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Abstract

This paper studies the magneto-thermal problems with the nonlinear material law.
The main difficulty is to analysis the Joule heating term 𝛾(𝑢)|∇×𝑯|2. First, a regular-
ized model is introduced. By time discretization, the well-posedness of the discrete
problem is established, and the convergence of the solution as the time step size
𝜏 → 0 is deduced. Finally, the solution to the regularized problem converges to the
original as 𝜖 → 0. The mathematical analysis of this paper provide a routine to obtain
the well-posedness of the magneto-thermal problems and gives an answer to the open
question from the previous work.

KEYWORDS:
magneto-thermal; nonlinear; joule heating; well-posedness; convergence

1 INTRODUCTION

1.1 Background and motivation
The magnetic-thermal coupling system commonly arises from induction hardening of steel1 , large power transformers2, and
magnetohydrodynamics (MHD)3 etc. Such devices consist of excitation coils applied source current, which generates the varying
magnetic field. Then the eddy current is induced in the conductive domain and generates the Joule heating and changes the
temperature. Meanwhile, the electric conductivity depends on the thermal field, thus the change of temperature impacts the
magnetic field vice versa.

There are many papers dealing with electromagnetic-thermal problems. The early results are on the electrostatic and time
dependent thermal equations coupled by the gradient of electric potential4,5,6,7. The both diffusion equations of electric poten-
tial and thermal distributions are studied, and convergence of approximate solution is achieved8. The Maxwell’s equations with
temperature dependent conductivity were investigated, and some theoretical results including global existence of solution and
regularities are established9,10,11. Authors provided mathematical analysis of the magneto-thermal coupling model of large power
transformers, which consists of a magnetic field coupled with the thermal convection-diffusion2. In a magnetohydrodynami-
cal dynamo with turbulent convection zone, authors obtain the solvability and well-posedness of a magneto-thermal coupling
model3.

The works mention above focus on the both linear mathematical models of the magnetic and thermal field. Since nonlinear
material is commonly used in the industry, it will better reflect reality that the nonlinear dependency is taken into account. In the
series of papers1,12,13, the authors dedicated to the mathematical models considering the nonlinear relation between the magnetic
field and the flux, and cut off the Joule heating to be bounded. Although the cut-off function avoids the unbounded solution, the
uniqueness still remains an open problem1. Furthermore, without applying the cut-off function, the thermal equation with the
uncontrolled Joule heating needs stronger regularity assumptions on the magnetic field, which could not be satisfied, and leaves
the existence and uniqueness of the problem to be an open task12. This paper is to fulfil the task. There are some totally new
theoretical work as follow.
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• introduce a regularization model to deal with the uncontrolled Joule heating term 𝛾(𝑢)|∇ ×𝑯|2.
• prove solution of the regularization model converges to the magneto-thermal problem.

The mathematical analysis provide a routine to establish the well-posedness of the magneto-thermal problems and gives an
answer to the open question from the previous work.

1.2 Magnetic-thermal problem
Set the bounded domain Ω ⊂ ℝ3 is occupied by nonlinear electromagnetic material. Its boundary 𝜕Ω is Lipschitz continuous,
with 𝒏 is the outer normal unit vector. The equations for eddy current field is deduced from Maxwell’s equations neglecting the
displacement current term14,15,16,17,18, ⎧⎪⎨⎪⎩

∇ × (𝑯 +𝑯 𝑠) = 𝑱 𝑠 + 𝑱 ,
∇ × 𝑬 = −𝜕𝑡𝑩(𝑯 +𝑯 𝑠),
∇ ⋅ 𝑩 = 0,

(1)

where 𝑩 is the magnetic flux density depended on the total field, which includes 𝑯 as the induced field, and 𝑯 𝑠 as the source
field generated by the source current 𝑱 𝑠, and 𝑱 is the induced current depended on the electric field by the Ohm’s law,

𝑱 = 𝜎(𝑢)𝑬, in Ω, (2)

where the conductivity is thermal dependent. For 𝜎(𝑢) > 0 in Ω, denote the electric resistivity 𝛾(𝑢) = 1∕𝜎(𝑢).
The relationship between magnetic field and flux in the ferromagnetic material is based on the magnetization phenomena.

Hysteresis curve shows monotone character of the relation between magnetic strength and the magnetization. In general, we
denote the constitutive law for the magnetic induction as

𝑩 ∶= 𝑩(𝑯 +𝑯 𝑠), in Ω. (3)

Using the (1)-(3), we have a nonlinear parabolic equation for the magnetic field,⎧⎪⎨⎪⎩
𝜕𝑡𝑩(𝑯 +𝑯 𝑠) + ∇ × (𝛾(𝑢)∇ ×𝑯) = 0, (𝒙, 𝑡) ∈ Ω × (0, 𝑇 ),
𝑯 × 𝒏 = 𝟎, (𝒙, 𝑡) ∈ 𝜕Ω × (0, 𝑇 ),
𝑯(𝒙, 0) = 𝑯0, 𝒙 ∈ Ω̄.

(4)

The varying magnetic field will induce eddy current in the conductor and generate heat, which is called the Joule heating
described as

𝑞 = 𝑱 ⋅ 𝑬 = |𝑱 |2∕𝜎(𝑢) = 𝛾(𝑢)|∇ ×𝑯|2. (5)
Let 𝑢 be the thermal field in the conductor, and it is governed by the following nonlinear parabolic equation1,12,13,⎧⎪⎪⎨⎪⎪⎩

𝜕𝑡𝛽(𝑢) − ∇ ⋅ (𝜆∇𝑢) = 𝑞, (𝒙, 𝑡) ∈ Ω × (0, 𝑇 ),

− 𝜆 𝜕𝑢
𝜕𝒏

= 0, (𝒙, 𝑡) ∈ 𝜕Ω × (0, 𝑇 ),

𝑢(𝒙, 0) = 𝑢0, 𝒙 ∈ Ω̄.

(6)

where 𝜆 is the thermal conductivity, and 𝛽(𝑢) is nonlinear function.
The remainder of the paper is organized as follows. In Section 2, we introduce some function spaces and establish the vari-

ational problem and the regularization. In Section 3, the time discretization scheme to the regularized problem is given, the
existence and uniqueness, boundedness and convergence as the time step size 𝜏 → 0 are discussed. In Section 4, passing limit
for the regularization parameter 𝜖 → 0, the regularized solution converges the original.

2 VARIATIONAL PROBLEM

In this section, we introduce some function spaces related to solutions of the problem, and derive the variational. Since the
Joule heating source contains |∇ ×𝑯|2 ∈ 𝐿1(Ω), this term brings the main difficulty to the analysis. An regularization model
is introduced to overcome this problem. And Some assumptions for the material laws are proposed for later analysis.
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2.1 Function spaces
The 𝐿𝑝(Ω) denote as the Lebesgue integrable function space with norm

‖𝑢‖𝐿𝑝(Ω) = ⎧⎪⎨⎪⎩
(
∫Ω

|𝑢(𝒙)|𝑝d𝒙)1∕𝑝

, 1 ≤ 𝑝 < ∞,

ess sup
𝒙∈Ω

|𝑢(𝒙)|, 𝑝 = ∞.

Throughout the paper, the vector valued functions and function spaces are denoted in bold (e.g. 𝒖, 𝑳𝑝) while the scalar ones
are in normal (e.g. 𝑢, 𝐿𝑝). Norm ‖⋅‖ ∶= ‖⋅‖𝐿2(Ω) for short.

The curl space for the magnetic field 𝑯 19,20,

𝑯(𝒄𝒖𝒓𝒍,Ω) ∶=
{
𝒖 ∈ 𝑳2(Ω) ∶ ∇ × 𝒖 ∈ 𝑳2(Ω)

}
,

𝑯0(𝒄𝒖𝒓𝒍,Ω) ∶= {𝒖 ∈ 𝑯(𝒄𝒖𝒓𝒍,Ω) ∶ 𝒖 × 𝒏 = 𝟎 on 𝜕Ω} ,

‖𝒖‖𝑯(𝒄𝒖𝒓𝒍,Ω) ∶=
(‖𝒖‖2𝑳2(Ω) + ‖∇ × 𝒖‖2𝑳2(Ω)

)1∕2
.

and the 𝑯−1(𝒄𝒖𝒓𝒍,Ω) is the dual space consisted of all bounded linear functionals on 𝑯0(𝒄𝒖𝒓𝒍,Ω).
The 𝐻1(Ω) space for thermal field 𝑢,

𝐻1(Ω) ∶=
{
𝑢 ∈ 𝐿2(Ω) ∶ ∇𝑢 ∈ 𝑳2(Ω)

}
,

‖𝑢‖𝐻1(Ω) ∶=
(‖𝑢‖2𝑳2(Ω) + ‖∇𝑢‖2𝑳2(Ω)

)1∕2
,

and the 𝐻−1(Ω) is the dual space.
Let 𝑋∗ denote the dual space of 𝑋, then the dual norm could be defined as

‖𝑢‖𝑋∗ = sup
0≠𝑣∈𝑋

⟨𝑢, 𝑣⟩‖𝑣‖𝑋 ,
where the dual product ⟨𝑢, 𝑣⟩ denotes the value of the linear functional 𝑢 ∈ 𝑋∗ at the point 𝑣 ∈ 𝑋.

The 𝐶
(
[0, 𝑇 ];𝑋

)
denotes for the space of abstract functions continuous in time, i.e.,

𝐶
(
[0, 𝑇 ];𝑋

)
∶=

{
𝑢(𝒙, ⋅) ∶ [0, 𝑇 ] → 𝑋, ‖𝑢‖𝐶([0,𝑇 ];𝑋) = max

𝑡∈[0,𝑇 ]
‖𝑢(𝒙, 𝑡)‖𝑋 <∞

}
.

And the 𝐿𝑝
(
(0, 𝑇 );𝑋

)
is defined with the norm

‖𝑢(𝒙, 𝑡)‖𝐿𝑝((0,𝑇 );𝑋) =

⎧⎪⎨⎪⎩
(
∫

𝑇

0
‖𝑢(𝒙, 𝑡)‖𝑝𝑋 d𝑡

)1∕𝑝

, 1 ≤ 𝑝 ≤ ∞,

ess sup
𝑡∈[0,𝑇 ]

‖𝑢(𝒙, 𝑡)‖𝑋 , 𝑝 = ∞.

2.2 Variational problem and regularization
With the above function spaces statement, we now establish the Galerkin variational problem for (4) and (6).

Weak form for magnetic field: Given 𝑯(0) = 𝑯0, find 𝑯 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)), such that(
𝜕𝑡𝑩(𝑯 +𝑯 𝑠), 𝑯̄

)
+
(
𝛾(𝑢)∇ ×𝑯 ,∇ × 𝑯̄) = 0, ∀𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω). (7)

Weak form for the thermal field: Given 𝑢(0) = 𝑢0, find 𝑢 ∈ 𝐿2((0, 𝑇 );𝐻1(Ω)), such that(
𝜕𝑡𝛽(𝑢), 𝑢̄

)
+ (𝜆∇𝑢,∇𝑢̄) =

(
𝑞, 𝑢̄

)
, ∀𝑢̄ ∈ 𝐻1(Ω) ∩ 𝐿∞(Ω). (8)

Since the Joule heating 𝑞 contains |∇×𝑯|2 ∈ 𝐿1(Ω), which requires the test function 𝑢̄ ∈ 𝐿∞(Ω). To overcome this difficulty,
we introduce a truncation as follows2,9

[𝑞]𝜖 =
𝑞

1 + 𝜖|𝑞| , 𝜖 > 0. (9)

Then the Joule heating source term becomes a essentially bounded, i.e. [𝑞]𝜖 ∈ 𝐿∞(Ω). The more critical point is that for any
𝑞 ∈ 𝐿1(Ω), passing to the limit for 𝜖 → 0, we have ‖‖[𝑞]𝜖 − 𝑞‖‖𝐿1∕2(Ω) → 0.

In another word, the Joule heating 𝑞 could be replace by [𝑞]𝜖 and we obtain a series of solution {(𝑯 𝜖 , 𝑢𝜖)}, then by passing
to the limit for 𝜖 → 0, we will achieve the solution of the origin problem (8), i.e. (𝑯 𝜖 , 𝑢𝜖) → (𝑯 , 𝑢). We call this process
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the regularization, and the number 𝜖 plays the role as the regularization parameter. Therefore, we turn to solve the regularized
problem (7)-(8): Given 𝑯(0) = 𝑯0, find 𝑯 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)), such that(

𝜕𝑡𝑩(𝑯 +𝑯 𝑠), 𝑯̄
)
+
(
𝛾(𝑢)∇ ×𝑯 ,∇ × 𝑯̄) = 0, ∀𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω). (10)

Given 𝑢(0) = 𝑢0, find 𝑢 ∈ 𝐿2((0, 𝑇 );𝐻1(Ω)
)
, such that(

𝜕𝑡𝛽(𝑢), 𝑢̄
)
+ (𝜆∇𝑢,∇𝑢̄) =

(
[𝑞]𝜖 , 𝑢̄

)
, ∀𝑢̄ ∈ 𝐻1(Ω). (11)

In deed, the solution of (10)-(11) should be denoted by (𝑯 𝜖 , 𝑢𝜖), without confusion, we reuse the same symbol (𝑯 , 𝑢).

2.3 Assumptions
For a better representation of the paper, all the assumptions are listed here.

𝑯0(𝒙) ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω), (12)
𝑯 𝑠(𝒙, 𝑡) ∈ 𝐻1((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)

)
, (13)

∇ ⋅ 𝑩(𝑯0 +𝑯 𝑠
0 ) = 0, for a.e. 𝒙 ∈ Ω, (14)

0 < 𝛾∗ ≤ 𝛾
(
𝒙, 𝑡

) ≤ 𝛾∗ <∞, ∀(𝒙, 𝑡) ∈ Ω × (0, 𝑇 ), (15)|𝛾(𝑢1) − 𝛾(𝑢2)| ≤ 𝐿𝛾 ‖‖𝑢1 − 𝑢2‖‖𝐻−1(Ω) , ∀𝑢1, 𝑢2 ∈ 𝐻1(Ω), (16)

0 < 𝜆∗ ≤ 𝜆(𝒙, 𝑡) ≤ 𝜆∗ <∞, ∀(𝒙, 𝑡) ∈ Ω × (0, 𝑇 ), (17)|𝜆(𝒙, 𝑡2) − 𝜆(𝒙, 𝑡1)| ≤ 𝐿𝜆|𝑡2 − 𝑡1|, ∀𝒙 ∈ Ω,∀𝑡1, 𝑡2 ∈ (0, 𝑇 ), (18)
𝑩(𝟎) = 𝟎, (19)|𝑩(𝒙) − 𝑩(𝒚)| ≤ 𝐿𝑩|𝒙 − 𝒚|, 𝐿𝑩 > 0,∀𝒙, 𝒚 ∈ ℝ3, (20)(
𝑩(𝒙) − 𝑩(𝒚)

)
⋅ (𝒙 − 𝒚) ≥ 𝑚𝑩|𝒙 − 𝒚|2, 𝑚𝑩 > 0,∀𝒙, 𝒚 ∈ ℝ3, (21)

𝛽(0) = 0, (22)
0 < 𝛽′∗ ≤ 𝛽′(𝑢), ∀𝑢 ∈ ℝ, (23)|𝛽(𝑢) − 𝛽(𝑣)| ≤ 𝐿𝛽|𝑢 − 𝑣|, 𝐿𝛽 > 0,∀𝑢, 𝑣 ∈ ℝ, (24)(
𝛽(𝑢) − 𝛽(𝑣)

)
⋅ (𝑢 − 𝑣) ≥ 𝑚𝛽|𝑢 − 𝑣|2, 𝑚𝛽 > 0,∀𝑢, 𝑣 ∈ ℝ. (25)

Suppose the magnetic induction 𝑩(⋅) to be potential, i.e., there exists a functional Φ𝑩 ∶ 𝑯0(𝒄𝒖𝒓𝒍,Ω) → ℝ, such that for all
𝑯 ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω),

Grad Φ𝑩(𝑯) = 𝑩(𝑯),

where Grad Φ𝑩 is called the gradient of the functional Φ𝑩 . By the (21) and according to the theorem of the monotone potential
operator21, Theorem 5.1, the potential Φ𝑩 is convex, i.e., for any 𝒙, 𝒚 ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω) and any 𝜆 ∈ (0, 1),

Φ𝑩(𝜆𝒙 + (1 − 𝜆)𝒚) ≤ 𝜆Φ𝑩(𝒙) + (1 − 𝜆)Φ𝑩(𝒚).

Lemma 1. Let 𝑓 (𝒙) be a convex functional and twice Gâteaux-differential on a convex set 𝐸 in a normed space then its twice
Gâteaux-differential is non-negative, i.e.

𝐷2𝑓 (𝒙;𝒉,𝒉) ≥ 0, 𝒙 ∈ 𝐸.

The proof of the Lemma 1 is trivial, and we omit it here. By Lemma 1, for the convexity of potential Φ𝑩 , we have

𝐷2Φ𝑩(𝒙;𝒉,𝒉) ≥ 0. (26)

Using generalized Lagrange formula21 twice and by (26), for 𝜉1, 𝜉2 ∈ (0, 1), we have

Φ𝑩(𝒚) − Φ𝑩(𝒙) −𝐷Φ𝑩(𝒙, 𝒚 − 𝒙) = 𝐷Φ𝑩
(
𝒙 + 𝜉1(𝒚 − 𝒙), 𝒚 − 𝒙

)
−𝐷Φ𝑩(𝒙, 𝒚 − 𝒙)

=𝐷2Φ𝑩
(
𝒙 + 𝜉2(𝒚 − 𝒙); 𝒚 − 𝒙, 𝜉1(𝒚 − 𝒙)

) ≥ 0.

Hence, Φ𝑩(𝒚) − Φ𝑩(𝒙) ≥ 𝐷Φ𝑩(𝒙, 𝒚 − 𝒙) = 𝑩(𝒙) ⋅ (𝒚 − 𝒙), i.e.,

𝑩(𝒙) ⋅ (𝒙 − 𝒚) ≥ Φ𝑩(𝒙) − Φ𝑩(𝒚). (27)
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By (19)-(21),

Φ𝑩(𝒙) = ∫
1

0
𝑩(𝑝𝒙) ⋅ 𝒙d𝑝 ≥ ∫

1

0
𝑚𝑩 |𝑝𝒙|2 1

𝑝
d𝑝 =

𝑚𝑩

2
|𝒙|2 . (28)

Φ𝑩(𝒙) = ∫
1

0
𝑩(𝑝𝒙) ⋅ 𝒙d𝑝 ≤ ∫

1

0
𝐿𝑩 |𝑝𝒙|2 1

𝑝
d𝑝 =

𝐿𝑩

2
|𝒙|2 . (29)

Thus, we obtain the boundedness of the potential Φ𝑩 ,

0 ≤ 𝑚𝑩

2
|𝒙|2 ≤ Φ𝑩(𝒙) ≤ 𝐿𝑩

2
|𝒙|2. (30)

Since 𝑩 is strongly monotone, we have

|𝑩(𝒙) − 𝑩(𝒚)| ⋅ |𝒙 − 𝒚| ≥ (
𝑩(𝒙) − 𝑩(𝒚),𝒙 − 𝒚

) ≥ 𝑚𝑩|𝒙 − 𝒚|2.
together with Lipschitz continuity of 𝑩 in (20), we have,

𝐿𝑩|𝒙 − 𝒚| ≥ |𝑩(𝒙) − 𝑩(𝒚)| ≥ 𝑚𝑩|𝒙 − 𝒚|,
thus, we have

𝐿−1
𝑩 |𝒙 − 𝒚| ≤ |𝑩−1(𝒙) − 𝑩−1(𝒚)| ≤ 𝑚−1

𝑩 |𝒙 − 𝒚| ∶= 𝐿𝐵−1 |𝒙 − 𝒚|,
which concludes that the inverse 𝑩−1 is also Lipschitz continuous. By (19), we have

𝑩−1(𝟎) = 𝟎. (31)

Since 𝑩 is strongly monotone, we have 𝑩−1 is also strongly monotone,(
𝑩−1(𝒙) − 𝑩−1(𝒚),𝒙 − 𝒚

)
=
(
𝑩−1(𝒙) − 𝑩−1(𝒚),𝑩

(
𝑩−1(𝒙)

)
− 𝑩

(
𝑩−1(𝒚)

))
≥ 𝑚𝑩|𝑩−1(𝒙) − 𝑩−1(𝒚)|2 ≥ 𝑚𝑩(𝐿−1

𝑩 )2|𝒙 − 𝒚|2 ∶= 𝑚𝑩−1 |𝒙 − 𝒚|2,
then the potential Φ𝑩−1 of 𝑩−1 is also convex. Similar in (26)-(30), we have

𝑩−1(𝒙) ⋅ (𝒙 − 𝒚) ≥ Φ𝑩−1(𝒙) − Φ𝑩−1(𝒚), (32)

0 ≤ 𝑚𝑩−1

2
|𝒙|2 ≤ Φ𝑩−1(𝒙) ≤ 𝐿𝑩−1

2
|𝒙|2, (33)

0 ≤ 𝑐𝑩|𝒙|2 ≤ Φ𝑩−1

(
𝑩(𝒙)

) ≤ 𝐶𝑩|𝒙|2. (34)

3 TIME DISCRETIZATION

In this section, the regularized problem is discretized in time using backwards Euler method. First, the existence and uniqueness
of the discrete problem is proved based on the theorem of monotone operators21. Second, the boundedness of the solution is
guaranteed. Third, the convergence of the solution are discussed in the framework of the Rothe’s method.

3.1 Time discretization scheme
Let the time interval [0, 𝑇 ] is partitioned into 𝑛 equidistant subintervals by time step size 𝜏, i.e.,

[0, 𝑇 ] =
𝑛⋃
𝑖=1

[𝑡𝑖−1, 𝑡𝑖], where 𝑡𝑖 = 𝑖𝜏, for 𝑖 = 0, 1,⋯ , 𝑛, and 𝜏 = 𝑇 ∕𝑛.

For a general function 𝑓 (𝑡) with respect to time, denote 𝑓𝑖 ∶= 𝑓 (𝑡𝑖). Approximate the time derivative of 𝑓 (𝑡) at 𝑡𝑖 by backward
Euler method,

𝜕𝑡𝑓 (𝑡𝑖) ≈ 𝛿𝜏𝑓𝑖 ∶=
𝑓𝑖 − 𝑓𝑖−1

𝜏
.

where 𝛿𝜏 denotes the divided difference operator in time with step size 𝜏.
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By shifting the resistivity on the right hand side of (36) to be 𝛾(𝑢𝑖−1), we obtain a decoupled system of the time discrete
problem for (10)-(11): Given 𝑯0 and 𝑢0, for 𝑖 = 1, 2,⋯ , 𝑛, find 𝑯𝑖 ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω) and 𝑢𝑖 ∈ 𝐻1(Ω), such that(

𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 ), 𝑯̄

)
+
(
𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × 𝑯̄

)
= 0,∀𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω), (35)(

𝛿𝜏𝛽(𝑢𝑖), 𝑢̄
)
+ (𝜆𝑖∇𝑢𝑖,∇𝑢̄) =

([
𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]

𝜖
, 𝑢̄
)
,∀𝑢̄ ∈ 𝐻1(Ω). (36)

Based on the theorem of monotone operator21, we prove the existence and uniqueness of the solution to discrete problem
(35)-(36) in the following lemma.

Lemma 2. Assume that (12)-(19) holds. Then, for any 𝑖 = 1, 2,⋯ , 𝑛, there exist a uniquely determined couple (𝑯𝑖, 𝑢𝑖) ∈
𝑯0(𝒄𝒖𝒓𝒍,Ω) ×𝐻1(Ω) solving the system (35)-(36).

Proof. Define operator 𝛾 ∶ 𝑯0(𝒄𝒖𝒓𝒍,Ω) → 𝑯−1(𝒄𝒖𝒓𝒍,Ω),⟨𝛾 (𝑯), 𝑯̄
⟩
∶= 1

𝜏
(
𝑩(𝑯), 𝑯̄

)
+
(
𝛾∇ ×𝑯 ,∇ × 𝑯̄

)
.

Define operator  ∶ 𝐻1(Ω) → 𝐻−1(Ω),

⟨(𝑢), 𝑢̄⟩ ∶= 1
𝜏
(
𝛽(𝑢), 𝑢̄

)
+ (𝜆∇𝑢,∇𝑢̄) .

Then (35)-(36) could be rewritten as the following operator equations⟨𝛾(𝑢𝑖−1)(𝑯𝑖 +𝑯 𝑠
𝑖 ), 𝑯̄

⟩
= 1
𝜏
(
𝑩(𝑯𝑖−1 +𝑯 𝑠

𝑖−1), 𝑯̄
)
, (37)

⟨(𝑢𝑖), 𝑢̄⟩ = 1
𝜏
(
𝛽(𝑢𝑖−1), 𝑢̄

)
+
([
𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]

𝜖
, 𝑢̄
)
, (38)

Then the strictly monotone of 𝛾 follows from (15) and (21). For any 𝑯1, 𝑯2 ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω),⟨𝛾 (𝑯1) − 𝛾 (𝑯2),𝑯1 −𝑯2
⟩ ≥ 𝑚𝑩∕𝜏 ‖‖𝑯1 −𝑯2

‖‖2𝑳2(Ω) + 𝛾∗ ‖‖∇ × (𝑯1 −𝑯2)‖‖2𝑳2(Ω)

≥min(𝑚𝑩∕𝜏, 𝛾∗) ⋅ ‖‖𝑯1 −𝑯2
‖‖2𝑯(𝒄𝒖𝒓𝒍,Ω) > 0.

Strictly monotone of  follows from (17) and (25). For any 𝑢1, 𝑢2 ∈ 𝐻1(Ω),

⟨(𝑢1) − (𝑢2), 𝑢1 − 𝑢2⟩ ≥ 𝑚𝛽∕𝜏 ‖‖𝑢1 − 𝑢2‖‖2𝐿2(Ω) + 𝜆∗ ‖‖∇(𝑢1 − 𝑢2)‖‖2𝑳2(Ω) ≥ min(𝑚𝛽∕𝜏, 𝜆∗) ⋅ ‖‖𝑢1 − 𝑢2‖‖2𝐻1(Ω) > 0.

Coercivity of 𝛾 follows from (19) and (21). For any 𝑯 ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω),⟨𝛾 (𝑯),𝑯
⟩ ≥ 𝑚𝑩∕𝜏 ‖𝑯‖2𝑳2(Ω) + 𝛾∗ ‖∇ ×𝑯‖2𝑳2(Ω) ≥ 𝐶 ‖𝑯‖2𝑯(𝒄𝒖𝒓𝒍,Ω) .

Coercivity of  follows from (22) and (25). For any 𝑢 ∈ 𝐻1(Ω),

⟨(𝑢), 𝑢⟩ ≥ 𝑚𝛽∕𝜏 ‖𝑢‖2𝐿2(Ω) + 𝜆∗ ‖∇𝑢‖2𝑳2(Ω) ≥ 𝐶 ‖𝑢‖2𝐻1(Ω) .

Hemi-continuity of 𝛾 follows from (20),⟨𝛾 (𝑯 + 𝜀𝒉) − 𝛾 (𝑯), 𝑯̄
⟩ ≤𝐿𝑩𝜀∕𝜏

|||(𝒉, 𝑯̄)||| + 𝜀𝛾∗ (∇ × 𝒉,∇ × 𝑯̄
) ≤ 𝐶𝜀 ‖𝒉‖𝑯(𝒄𝒖𝒓𝒍,Ω) ⋅ ‖‖𝑯̄‖‖𝑯(𝒄𝒖𝒓𝒍,Ω) → 0, 𝜀 → 0.

Hemi-continuity of  follows from (24),⟨𝛾 (𝑢 + 𝜀𝑣) − 𝛾 (𝑢), 𝑢̄⟩ ≤𝐿𝛽𝜀∕𝜏 |(𝑣, 𝑢̄)| + 𝜀𝜆∗ (∇𝑣,∇𝑢̄) ≤ 𝐶𝜀 ‖𝑣‖𝐻1(Ω) ⋅ ‖𝑢̄‖𝐻1(Ω) → 0, 𝜀 → 0.

We have shown the strict monotonicity, coercivity and hemi-continuity of operators 𝛾 and 𝜏 . Furthermore, for every time
step 𝑖 = 1, 2,⋯ , 𝑛, the right hand side of (37) is a bounded linear functionals on 𝑯0(𝒄𝒖𝒓𝒍,Ω),

1
𝜏
(
𝑩(𝑯𝑖−1 +𝑯 𝑠

𝑖−1), 𝑯̄
) ≤ 𝐶𝜏

‖‖‖𝑩(𝑯𝑖−1 +𝑯 𝑠
𝑖−1)

‖‖‖𝑯−1(𝒄𝒖𝒓𝒍,Ω)
‖‖𝑯̄‖‖𝑯0(𝒄𝒖𝒓𝒍,Ω)

≤ 𝐶𝜏 ‖‖𝑯̄‖‖𝑯0(𝒄𝒖𝒓𝒍,Ω)
,

and the right hand side of (38) is also a bounded linear functionals on 𝐻1(Ω),
1
𝜏
(
𝛽(𝑢𝑖−1), 𝑢̄

)
+
([
𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]

𝜖
, 𝑢̄
) ≤ 1

𝜏
‖‖𝛽(𝑢𝑖−1)‖‖𝐻−1(Ω) ‖𝑢̄‖𝐻1(Ω) +

1
𝜖
‖𝑢̄‖𝐿2(Ω) ≤ 𝐶𝜏,𝜖 ‖𝑢̄‖𝐻1(Ω) .

Therefore, we obtain the existence and uniqueness of the solution to (35) and (36) at every time step21, Theorem 18.2.
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3.2 Boundedness of discrete solution
In this subsection, we establish some bounded estimates of the solution, which will play a key role in the convergence of the
solution.

Lemma 3. Assume (12) - (19). Then for any 𝑗 = 1, 2,⋯ , 𝑛, there exists a positive constant 𝐶 , such that

(𝑎)
𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑢𝑖‖‖2 + 𝑗∑
𝑖=1

‖‖∇(𝑢𝑖 − 𝑢𝑖−1)‖‖2 + max
1≤𝑖≤𝑗 ‖‖∇𝑢𝑖‖‖2 ≤ 𝐶, (39)

(𝑏) max
1≤𝑖≤𝑗 ‖‖𝑢𝑖‖‖2 ≤ 𝐶, (40)

(𝑐) max
1≤𝑖≤𝑗 ‖‖𝛿𝜏𝛽(𝑢𝑖)‖‖𝐻−1(Ω) ≤ 𝐶, (41)

(𝑑) max
1≤𝑖≤𝑗 ‖‖𝛿𝜏𝑢𝑖‖‖𝐻−1(Ω) ≤ 𝐶. (42)

Proof. (a) Set 𝑢̄ = 𝜏𝛿𝜏𝑢𝑖 in (36),(
𝛿𝜏𝛽(𝑢𝑖), 𝜏𝛿𝜏𝑢𝑖

)
+ (𝜆𝑖∇𝑢𝑖, 𝜏∇𝛿𝜏𝑢𝑖) =

([
𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]

𝜖
, 𝜏𝛿𝜏𝑢𝑖

)
.

Lower bound for the first term in the left hand side:(
𝛿𝜏𝛽(𝑢𝑖), 𝜏𝛿𝜏𝑢𝑖

) ≥∫
Ω

𝑚𝛽
𝜏
|𝑢𝑖 − 𝑢𝑖−1|2 = 𝜏𝑚𝛽 ‖‖𝛿𝜏𝑢𝑖‖‖2 .

For the second term, combine the Abel’s summation law as follows

(𝜆𝑖∇𝑢𝑖, 𝜏∇𝛿𝜏𝑢𝑖) =
1
2 ∫

Ω

(
𝜆𝑖|∇𝑢𝑖|2 − 𝜆𝑖−1|𝑢𝑖−1|2 − (𝜆𝑖 − 𝜆𝑖−1)|𝑢𝑖−1|2 + 𝜆𝑖|∇(𝑢𝑖 − 𝑢𝑖−1)|2) .

Upper bound for the right hand side,([
𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]

𝜖
, 𝛿𝜏𝑢𝑖𝜏

) ≤ 𝜏
𝜖 ∫

Ω

|𝛿𝜏𝑢𝑖|d𝒙 ≤ 𝐶𝜖𝐶𝜀|Ω|𝜏 + 𝜏𝜀𝐶𝜖 ‖‖𝛿𝜏𝑢𝑖‖‖2𝑳2(Ω) ,

where 𝐶𝜖 is a big number with respect to 𝜖−1, and 𝜀 denotes an suitable small number, 𝐶𝜀 denotes a big number related to 𝜀−1
according to the Young’s inequality.

Sum up for 𝑖 = 1, 2,⋯ , 𝑗 ≤ 𝑛,
𝑗∑
𝑖=1

𝐶𝜖𝐶𝜀|Ω|𝜏 + 𝑗∑
𝑖=1

𝜏𝜀𝐶𝜖 ‖‖𝛿𝜏𝑢𝑖‖‖2 = 𝐶𝜖𝐶𝜀|Ω|𝑗𝜏 + 𝜀𝐶𝜖 𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑢𝑖‖‖2
≥𝑚𝛽

𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑢𝑖‖‖2 + 𝜆∗
2
‖∇𝑢𝑗‖2 − 𝜆0

2
‖𝑢0‖2 + 𝜆∗

2

𝑗∑
𝑖=1

‖∇(𝑢𝑖 − 𝑢𝑖−1)‖2 − 𝐿𝜆
2

𝑗∑
𝑖=1

𝜏‖𝑢𝑖−1‖2.
Thus,

(𝑚𝛽 − 𝜀𝐶𝜖)
𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑢𝑖‖‖2 + 𝜆∗
2

𝑗∑
𝑖=1

‖‖∇(𝑢𝑖 − 𝑢𝑖−1)‖‖2 + 𝜆∗
2

‖‖‖∇𝑢𝑗‖‖‖2 ≤ 𝐶 +
𝐿𝜆
2

𝑗∑
𝑖=1

𝜏 ‖‖∇𝑢𝑖−1‖‖2𝑳2(Ω) .

By fixing a small 𝜀 < 𝑚𝛽∕𝐶𝜖 and using the Grönwall’s inequality, the result in (a) is concluded.
(b) By (a), for any 𝑗 = 1, 2,⋯ , 𝑛,

‖‖‖𝑢𝑗‖‖‖ =
‖‖‖‖‖‖𝑢0 +

𝑗∑
𝑖=1

𝛿𝜏𝑢𝑖𝜏
‖‖‖‖‖‖ ≤ ‖‖𝑢0‖‖ + 𝑗∑

𝑖=1
𝜏 ‖‖𝛿𝜏𝑢𝑖‖‖ ≤ 𝐶.

(c) From (36),|||(𝛿𝜏𝛽(𝑢𝑖), 𝑢̄)||| ≤ ||(𝜆𝑖∇𝑢𝑖,∇𝑢̄)|| + ||||([𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖|2]
𝜖
, 𝑢̄
)|||| ≤ 𝜆∗ ‖‖∇𝑢𝑖‖‖ ⋅ ‖∇𝑢̄‖ + 1

𝜖 ∫
Ω

|𝑢̄|d𝒙 ≤ 𝐶 ‖𝑢̄‖𝐻1(Ω) ,

which concludes that ‖‖𝛿𝜏𝛽(𝑢𝑖)‖‖𝐻−1(Ω) ≤ 𝐶, ∀𝑖 = 1, 2,⋯ , 𝑛.
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(d) By the mean value theorem and the assumption (23), we have‖‖𝛿𝜏𝛽(𝑢𝑖)‖‖𝐻−1(Ω) =
‖‖‖𝜏−1𝛽′(𝜉𝑖) ||𝑢𝑖 − 𝑢𝑖−1||‖‖‖𝐻−1(Ω)

≥ 𝛽′∗ ‖‖𝛿𝜏𝑢𝑖‖‖𝐻−1(Ω) .

Thus, by the result of (c), we have ‖‖𝛿𝜏𝑢𝑖‖‖𝐻−1(Ω) ≤ 𝐶, ∀𝑖 = 1, 2,⋯ , 𝑛.

Remark 1. For any 𝑖 = 1, 2,⋯ , 𝑛, by the weak Lipschitz continuous (16) of the 𝛾 and the result (d) of Lemma 3, we have||𝛾(𝑢𝑖) − 𝛾(𝑢𝑖−1)|| ≤ 𝐿𝛾 ‖‖𝑢𝑖 − 𝑢𝑖−1‖‖𝐻−1(Ω) = 𝐿𝛾 ‖‖𝛿𝜏𝑢𝑖‖‖𝐻−1(Ω) 𝜏 ≤ 𝐶𝜏. (43)

Lemma 4. Assume (12) - (19). Then for any 𝑗 = 1, 2,⋯ , 𝑛, there exists a positive constant 𝐶 such that,

(𝑎)
𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝑗∑

𝑖=1

‖‖∇ × (𝑯𝑖 −𝑯𝑖−1)‖‖2 + max
1≤𝑖≤𝑗 ‖‖∇ ×𝑯𝑖

‖‖2 ≤ 𝐶, (44)

(𝑏) max
1≤𝑖≤𝑗 ‖‖𝑯𝑖 +𝑯 𝑠

𝑖
‖‖ + 𝑗∑

𝑖=1
𝜏 ‖‖∇ ×𝑯𝑖

‖‖ ≤ 𝐶, (45)

(𝑐) max
0≤𝑖≤𝑗 ‖‖𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 )‖‖2𝑯−1(𝒄𝒖𝒓𝒍;Ω) ≤ 𝐶, (46)

(𝑑)
𝑗∑
𝑖=1

‖‖𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 𝜏 ≤ 𝐶. (47)

Proof. (a) Set 𝑯̄ = 𝜏𝛿𝜏𝑯𝑖 in (35),(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )
)
+
(
𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × (𝜏𝛿𝜏𝑯𝑖)

)
=
(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏𝛿𝜏𝑯
𝑠
𝑖

)
.

By the monotonicity (21) of the 𝑩(𝑯), we have the lower bound for the first term of the left hand side,(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )
) ≥ 𝜏𝑚𝑩

‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 ,

For the second term, using the Abel’s summation law, we have(
𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × (𝑯𝑖 −𝑯𝑖−1)

)
=1
2 ∫Ω

(
𝛾(𝑢𝑖)|∇ ×𝑯𝑖|2 − 𝛾(𝑢𝑖−1)|∇ ×𝑯𝑖−1|2 + 𝛾(𝑢𝑖−1)|∇ × (𝑯𝑖 −𝑯𝑖−1)|2

+
(
𝛾(𝑢𝑖−1) − 𝛾(𝑢𝑖)

)|∇ ×𝑯𝑖|2).
By (20) and Cauchy’s and Young’s inequalities, we have the upper bound for the right hand side,(

𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 ), 𝜏𝛿𝜏𝑯

𝑠
𝑖

) ≤ 𝐿𝑩𝜀𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝐿𝑩𝐶𝜀𝜏 ‖‖𝛿𝜏𝑯 𝑠

𝑖
‖‖2 .

Sum up for 𝑖 = 1, 2,⋯ , 𝑗 ≤ 𝑛, and by the result (43) in the Remark 1,

𝑚𝑩

𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝛾∗

2
‖‖‖∇ ×𝑯𝑗

‖‖‖2 − 𝛾∗

2
‖‖∇ ×𝑯0

‖‖2 + 𝛾∗
2

𝑗∑
𝑖=1

‖‖∇ × (𝑯𝑖 −𝑯𝑖−1)‖‖2
≤𝐿𝑩𝜀

𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝐿𝑩𝐶𝜀

𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑯 𝑠
𝑖
‖‖2 + 𝐶 𝑗∑

𝑖=1
𝜏 ‖‖∇ ×𝑯𝑖

‖‖2 .
Therefore,

(𝑚𝑩 − 𝐿𝑩𝜀)
𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝛾∗

2
‖‖‖∇ ×𝑯𝑗

‖‖‖2 + 𝛾∗
2

𝑗∑
𝑖=1

‖‖∇ × (𝑯𝑖 −𝑯𝑖−1)‖‖2
≤𝛾∗
2
‖‖∇ ×𝑯0

‖‖2 + 𝐶𝜀𝐿𝑩

𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏𝑯 𝑠
𝑖
‖‖2 + 𝐶 𝑗∑

𝑖=1
𝜏 ‖‖∇ ×𝑯𝑖

‖‖2 .
By fixing a small 𝜀 < 𝑚𝑩∕𝐿𝑩 and assumptions (12), (13), and the Grönwall’s inequality, we concludes the result of (a).

(b) Set 𝑯̄ = 𝜏𝑯𝑖 in (35),(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )
)
+
(
𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × (𝜏𝑯𝑖)

)
=
(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏𝑯
𝑠
𝑖

)
,
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For the first term of the left hand side, by the potential inequality (32),(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )
)
=
(
𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ) − 𝑩(𝑯𝑖−1 +𝑯 𝑠
𝑖−1),𝑩

−1(𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 )
))

≥∫Ω

(
Φ𝑩−1

(
𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 )
)
− Φ𝑩−1

(
𝑩(𝑯𝑖−1 +𝑯 𝑠

𝑖−1)
))
.

By the boundedness (15) of the 𝛾 , the second term is bounded as(
𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × (𝜏𝑯𝑖)

) ≥ 𝛾∗𝜏 ‖‖∇ ×𝑯𝑖
‖‖2 .

For the right hand side, by Lipschitz continuity (20) of the 𝑩(𝑯), Cauchy’s and Young’s inequalities,(
𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜏𝑯
𝑠
𝑖

) ≤ 𝜏𝐿𝐵 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖ ⋅ ‖‖𝑯 𝑠

𝑖
‖‖ ≤ 𝐶𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠

𝑖 )‖‖2 + 𝐶𝜏 ‖‖𝑯 𝑠
𝑖
‖‖2 .

Sum up for 𝑖 = 1, 2,⋯ , 𝑗 ≤ 𝑛, by the boundedness (34) of the Φ𝑩−1(𝑩),

𝑐𝑩
‖‖‖𝑯𝑗 +𝑯 𝑠

𝑗
‖‖‖2 − 𝐶𝑩

‖‖‖𝑯0 +𝑯 𝑠
0
‖‖‖2 + 𝛾∗ 𝑗∑

𝑖=1
𝜏 ‖‖∇ ×𝑯𝑖

‖‖2 ≤ 𝐶
𝑗∑
𝑖=1

𝜏 ‖‖𝛿𝜏(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2 + 𝐶 𝑗∑

𝑖=1
𝜏 ‖‖𝑯 𝑠

𝑖
‖‖2 .

By the result of (a) and assumptions (12)-(13), we conclude the result of (b).
(c) From (35), by the dual norm definition and result of (a),|||(𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝑯̄
)||| = |||(𝛾(𝑢𝑖−1)∇ ×𝑯𝑖,∇ × 𝑯̄

)||| ≤ 𝛾∗ ‖‖∇ ×𝑯𝑖
‖‖ ⋅ ‖‖∇ × 𝑯̄‖‖ ≤ 𝐶 ‖‖𝑯̄‖‖𝑯(𝒄𝒖𝒓𝒍,Ω) .

Thus, ‖‖𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖𝑯−1(𝒄𝒖𝒓𝒍,Ω) ≤ 𝐶, ∀𝑖 = 1, 2,⋯ , 𝑛.

(d) From (a) and the Lipschitz continuity (20) and coercivity (19) of the 𝑩,
𝑗∑
𝑖=1

‖‖𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 )‖‖2𝑳2(Ω) 𝜏 ≤ 𝐿2

𝑩

𝑗∑
𝑖=1

‖‖𝑯𝑖 +𝑯 𝑠
𝑖
‖‖2𝑳2(Ω) 𝜏 ≤ 𝐶.

3.3 Convergence of time discrete solution
In this subsection, we prove the convergence of the discrete solution based on the Rothe’s framework22,23.

Define the Rothe’s functions: piece-wise constant and piece-wise linear in time for 𝑡 ∈ (𝑡𝑖−1, 𝑡𝑖], 𝑖 = 1, 2,⋯ , 𝑛,

𝑩̄𝜏(𝑡) = 𝑩𝑖, 𝑩𝜏(𝑡) = 𝑩𝑖−1 + (𝑡 − 𝑡𝑖−1)𝛿𝜏𝑩𝑖, 𝑩̄𝜏(0) = 𝑩𝜏(0) = 𝑩0;
𝑯̄𝜏(𝑡) = 𝑯𝑖, 𝑯𝜏(𝑡) = 𝑯𝑖−1 + (𝑡 − 𝑡𝑖−1)𝛿𝜏𝑯𝑖, 𝑯̄𝜏(0) = 𝑯𝜏(0) = 𝑯0;
𝛽𝜏(𝑡) = 𝛽(𝑢𝑖), 𝛽𝜏(𝑡) = 𝛽(𝑢𝑖−1) + (𝑡 − 𝑡𝑖−1)𝛽(𝑢𝑖), 𝛽𝜏(0) = 𝛽𝜏(0) = 𝛽(𝑢0);
𝑢̄𝜏(𝑡) = 𝑢𝑖, 𝑢𝜏(𝑡) = 𝑢𝑖−1 + (𝑡 − 𝑡𝑖−1)𝑢𝑖, 𝑢̄𝜏(0) = 𝑢𝜏(0) = 𝑢0;
𝜆̄𝜏(𝑡) = 𝜆𝑖, 𝛾̄𝜏(𝑡) = 𝛾(𝑢𝑖), 𝛾̄𝜏(𝑡 − 𝜏) = 𝛾(𝑢𝑖−1).

Rewrite (35)-(36) by the Rothe’s functions,(
𝜕𝑡𝑩𝜏 , 𝑯̄

)
+
(
𝛾̄𝜏(𝑡 − 𝜏)∇ × 𝑯̄𝜏 ,∇ × 𝑯̄

)
= 0, ∀𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω), (48)(

𝜕𝑡𝛽𝜏 , 𝑢̄
)
+ (𝜆̄𝜏∇𝑢̄𝜏 ,∇𝑢̄) =

([
𝛾̄𝜏(𝑡 − 𝜏)|∇ × 𝑯̄𝜏 |2]

𝜖
, 𝑢̄
)
, ∀𝑢̄ ∈ 𝐻1(Ω). (49)

By setting 𝑯̄ = ∇𝜑 in (35), where 𝜑 ∈ 𝐶∞
0 (Ω̄), we have(

𝛿𝜏𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 ),∇𝜑

)
= −

(
𝛿𝜏∇ ⋅ 𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 ), 𝜑
)
= 0.

By the assumption (14),

0 =
(
∇ ⋅ 𝑩(𝑯0 +𝑯 𝑠

0 ), 𝜑
)
=
(
∇ ⋅ 𝑩(𝑯1 +𝑯 𝑠

1 ), 𝜑
)
= ⋯ =

(
∇ ⋅ 𝑩(𝑯𝑛 +𝑯 𝑠

𝑛 ), 𝜑
)
,

for any 𝜑 ∈ 𝐶∞
0 (Ω̄). Since 𝐶∞

0 (Ω̄) is dense in 𝐻1
0 (Ω), we have(

∇ ⋅ 𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 ), 𝜑

)
= 0, ∀𝜑 ∈ 𝐻1

0 (Ω), ∀𝑖 = 0, 1, ..., 𝑛.

which concludes that ∇ ⋅ 𝑩(𝑯𝑖 +𝑯 𝑠
𝑖 ) = 0 in 𝐻−1(Ω).
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Proposition 1. Suppose (12)-(19). Then there exists a vector potential 𝑯 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)
)

and sub-sequence of 𝑯𝜏
(denoted by the same symbol again) such that

(𝑎) 𝑩̄𝜏 → 𝑩𝜏 , in 𝐿2((0, 𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)
)
, (50)

(𝑏) 𝑯̄ 𝑠
𝜏 → 𝑯 𝑠

𝜏 , in 𝐿2((0, 𝑇 );𝑳2(Ω)
)
, (51)

(𝑐) 𝑯̄ 𝑠
𝜏 → 𝑯 𝑠, in 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)), (52)

(𝑑) 𝑯̄𝜏 ⇀ 𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)), (53)
(𝑒) 𝑩𝜏 ⇀ 𝑩(𝑯 +𝑯 𝑠), in 𝐿2((0, 𝑇 );𝑳2(Ω)

)
, (54)

(𝑓 ) 𝜕𝑡𝑩𝜏 ⇀ 𝜕𝑡𝑩(𝑯 +𝑯 𝑠), in 𝐿2((0, 𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)
)
, (55)

(𝑔) 𝑯̄𝜏 → 𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)
)
, (56)

(ℎ) 𝑯̄𝜏 ⇀ 𝑯 , in 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)
)
. (57)

Proof. (a) By (c) in Lemma 4,

‖‖𝑩̄𝜏 − 𝑩𝜏
‖‖2𝐿2((0,𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)) ≤ ∫

𝑇

0
𝜏2 ‖‖𝜕𝑡𝑩𝜏

‖‖2𝑯−1(𝒄𝒖𝒓𝒍,Ω) d𝑡 ≤ 𝐶𝜏2 → 0, 𝜏 → 0.

(b) By the assumption (13),

‖‖𝑯̄ 𝑠
𝜏 −𝑯 𝑠

𝜏
‖‖2𝐿2((0,𝑇 );𝑳2(Ω)) =

𝑛∑
𝑖=1

∫
𝑡𝑖

𝑡𝑖−1
∫Ω

|||(𝑡𝑖 − 𝑡)𝛿𝜏𝑯 𝑠
𝑖

)|||2 d𝑡 ≤ 𝜏2 ∫
𝑇

0

‖‖𝜕𝑡𝑯𝜏
‖‖2𝑳2(Ω) d𝑡 ≤ 𝐶𝜏2 → 0, 𝜏 → 0.

(c) By (13) and the mean value theorem,

‖‖𝑯̄ 𝑠
𝜏 −𝑯 𝑠‖‖2𝐿2((0,𝑇 );𝑳2(Ω)) =

𝑛∑
𝑖=1

∫
𝑡𝑖

𝑡𝑖−1
∫Ω

||𝑯 𝑠(𝑡𝑖) −𝑯 𝑠(𝑡)||2 d𝑡 = 𝑛∑
𝑖=1

∫
𝑡𝑖

𝑡𝑖−1
∫Ω

||𝜕𝑡𝑯 𝑠(𝜉𝑖)||2 ⋅ ||𝑡𝑖 − 𝑡||2 d𝑡 (
𝜉𝑖 ∈ [𝑡𝑖−1, 𝑡𝑖]

)
≤𝜏2 ∫

𝑇

0

‖‖𝜕𝑡𝑯 𝑠
𝜏
‖‖2𝑳2(Ω) d𝑡 ≤ 𝐶𝜏2 → 0, 𝜏 → 0.

Similarly, by (13) again, we have

‖‖‖∇ ×
(
𝑯̄ 𝑠
𝜏 −𝑯 𝑠)‖‖‖2𝐿2((0,𝑇 );𝑳2(Ω))

≤ 𝜏2 ∫
𝑇

0

‖‖∇ × (𝜕𝑡𝑯 𝑠
𝜏 )‖‖2𝑳2(Ω) d𝑡 ≤ 𝐶𝜏2 → 0,

and concludes the result (52).
(d) By (a) in Lemma 4 and the reflexivity of 𝐿2((0, 𝑇 );𝑳2(Ω)), there exists a limit 𝑯 ,

𝑯̄𝜏 ⇀ 𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)).

Latter we will show that 𝑯 solves the (7).
(e) Set 𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω), by the Green theorem and result of (d),

lim
𝜏→0∫

𝑇

0

(
∇ × 𝑯̄𝜏 , 𝑯̄

)
d𝑡 = lim

𝜏→0∫
𝑇

0

(
𝑯̄𝜏 ,∇ × 𝑯̄

)
d𝑡 = ∫

𝑇

0

(
𝑯 ,∇ × 𝑯̄

)
d𝑡 = ∫

𝑇

0

(
∇ ×𝑯 , 𝑯̄

)
d𝑡,

which concludes that ∇ × 𝑯̄𝜏 ⇀ ∇ ×𝑯 in 𝐿2((0, 𝑇 );𝑳2(Ω)). And with (d) together, we conclude the result.
(f) By (d) in Lemma 4 and the reflexivity of 𝐿2((0, 𝑇 );𝑳2(Ω)), there exists a limit 𝑩 such that

𝑩𝜏 ⇀ 𝑩, in 𝐿2((0, 𝑇 );𝑳2(Ω)). (58)

Next, we show that 𝑩 = 𝑩(𝑯 +𝑯 𝑠). By Lemma 4, and the transient div-curl Lemma 3.1 in24,

lim
𝜏→0∫

𝑇

0

(
𝑩𝜏 , (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 )𝜑
)
d𝑡 = ∫

𝑇

0

(
𝑩, (𝑯 +𝑯 𝑠)𝜑

)
d𝑡, ∀𝜑 ∈ 𝐶∞

0 (Ω̄).
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Choose 𝜑 ≥ 0 and any 𝒉 ∈ 𝐿2((0, 𝑇 );𝑳2(Ω)), and by the monotonicity of 𝑩(⋅), we have

0 ≤ ∫
𝑇

0

(
𝑩̄𝜏 − 𝑩(𝒉), (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 − 𝒉)𝜑
)
d𝑡 =

𝐼1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

∫
𝑇

0

(
𝑩̄𝜏 , (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 )𝜑
)
d𝑡

− ∫
𝑇

0

(
𝑩̄𝜏 , 𝜑𝒉

)
d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
𝐼2

−∫
𝑇

0

(
𝑩(𝒉), (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 )𝜑
)
d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼3

+∫
𝑇

0

(
𝑩(𝒉), 𝜑𝒉

)
d𝑡

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼4

.
(59)

For the first term,

𝐼1 = ∫
𝑇

0

(
𝑩̄𝜏 − 𝑩𝜏 ,

(
𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏

)
𝜑
)
d𝑡 + ∫

𝑇

0

(
𝑩𝜏 ,

(
𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏

)
𝜑
)
d𝑡.

By Lemma 4 and assumption (13), together with the result of (a),|||||∫
𝑇

0

(
𝑩̄𝜏 − 𝑩𝜏 ,

(
𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏

)
𝜑
)
d𝑡
||||| ≤ 𝐶 ‖‖𝑩̄𝜏 − 𝑩𝜏

‖‖𝐿2((0,𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)) ⋅
‖‖𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏
‖‖𝐿2((0,𝑇 );𝑯(𝒄𝒖𝒓𝒍,Ω)) ≤ 𝐶𝜏 → 0, 𝜏 → 0.

Therefore,

lim
𝜏→0

𝐼1 = lim
𝜏→0∫

𝑇

0

(
𝑩𝜏 ,

(
𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏

)
𝜑
)
d𝑡 = ∫

𝑇

0

(
𝑩, (𝑯 +𝑯 𝑠)𝜑

)
d𝑡.

For the second term, by (50), 𝑩̄𝜏 and 𝑩𝜏 converge to the same limit,

lim
𝜏→0

𝐼2 = lim
𝜏→0∫

𝑇

0

(
𝑩̄𝜏 , 𝜑𝒉

)
d𝑡 = ∫

𝑇

0

(
𝑩, 𝜑𝒉

)
d𝑡.

For the third term, by (53),

lim
𝜏→0

𝐼3 = lim
𝜏→0∫

𝑇

0

(
𝑩(𝒉), (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 )𝜑
)
d𝑡 = ∫

𝑇

0

(
𝑩(𝒉), (𝑯 +𝑯 𝑠)𝜑

)
d𝑡.

Sum up 𝐼1 to 𝐼4,

lim
𝜏→0∫

𝑇

0

(
𝑩̄𝜏 − 𝑩(𝒉), (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 − 𝒉)𝜑
)
d𝑡 = ∫

𝑇

0

(
𝑩 − 𝑩(𝒉), (𝑯 +𝑯 𝑠 − 𝒉)𝜑

)
d𝑡 ≥ 0.

Set 𝒉 = 𝑯 +𝑯 𝑠 ± 𝜀𝒉, and let 𝜀→ 0+,

∫
𝑇

0

(
𝑩 − 𝑩(𝑯 +𝑯 𝑠),±𝜑𝒉

)
d𝑡 ≥ 0.

Thus, for any 0 < 𝜑 ∈ 𝐶∞
0 (Ω̄), and for all 𝒉 ∈ 𝐿2((0, 𝑇 );𝑳2(Ω)), we have

∫
𝑇

0

(
𝑩 − 𝑩(𝑯 +𝑯 𝑠), 𝜑𝒉

)
d𝑡 = 0.

which concludes that 𝑩 = 𝑩(𝑯 +𝑯 𝑠) almost everywhere in Ω × (0, 𝑇 ).
Recall (58), we have

𝑩𝜏 ⇀ 𝑩(𝑯 +𝑯 𝑠), in 𝐿2((0, 𝑇 );𝑳2(Ω)
)
.

(g) By Lemma 4, there exists a 𝑩𝑡 ∈ 𝐿2((0, 𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)), such that for all 𝑯̄ ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)),(
𝑩𝜏(𝑡), 𝑯̄

)
−
(
𝑩𝜏(0), 𝑯̄

)
= ∫

𝑡

0

(
𝜕𝑠𝑩𝜏(𝑠), 𝑯̄

)
d𝑠→ ∫

𝑡

0
(𝑩𝑡, 𝑯̄)d𝑠 𝜏 → 0. (60)

Next we will show that 𝑩𝑡 = 𝜕𝑡𝑩(𝑯 +𝑯 𝑠). By Lemma 4 again, for all 𝑯̄ ∈ 𝑯(𝒄𝒖𝒓𝒍,Ω),||| ⟨𝑩𝜏(𝑡), 𝑯̄
⟩ ||| = |||||(𝑩𝜏(0), 𝑯̄

)
+ ∫

𝑡

0

(
𝜕𝑠𝑩𝜏(𝑠), 𝑯̄

)
d𝑠
|||||≤ ‖‖𝑩𝜏(0)‖‖ ⋅ ‖‖𝑯̄‖‖ + ‖‖𝜕𝑡𝑩𝜏(𝑡)‖‖𝐿2((0,𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)) ⋅

‖‖𝑯̄‖‖𝐿2((0,𝑇 );𝑯(𝒄𝒖𝒓𝒍,Ω)) ≤ 𝐶 ‖‖𝑯̄‖‖𝑯(𝒄𝒖𝒓𝒍,Ω) ,

which concludes
{
𝑩𝜏(𝑡)

}
is equi-bounded in 𝑯−1(𝒄𝒖𝒓𝒍,Ω).
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Furthermore, by Lemma 4, for all 𝑯̄ ∈ 𝑯(𝒄𝒖𝒓𝒍,Ω),|||⟨𝑩𝜏(𝑡2) − 𝑩𝜏(𝑡1), 𝑯̄
⟩||| = |||||∫

𝑡2

𝑡1

⟨
𝜕𝑠𝑩𝜏(𝑠), 𝑯̄

⟩
d𝑠
|||||≤ ‖‖𝜕𝑡𝑩𝜏(𝑡)‖‖𝐿2((𝑡1,𝑡2);𝑯−1(𝒄𝒖𝒓𝒍,Ω)) ⋅

‖‖𝑯̄‖‖𝐿2((𝑡1,𝑡2);𝑯(𝒄𝒖𝒓𝒍,Ω)) ≤ 𝐶
√
𝑡2 − 𝑡1 ‖‖𝑯̄‖‖𝑯(𝒄𝒖𝒓𝒍,Ω) ,

which implies
{
𝑩𝜏(𝑡)

}
is equi-continuous.

By the Arzelà-Ascoli Theorem22, Lemma 1.3.10,

𝑩𝜏(𝑡) ⇀ 𝑩(𝑡), in 𝑯−1(𝒄𝒖𝒓𝒍,Ω),∀𝑡 ∈ [0, 𝑇 ].

Recall (60),

∫
𝑡

0

(
𝜕𝑠𝑩(𝑠), 𝑯̄

)
d𝑠 =

(
𝑩(𝑡) − 𝑩(0), 𝑯̄

)
= lim

𝜏→0

(
𝑩𝜏(𝑡) − 𝑩𝜏(0), 𝑯̄

)
= lim

𝜏→0∫
𝑡

0

(
𝜕𝑠𝑩𝜏(𝑠), 𝑯̄

)
= ∫

𝑡

0

(
𝑩𝑡(𝑠), 𝑯̄

)
d𝑠,

which concludes that 𝑩𝑡 = 𝜕𝑡𝑩(𝑯 +𝑯 𝑠) a.e. in Ω × (0, 𝑇 ). Therefore,

𝜕𝑡𝑩𝜏 ⇀ 𝜕𝑡𝑩(𝑯 +𝑯 𝑠), in 𝐿2((0, 𝑇 );𝑯−1(𝒄𝒖𝒓𝒍,Ω)
)
.

(h) Set 0 ≤ ∀𝜑 ∈ 𝐶∞
0 (Ω̄). By the strong monotonicity of 𝑩(⋅) in (21),

∫
𝑇

0

(
𝑩(𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 ) − 𝑩(𝑯 +𝑯 𝑠), (𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 −𝑯 −𝑯 𝑠)𝜑

)
d𝑡 ≥ 𝑚𝑩 ∫

𝑇

0

(
𝜑, |𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 −𝑯 −𝑯 𝑠|2)d𝑡.
Follow the similar procedure in (g), we have

𝑚𝑩 lim
𝜏→0∫

𝑇

0

(
𝜑, |𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 −𝑯 −𝑯 𝑠|2)d𝑡 ≤ lim
𝜏→0∫

𝑇

0

(
𝑩(𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 ) − 𝑩(𝑯 +𝑯 𝑠), (𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 −𝑯 −𝑯 𝑠)𝜑

)
d𝑡 = 0.

Therefore,

lim
𝜏→0∫

𝑇

0

‖‖𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 − (𝑯 +𝑯 𝑠)‖‖2 d𝑡 = 0,

which concludes the strong convergence of

𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 → 𝑯 +𝑯 𝑠, in 𝐿2((0, 𝑇 );𝑳2(Ω)

)
.

By (51), we obain

𝑯̄𝜏 → 𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)
)
.

Proposition 2. Suppose (12)-(19). There exists 𝑢 ∈ 𝐶
(
[0, 𝑇 ];𝐿2(Ω)

)⋂
𝐿∞((0, 𝑇 );𝐻1(Ω)

)
with 𝜕𝑡𝑢 ∈ 𝐿2((0, 𝑇 );𝐿2(Ω)

)
and

a sub-sequence of 𝑢𝜏 (denoted by the same symbol) such that

(𝑎) 𝑢𝜏 → 𝑢, in 𝐶
(
[0, 𝑇 ];𝐿2(Ω)

)
, (61)

(𝑏) 𝑢̄𝜏(𝑡) ⇀ 𝑢(𝑡), in 𝐻1(Ω),∀𝑡 ∈ [0, 𝑇 ], (62)
(𝑐) 𝑢̄𝜏 → 𝑢, in 𝐿2((0, 𝑇 );𝐿2(Ω)

)
, (63)

(𝑑) 𝛾̄𝜏 → 𝛾(𝑢), in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
, (64)

(𝑒) 𝛾̄𝜏(𝑡 − 𝜏) → 𝛾(𝑢), in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
, (65)

(𝑓 ) 𝛽𝜏 → 𝛽𝜏 , in 𝐶
(
[0, 𝑇 ];𝐻−1(Ω)

)
, (66)

(𝑔) 𝛽𝜏 → 𝛽(𝑢), in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
. (67)

Proof. From Lemma 3, 𝜕𝑡𝑢𝜏 ∈ 𝐿2((0, 𝑇 );𝐿2(Ω)
)

and 𝑢̄𝜏 ∈ 𝐶
(
[0, 𝑇 ];𝐻1(Ω)

)
. By Lemma 1.3.1322, the compact embedding

𝐻1(Ω) →→ 𝐿2(Ω) concludes the results (a) and (b).
(c) It is equivalent to show that 𝑢𝜏 and 𝑢̄𝜏 converge to the same limit in 𝐿2((0, 𝑇 );𝐿2(Ω)

)
,

∫
𝑇

0

‖‖𝑢̄𝜏 − 𝑢𝜏‖‖2 d𝑡 = 𝑛∑
𝑖=1

∫
𝑡𝑖

𝑡𝑖−1
∫Ω

|𝛿𝜏𝑢𝑖(𝜏 − 𝑡 + 𝑡𝑖−1)|2d𝒙d𝑡 ≤ 𝜏2
𝑛∑
𝑖=1

‖‖𝛿𝜏𝑢𝑖‖‖2𝐿2(Ω) 𝜏 ≤ 𝐶𝜏2 → 0, 𝜏 → 0.
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(d) By (61) in (a) and (16),

∫
𝑇

0

‖‖‖𝛾̄𝜏(𝑡) − 𝛾(𝑡)‖‖‖2𝐿2(Ω)
d𝒙d𝑡 ≤ 𝑛∑

𝑖=1
∫

𝑡𝑖

𝑡𝑖−1
∫Ω

𝐿2
𝛾 ⋅

||𝑢̄𝜏(𝑡) − 𝑢(𝑡)||2 d𝒙d𝑡 ≤ 𝐶 ∫
𝑇

0

‖‖𝑢̄𝜏 − 𝑢‖‖2𝐿2(Ω) d𝑡→ 0, 𝜏 → 0.

Thus, 𝛾̄𝜏(𝑡) → 𝛾(𝑡) in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
.

(e) It is equivalent to show that 𝛾̄𝜏(𝑡 − 𝜏) and 𝛾̄𝜏(𝑡) converge to the same limit in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
,

∫
𝑇

0

‖‖𝛾̄𝜏(𝑡) − 𝛾̄𝜏(𝑡 − 𝜏)‖‖2𝑳2(Ω) d𝑡 ≤ 𝜏2𝐿2
𝛾

𝑛∑
𝑖=1

𝜏‖𝛿𝜏𝑢𝑖‖2𝐿2(Ω) ≤ 𝐶𝜏2 → 0, 𝜏 → 0.

(f) From the result of (c) in Lemma 3,||(𝛽𝜏 − 𝛽𝜏 , 𝑢̄)|| ≤ 𝜏 ‖‖𝜕𝑡𝛽𝜏‖‖𝐻−1(Ω) ⋅ ‖𝑢̄‖𝐻1(Ω) ≤ 𝐶𝜏 ‖𝑢̄‖𝐻1(Ω) ,

which concludes that ‖‖𝛽𝜏 − 𝛽𝜏‖‖𝐻−1(Ω) ≤ 𝐶𝜏 → 0, 𝜏 → 0.
(g) By the Lipschitz continuous of 𝛽 in (24), and strong convergence of 𝑢𝜏 → 𝑢 in 𝐿2((0, 𝑇 );𝑳2(Ω)

)
,

∫
𝑇

0

‖‖𝛽𝜏 − 𝛽(𝑢)‖‖2𝐿2(Ω) d𝑡 ≤𝐿2
𝛽 ∫

𝑇

0

‖‖𝑢̄𝜏 − 𝑢‖‖2𝐿2(Ω) d𝑡→ 0, 𝜏 → 0.

Proposition 3. Suppose (12)-(19). Then there exists a vector field 𝑯 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)
)

and sub-sequence of 𝑯𝜏
(denoted by the same symbol) such that

𝑯̄𝜏 → 𝑯 , in 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)
)
. (68)

Proof. By the Proposition 1, it is left to prove the strong convergence of ∇ × 𝑯̄𝜏 → ∇ × 𝑯 in 𝐿2((0, 𝑇 );𝑳2(Ω)). By the
convergence results in the Proposition 1, Proposition 2 and the equation (7),

𝛾∗ ‖‖∇ × (𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 ) − ∇ × (𝑯 +𝑯 𝑠)‖‖2𝐿2((0,𝑇 );𝑳2(Ω))

≤∫
𝑇

0 ∫Ω
𝛾̄𝜏(𝑡 − 𝜏) ⋅

(
∇ × (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 )
)2d𝒙d𝑡 + ∫

𝑇

0 ∫Ω
𝛾̄𝜏(𝑡 − 𝜏) ⋅

(
∇ × (𝑯 +𝑯 𝑠)

)2d𝒙d𝑡
− 2∫

𝑇

0

(
𝛾̄𝜏(𝑡 − 𝜏) ⋅ ∇ × (𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏 ),∇ × (𝑯 +𝑯 𝑠)
)
d𝑡

= − lim
𝜏→0∫

𝑇

0

(
𝜕𝑡𝑩𝜏 , 𝑯̄𝜏 + 𝑯̄ 𝑠

𝜏

)
d𝑡 + ∫

𝑇

0

(
𝜕𝑡𝑩,𝑯 +𝑯 𝑠)d𝑡

≤ − lim
𝑛→∞

𝑛∑
𝑖=1

∫Ω

(
Φ𝑩−1

(
𝑩(𝑯𝑖 +𝑯 𝑠

𝑖 )
)
− Φ𝑩−1

(
𝑩(𝑯𝑖−1 +𝑯 𝑠

𝑖−1)
))

d𝒙 + ∫
𝑇

0

(
𝜕𝑡𝑩,𝑯 +𝑯 𝑠)d𝑡

= − ∫
𝑇

0 ∫Ω

dΦ𝑩−1

(
𝑩(𝑯 +𝑯 𝑠)

)
d𝑡

d𝒙d𝑡 + ∫
𝑇

0

(
𝜕𝑡𝑩,𝑯 +𝑯 𝑠)d𝑡

= − ∫
𝑇

0

(
𝜕𝑡𝑩(𝑯 +𝑯 𝑠),𝑯 +𝑯 𝑠)d𝑡 + ∫

𝑇

0

(
𝜕𝑡𝑩,𝑯 +𝑯 𝑠)d𝑡 = 0.

Thus,

𝑯̄𝜏 + 𝑯̄ 𝑠
𝜏 → 𝑯 +𝑯 𝑠, in 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)).

By (52) and (56), we conclude the result.

3.4 Existence of the solution
In this subsection, we prove an important theorem on the existence of weak solution to the regularized problem (10)-(11).

Theorem 1. Suppose (12)-(19). Then the limit (𝑯 , 𝑢) solves (10)-(11).
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Proof. (a) Set 𝑯̄ ∈ 𝑪∞
0 (Ω) in (48), and integrate in time,

∫
𝑡

0
(𝜕𝑡𝑩𝜏 , 𝑯̄)d𝑡 + ∫

𝑡

0

(
𝛾̄𝜏(𝑡 − 𝜏)∇ × 𝑯̄𝜏 ,∇ × 𝑯̄

)
= 0.

By the Proposition 1 and the Proposition 2, passing the limit for 𝜏 → 0,

∫
𝑡

0

(
𝜕𝑡𝑩(𝑯 +𝑯 𝑠), 𝑯̄

)
d𝑠 + ∫

𝑡

0

(
𝛾(𝑢)∇ ×𝑯 ,∇ × 𝑯̄

)
d𝑠 = 0.

Since 𝑪∞
0 (Ω) is dense in 𝑯0(𝒄𝒖𝒓𝒍,Ω), differentiating in time, (𝑯 , 𝑢) solves (10).

(b) Set 𝑢̄ ∈ 𝐻1(Ω), and integrate (49) in time for any 𝑡 ∈ [0, 𝑇 ],

∫
𝑡

0

(
𝜕𝑡𝛽𝜏 , 𝑢̄

)
d𝑠 + ∫

𝑡

0
(𝜆̄𝜏∇𝑢̄𝜏 ,∇𝑢̄)d𝑠 = ∫

𝑡

0

([
𝛾̄𝜏(𝑡 − 𝜏)|∇ × 𝑯̄𝜏 |2]

𝜖
, 𝑢̄
)
d𝑠.

For the first term on the LHS, by the Proposition 2,

∫
𝑡

0

(
𝜕𝑡𝛽𝜏 , 𝑢̄

)
d𝑠 =

(
𝛽𝜏(𝑡) − 𝛽𝜏(0), 𝑢̄

)
→

(
𝛽
(
𝑢(𝑡)

)
− 𝛽(𝑢0), 𝑢̄

)
, 𝜏 → 0.

For the second term, by (18) and (62),

∫
𝑡

0
(𝜆̄𝜏∇𝑢̄𝜏 ,∇𝑢̄)d𝑠 → ∫

𝑡

0
(𝜆∇𝑢,∇𝑢̄)d𝑠, 𝜏 → 0.

For the RHS, by (65) and (68),

∫
𝑡

0 ∫Ω

[
𝛾̄𝜏(𝑡 − 𝜏)|∇ × 𝑯̄𝜏 |2]

𝜖
→ ∫

𝑡

0 ∫Ω

[
𝛾(𝑢)|∇ ×𝑯|2]

𝜖
, 𝜏 → 0.

Given 𝜖,
[
𝛾̄𝜏(𝑡 − 𝜏)|∇ × 𝑯̄𝜏 |2]

𝜖
is uniformly bounded with respect to 𝜏. Thus,

∫
𝑡

0

([
𝛾̄𝜏(𝑡 − 𝜏)|∇ × 𝑯̄𝜏 |2]

𝜖
, 𝑢̄
)
d𝑠→ ∫

𝑡

0

([
𝛾(𝑢)|∇ ×𝑯|2]

𝜖
, 𝑢̄
)
d𝑠, 𝜏 → 0.

Then, we have (
𝛽
(
𝑢(𝑡)

)
− 𝛽(𝑢0), 𝑢̄

)
+ ∫

𝑡

0
(𝜆∇𝑢,∇𝑢̄)d𝑠 = ∫

𝑡

0

([
𝛾(𝑢)|∇ ×𝑯|2]

𝜖
, 𝑢̄
)
d𝑠.

Finally, differentiate with respect to time to conclude the result.

4 CONVERGENCE AND WELL-POSEDNESS

Given a series of 𝜖 in (10)-(11), we obtain a series of solution {(𝑯 𝜖 , 𝑢𝜖)}. The critical point is whether (𝑯 𝜖 , 𝑢𝜖) converges to
the solution of the original problem (7)-(8) as 𝜖 → 0. This section dedicates to the convergence and the well-posedness.

Rewrite solution in (10)-(11) with the superscript 𝜖 to emphasize the solution depends on 𝜖.
Given 𝑯(0) = 𝑯0, find 𝑯 𝜖 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)), such that(

𝜕𝑡𝑩(𝑯 𝜖 +𝑯 𝑠), 𝑯̄
)
+
(
𝛾(𝑢𝜖)∇ ×𝑯 𝜖 ,∇ × 𝑯̄) = 0, ∀𝑯̄ ∈ 𝑯0(𝒄𝒖𝒓𝒍,Ω). (69)

Given 𝑢(0) = 𝑢0, find 𝑢 ∈ 𝐿2((0, 𝑇 );𝐻1(Ω)
)
, such that(

𝜕𝑡𝛽(𝑢𝜖), 𝑢̄
)
+ (𝜆∇𝑢𝜖 ,∇𝑢̄) =

(
[𝑞]𝜖 , 𝑢̄

)
, ∀𝑢̄ ∈ 𝐻1(Ω), (70)

where 𝑞 = 𝛾(𝑢𝜖)|∇ ×𝑯 𝜖|2, and [𝑞]𝜖 =
𝑞

1 + 𝜖|𝑞| for any 𝜖 > 0.

4.1 Boundedness
The following lemmas ensure the boundedness of the solution to (69)-(70), which are essential for the well-posedness of (7)-(8).
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Lemma 5. Assume (12)-(19). Then there exists a positive constant 𝐶 such that,

∫
𝑇

0
‖𝑯 𝜖 +𝑯 𝑠‖2𝑳2(Ω) d𝑡 +

‖‖‖‖‖∫
𝑇

0
∇ ×𝑯 𝜖d𝑡

‖‖‖‖‖
2

𝑳2(Ω)

≤ 𝐶. (71)

Lemma 6. Assume (12)-(19). Then there exists a positive constant 𝐶 such that,

∫
𝑇

0
‖𝑢𝜖‖2𝐿2(Ω) d𝑡 +

‖‖‖‖‖∫
𝑇

0
∇𝑢𝜖d𝑡

‖‖‖‖‖
2

𝑳2(Ω)

≤ 𝐶. (72)

The proof of Lemma 5-6 is similar to Lemma 3-4.

4.2 Convergence
By Lemma 5-6, we have the convergence results.

Corollary 1. By Lemma 5, there exists a subsequence of {𝑯 𝜖} (denoted by the same symbol) and𝑯 ∈ 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)),
such that

𝑯 𝜖 ⇀ 𝑯 , in 𝐿2((0, 𝑇 );𝑯0(𝒄𝒖𝒓𝒍,Ω)), (73)
𝑯 𝜖 → 𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)), (74)
∇ ×𝑯 𝜖 → ∇ ×𝑯 , in 𝐿2((0, 𝑇 );𝑳2(Ω)), (75)
𝑩(𝑯 𝜖 +𝑯 𝑠) → 𝑩(𝑯 +𝑯 𝑠), in 𝐿2((0, 𝑇 );𝑳2(Ω)). (76)

Corollary 2. By Lemma 6, there exists a subsequence of {𝑢𝜖} (denoted by the same symbol) and 𝑢 ∈ 𝐿2((0, 𝑇 );𝐻1(Ω)
)
, such

that

𝑢𝜖 ⇀ 𝑢, in 𝐿2((0, 𝑇 );𝐻1(Ω)
)
, (77)

𝑢𝜖 → 𝑢, in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
, (78)

∇𝑢𝜖 → ∇𝑢, in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
, (79)

𝛽(𝑢𝜖) → 𝛽(𝑢), in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
, (80)

𝛾(𝑢𝜖) → 𝛾(𝑢), in 𝐿2((0, 𝑇 );𝐿2(Ω)
)
. (81)

Now, we are in the position to prove the convergence of the solution.

Theorem 2. Suppose (12)-(19). Let (𝑯 𝜖 , 𝑢𝜖) be the solution to (69)-(70), and (𝑯 , 𝑢) be to solution to (7)-(8). Then (𝑯 𝜖 , 𝑢𝜖) →
(𝑯 , 𝑢) as 𝜖 → 0.

Proof. (1) Set 𝑯̄ ∈ 𝑪∞
0 (Ω) in (69), and integrate in time for any 𝑡 ∈ [0, 𝑇 ],(

𝑩(𝑯 𝜖 +𝑯 𝑠) − 𝑩(𝑯0 +𝑯 𝑠
0 ), 𝑯̄

)
+ ∫

𝑡

0

(
𝛾(𝑢𝜖)∇ ×𝑯 𝜖 ,∇ × 𝑯̄) = 0,

By Lemma 5 and Lemma 6, take the limit for 𝜖 → 0,(
𝑩(𝑯 +𝑯 𝑠) − 𝑩(𝑯0 +𝑯 𝑠

0 ), 𝑯̄
)
+ ∫

𝑡

0

(
𝛾(𝑢)∇ ×𝑯 ,∇ × 𝑯̄) = 0,

that is,

∫
𝑡

0

(
𝜕𝑡𝑩(𝑯 +𝑯 𝑠), 𝑯̄

)
d𝑠 + ∫

𝑡

0

(
𝛾(𝑢)∇ ×𝑯 ,∇ × 𝑯̄

)
d𝑠 = 0.

Since 𝑪∞
0 (Ω) is dense in 𝑯0(𝒄𝒖𝒓𝒍,Ω), differentiating in time, we obtain (𝑯 , 𝑢) solves (7).

(2) Set 𝑢̄ ∈ 𝐻1(Ω), and integrate (70) in time for any 𝑡 ∈ [0, 𝑇 ],

∫
𝑡

0

(
𝜕𝑡𝛽(𝑢𝜖), 𝑢̄

)
+ ∫

𝑡

0
(𝜆∇𝑢̄𝜖 ,∇𝑢̄) = ∫

𝑡

0

([
𝛾̄(𝑢𝜖)|∇ ×𝑯 𝜖|2]

𝜖
, 𝑢̄
)
.
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For the first term on the LHS, by (80), we have

∫
𝑡

0

(
𝜕𝑡𝛽(𝑢𝜖), 𝑢̄

)
=
(
𝛽(𝑢𝜖) − 𝛽(𝑢0), 𝑢̄

)
→

(
𝛽(𝑢) − 𝛽(𝑢0), 𝑢̄

)
, 𝜖 → 0.

For the second term, by (77), we have

∫
𝑡

0
(𝜆∇𝑢𝜖 ,∇𝑢̄) → ∫

𝑡

0
(𝜆∇𝑢,∇𝑢̄), 𝜖 → 0.

For the RHS, we need

∫
𝑡

0 ∫Ω

|||𝛾(𝑢𝜖)|∇ ×𝑯 𝜖|2 − 𝛾(𝑢)|∇ ×𝑯|2||| → 0, 𝜖 → 0,

which could be deduced as follows. Setting both test functions 𝑯̄ ∈ 𝑪∞
0 (Ω) in (7) and (69), subtracting and integrating in time

for any 𝑡 ∈ [0, 𝑇 ], and setting 𝑯̄ = 𝑯 𝜖 −𝑯 , we have(
𝑩(𝑯 𝜖 +𝑯 𝑠) − 𝑩(𝑯 +𝑯 𝑠),𝑯 𝜖 −𝑯

)
+ ∫

𝑡

0
(𝛾(𝑢𝜖)∇ × (𝑯 𝜖 −𝑯),∇ × (𝑯 𝜖 −𝑯)) = ∫

𝑡

0

((
𝛾(𝑢) − 𝛾(𝑢𝜖)

)
∇ ×𝑯 ,∇ × (𝑯 𝜖 −𝑯)

)
.

For the first term on the LHS, by (20) and (74), we have(
𝑩(𝑯 𝜖 +𝑯 𝑠) − 𝑩(𝑯 +𝑯 𝑠),𝑯 𝜖 −𝑯

) ≤ 𝐿𝑩 ‖𝑯 𝜖 −𝑯‖2 → 0, 𝜖 → 0.

For the RHS, by (24) and (78), we have

∫
𝑡

0

((
𝛾(𝑢) − 𝛾(𝑢𝜖)

)
∇ ×𝑯 ,∇ × (𝑯 𝜖 −𝑯)

) ≤ ∫
𝑡

0 ∫Ω

|||𝛾(𝑢) − 𝛾(𝑢𝜖)||| ⋅ |∇ ×𝑯|2 + ∫
𝑡

0 ∫Ω

|||𝛾(𝑢) − 𝛾(𝑢𝜖)||| ⋅ |∇ ×𝑯 𝜖|2 → 0.

Thus, the second term on the LHS should converge to zero, that is

∫
𝑡

0

(
𝛾(𝑢𝜖)∇ × (𝑯 𝜖 −𝑯),∇ × (𝑯 𝜖 −𝑯)

)
= ∫

𝑡

0 ∫Ω
𝛾(𝑢𝜖)|∇ × (𝑯 𝜖 −𝑯)|2 → 0, 𝜖 → 0.

Then we have

∫
𝑡

0 ∫Ω

|||𝛾(𝑢𝜖)|∇ ×𝑯 𝜖|2 − 𝛾(𝑢)|∇ ×𝑯|2||| ≤ ∫
𝑡

0 ∫Ω
𝛾(𝑢𝜖) ⋅ |∇ × (𝑯 𝜖 −𝑯)|2 + ∫

𝑡

0 ∫Ω
|𝛾(𝑢𝜖) − 𝛾(𝑢)| ⋅ |∇ ×𝑯|2 → 0,

that is

∫
𝑡

0

([
𝛾(𝑢𝜖)|∇ × 𝑯̄ 𝜖|2]

𝜖
, 𝑢̄
)
→ ∫

𝑡

0

(
𝛾(𝑢)|∇ ×𝑯|2, 𝑢̄), 𝜖 → 0.

Therefore, (
𝛽
(
𝑢(𝑡)

)
− 𝛽(𝑢0), 𝑢̄

)
+ ∫

𝑡

0
(𝜆∇𝑢,∇𝑢̄) = ∫

𝑡

0

(
𝛾(𝑢)|∇ ×𝑯|2, 𝑢̄).

which concludes the result by differentiating respect to time.

Finally, we state the main result of this paper.

Theorem 3. Suppose (12)-(19). Let (𝑯̄ 𝜖
𝜏 , 𝑢̄

𝜖
𝜏) be the solution to (48)-(49).

(1) Let (𝑯 𝜖 , 𝑢𝜖) be the solution to (69)-(70), then (𝑯̄ 𝜖
𝜏 , 𝑢̄

𝜖
𝜏) → (𝑯 𝜖 , 𝑢𝜖) as 𝜏 → 0 given by (53)-(57).

(2) Let (𝑯 , 𝑢) be the solution to (7)-(8), then (𝑯 𝜖 , 𝑢𝜖) → (𝑯 , 𝑢) as 𝜖 → 0 given by (73)-(75) and (77)-(79).

Furthermore, there exists a positive constant 𝐶 , such that

∫
𝑇

0
‖𝑯‖2 d𝑡 + ‖‖‖‖‖∫

𝑇

0
∇ ×𝑯d𝑡

‖‖‖‖‖
2

+ ∫
𝑇

0
‖𝑢‖2 d𝑡 + ‖‖‖‖‖∫

𝑇

0
∇𝑢d𝑡

‖‖‖‖‖
2

≤ 𝐶,

where 𝐶 depends only on the source magnetic field 𝑯 𝑠 and the domain Ω and the time 𝑇 and the material parameters 𝛾 , 𝛽, 𝜆.
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