the validity of the scheme. In 2017, Cheng[12] proposed an entropy stable schemes based on the moving grid to solve hyperbolic conservation law equations, the method was more suitable for solving the problem which is smooth in most areas.
For nonlinear hyperbolic conservation laws equations, entropy is an important quantity, which remains constant in the smooth region of the solution but increases in the discontinuous region (such as shock wave area). The entropy stable scheme satisfies the entropy inequality. For solving the one-dimensional hyperbolic conservation law equation, Godunov scheme has good robustness mostly, but for the two-dimensional problems, even the common Roe approximate Riemann Solver probably produces non-physical phenomena, such as carbuncle phenomenon, because the flux direction is inconsistent with the grid direction due to the grid moving. Therefore there lies abundant studies in the past decades[13-16]. In 1993, Davia[13] used a rotating Riemann solver to solve the two-dimensional Euler equation, in which several different rotating angles were tested as the upwind direction of Roe’s approximate Riemann Solver, it might require a more system approach, where each state variable might have its own optimum upwind direction. In 2003, Ren[14] proposed a rotating Riemann solver based on Roe scheme, in which the upwind direction was determined by the velocity difference vector. The rotating Roe scheme was proved to have robust shock-capturing capability and completely eliminated shock instabilities (carbuncle phenomenon), and was needed to calculate the Roe's approximate Riemann Solver twice on every cell interface. So the calculation was not efficient. In 2008, Hiroaki[15] obtained a hybrid scheme of Roe scheme and HLL scheme. The new hybrid flux was not only robust for shock-capturing, but also accurate for resolving shear layers, which meant we could combine any two flux functions to obtain a new rotating hybrid flux, which might work much better. In 2016, Zhang[16] calculated contact and strong shock wave by using the rotating upwind schemes, and defined the upwind angle by introducing a weighted pressure function to adjust the dissipative effect. The results showed not only carbuncle-free for non-viscous fluid, but also accurate results for viscous flow. The performance of the upwind schemes could be improved by adaptively tuning the dissipative quantity.
In this paper, we put forward rotating Rotated flux method for two-dimensional Euler equation. The moving grid method combined with rotating invariance is firstly proposed to solve the two-dimensional Euler equation, where numerical flux is replaced by the entropy stable flux. This paper is organized as follows. Section 2 give the finite volume discretization based on the flux rotating invariance. In section 3, high resolution entropy stable schemes are shown. The moving mesh method is introduced in section 4. Numerical experiments are shown in section 5. The paper ends with the conclusions.
Rotating Invariance

2.1 Governing Equation
Consider the two-dimensional Euler equation[14]
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where
[image: image5.wmf]r

is the density of the gas, 
[image: image6.wmf]u

and
[image: image7.wmf]v

are the velocity components in the
[image: image8.wmf]x

and
[image: image9.wmf]y

directions respectively, 
[image: image10.wmf]p

is the static pressure, 
[image: image11.wmf]E

is the total energy per in the unit volume,
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2.2 Rotating Invariance

In this paper, consider some two-dimensional domain in
[image: image13.wmf]y

x

-

plane and assume this has been discretizatized into the finite numbers of rectangle cells. Euler equations (1) are integrated on both hand sides simultaneously, then 
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where
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is control volume, 
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is the boundary of the cell
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is the tensor fluxes, 
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is the outer unit normal vector to the surface
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as shown in Fig. 2.
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The computing cells refer to the control volume
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in the integral form of the equation (1). The generality assume that the boundary
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. Fig. 1 shows the special case of a quadrilateral finite volume. We assumed that the grid has been generated and that the
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are known. The total flux through the boundaries can be written as
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where
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denotes the boundary
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For the integral form of equation (3), we determine the direction of unit outer normal vector 
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n

to the boundary
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firstly. For simplicity, we always choose the angle
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q

is the angle between the normal vector
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n

and the axis
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direction of the position shown in Fig. 2. Therefore the components of 
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can be calculated by angle
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, then that is,

[image: image42.wmf](

)

s

s

s

n

q

q

sin

,

cos

=


And then the total flux (3) can be written as
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The first integral term of equation (2) can be interpreted as the time-rate of change of the average of 
[image: image44.wmf]U

in the control volume
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, then
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Substitute (4) and (5) into (2) to obtain
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For higher resolution results, this paper employs the rotating entropy stable flux schemes (related to the flux Rotating Invariance[17,18]and entropy stable schemes[27,28]) based on the moving grid. In fact, when the moving mesh method is used to solve 2D Euler problem, the mesh shapes often change (such as from rectangle cells to irregular quadrilaterals). Obviously, it is unreasonable to discretize the flux function along the original cell direction consistently. And it is meaningful to keep the flux function with the same direction of the cell boundary. Obviously the rotating flux method is a wonderful choice. In Fig. 2, 
[image: image48.wmf]x

ˆ

is the normal direction(outer normal direction of cell’s), 
[image: image49.wmf]y

ˆ

is tangential direction (parallel to the cell sides). Numerical examples show that the transition zone becomes narrower and the resolution is higher than the non-rotated flux method. The comparison can be seen in section 5 (Fig. 6, Fig. 9, Fig.11).                      

For the two dimensional Euler equations, one way of constructing interface flux arises from the Rotating Invariance[17,18] of the flux function, then 
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where
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is the rotation matrix, and 
[image: image52.wmf]1

-

s

T
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Let
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be the vector of rotation conservative variable, which is obtained by applying the rotation matrix
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into the original vector of conservative variable
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. Then equation (6) can be rewritten as
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In order to define the numerical fluxes across the interface
[image: image58.wmf]s

, we use equation (1) in the rotating frame
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. Then the original 2D equations can be transformed into a one-dimensional  type system
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where
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is numerical flux which lies many different kinds of ones, such as
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 flux, 
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Lax
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and
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Lax
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flux,etc. We use the entropy stable flux in this paper, because this kind of schemes satisfy entropy inequality and can obtain the unique physical solution of the hyperbolic conservative laws.
Integral term of the right-hand side of equation (8) can be approximated as
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where
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is the length of segment
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is the flux corresponding to the one-dimensional system (9).
The semi-discrete conservative schemes of equation (1) is
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In this paper Runge-Kutta method is used in time derivative. For completeness, we give the formula as follows .
2.3 Time Discretization

Here we use the third order strongly stable Runge-Kutta time discretizations introduced by Shu and Osher in [21,22]. The semi-discrete scheme corresponding the equation (11) is
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is the spatial discretizatized operator, and the formula of the third order strong stable Runge-Kutta[21,22] is as follows
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Entropy Stable Scheme

The entropy conservative flux keeps the total entropy no change, and it is proper for the solution in the smooth region, while spurious oscillations occur in the discontinuous region such as shock wave, and the appropriate numerical viscosity should be added to maintain the total entropy increasing. Tadmor's entropy stable scheme[27,28], satisfies the entropy inequality which is an additional inequality of the conservation law equation, and is constructed based on the second law of thermodynamics. The scheme consists of entropy conservative flux and the corresponding numerical dissipation term.Take the entropy pairs of the two-dimensional Euler equation[12]
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is the physical entropy of Euler equation, and then the corresponding entropy variable is
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The entropy stable scheme for Euler equation [23,24] is
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where
[image: image77.wmf]EC

H

is the entropy conservative flux,
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contains the averaged right eigenvectors of
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, and
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is the positive definite dissipative matrix. 
The logarithmic mean[24] is used to calculate the entropy conservative flux, then
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According to the properties of Euler equation, Roe proposed a entropy conservative flux function with simple structure and cost[24]. For this flux function, the reference variable
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where
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. To prevent the denominator from being zero, the algorithm chooses the logarithmic mean in [24].
The averaged right eigenvectors of
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The positive definite dissipative matrix is
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is the matrix which the components is the absolute values of the corresponding eigenvalues,
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 is a matrix which produces the correct scaling
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Moving Grid Method

The adaptive moving grid method[8] includes two independent parts: one is the evolution of partial differential equations, and the other is the redistribution of grids. In the first part the different numerical fluxes can be chosen (entropy stable flux[27,28] used in this paper), the second part is the iterative procedure (Gauss-Seidel iteration used in this paper). During each iterative step, the grid is firstly redistributed based on the variational principle along with solution property, and then conservative quantities at the new grids are updated using the conservative interpolation.

The adaptive moving method is based on the variational principle, a one-to-one coordinate transformation from computational domain(or logical domain) 
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is defined at first, and then the grid mapping is provided by the minimization of a function, where
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where
[image: image103.wmf](

)

h

x

¶

¶

=

Ñ

，

and symmetric positive definite matrices
[image: image104.wmf](

)

2

,

1

,

=

k

G

k
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The Euler-Lagrange equation corresponding to equation (15) is
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One of the simplest choices of monitor functions is
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where
[image: image108.wmf]w

is the control function. 

For the moving grid method, different control functions have different effects on the waves, so it is important for us to select the appropriate control function. For some function[8], the control function can only check the position of shock wave but not the contact discontinuity. In this paper, we use the control function which is not only monitoring of shock wave but also monitoring of contact wave. Its specific expression is as follows[17],
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and the numerical examples show that the parameter
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works best in
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Here Gauss-Seidel iterative method is used to solve equation (17), then
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The numerical solution at the new grid 
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 is updated by the conservative interpolation,
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In order to avoid singular meshes and large errors near those region where the solution has a large jump, so we apply the following low pass filter[17] to smooth the monitor function value
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where
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, the algorithm steps are shown in Fig. 3.
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FIGURE 3 Flow chart of algorithm

Numerical Example

Example 1:Riemann problem of two-dimensional Euler equation I[25,26]:

Solve the initial value problem on the region 
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We use
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space grid numbers, take
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with periodic boundary conditions to 
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, Fig. 6(a) displays the numerical result obtained by the uniform grid (
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), Fig. 6(b) show grid evolution process. The numerical result of Fig. 6(c) is obtained using rotating flux method on moving grid. Comparing with(a), (b), (c) in Fig. 6, we can see that most grid points is distributed near the shock wave, especially near the two shock wave intersection. In addition, the three methods can capture the shock wave, but the numerical result used rotating flux based on the adaptive moving mesh has the higher resolution. The last numerical result has much narrower shock wave transition zone than the results used the former two numerical methods.
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FIGURE 4 Density solution for example 1                FIGURE 5 Grid evolution diagram
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         (a) Fixed grid results                               (b) Moving mesh results
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(c) Results of moving mesh rotating flux method

FIGURE 6 Contours for density solution based on different algorithms
Example 2 :Riemann problem for two-dimensional Euler equation II:

Solve the initial value problem on the region
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Space grid number is
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,the numerical result of Fig. 9 shows that the grid points are gathered in the arc gap area of the shock waves and Mach reflection (discontinuous area). By comparing with (a), (b) and (c) in Fig. 9, we can see that the results of the rotating flux based on the moving grid method is free oscillation and without over smearing phenomenon, because the entropy stable flux rotates along with grid deformation caused by grid moving. The shock transition zone is much narrowest, meaning the new algorithm has higher resolution.

[image: image138.jpg]      [image: image139.jpg]
FIGURE 7 Density solution for example 2                  FIGURE 8 Grid evolution diagram
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            (a) Fixed grid results                             (b) Moving mesh results
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(c) Results of moving mesh rotating flux method
FIGURE 9 Contours for density solution based on different algorithms
Example 3 Riemann problem for two-dimensional Euler equation III:

Consider the Riemann problem in the two-dimensional region 
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   Space grid number is
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, Fig. 10 is the pressure three-dimensional diagram of the moving grid. Fig. 11 is the contour map. We can see that the more grid points are distributed around the shock wave. In Fig. 11, the numerical results show that the transition zone of shock wave is gradually narrowed from (a) to (c), which the transition zone obtained by the rotating flux based on moving grid method is the narrowest(see Fig. 11(c)). Obviously the new algorithm has higher resolution than the other two algorithms. Fig. 12 is the grid evolution process which is consistent with the wave place.
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FIGURE 10 Pressure at
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(a) Fixed grid results                              (b) Moving mesh results
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（c）Results of moving mesh rotating flux method

 FIGURE 11 Contours for pressure solution based on different algorithms
[image: image154.jpg]
FIGURE 12 Grid evolution diagram

Conclusion

In this paper, we have developed the moving grid rotating flux method to solve the 2D Euler. In this method, the flux is decomposed to normal direction and tangential direction of the cell boundary, and the resulting flux function are not only robust for nonlinear shock instability, but also high resolution for shock wave. High resolution by an extensive series of numerical experiments indicates that the moving grid rotating flux method offers an effective cure to Euler. Finally, we remark that although this paper particularly focused on entropy stable flux, other flux are also possible to obtain result.
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