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Abstract

In this paper, we investigate the surface-dependent growth model in Euclidean 3-space. The
surface-dependent model is developed to model the kinematics of surface growth for objects
that can be generated by the curves on the surface, such as parasites and plants. This paper
includes two main purposes for this model. The first one is to parameterize this model by using
the quaternions and homothetic motions. Furthermore, we express the matrix representations
of the surface-dependent growth model. The second one is to construct the surface-dependent
growth model by using the growth velocity components related to the Darboux frame at each
point of the generating curve. Moreover, to support the theory studied in the paper various
illustrated examples are presented.
keywords: Biomathematics, Biological growth, Mathematical model, Darboux frame, Quater-
nion Algebras.
AMS 92B99, 74K99, 53A04.

1 Introduction
In nature, there are a variety of living species, and the most important factor affecting the growth
of these organisms is the environment. For example, some living things develop as dependent on
another. Therefore, when modeling the growth of such creatures, the effect of the surface on which
it is dependent should also be taken into consideration. In this study, we tried to explain these
creatures by using the surface-dependent growth model. The most important examples of surface-
dependent growth are parasites. The parasites usually have a ring or spiral structure and stick to
the surface and live there. One of these parasite species is Liana which given in Figure 5. The
liana is a long-stemmed, woody vine that uses trees, as well as other means of vertical support, to
climb up to the canopy to get access to well-lit areas of the forest. They begin life on the forest
floor but depend on trees for support as they climb upwards towards the sunlight they need for
survival. The other one is the Christmas tree parasite. It is believed that this parasite the largest in
the world, a tree whose greedy roots stab victims up to 110m away. The Christmas tree (Nuytsia
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floribunda) has blades for slicing into the roots of plants to steal their sap. The Christmas tree is
indiscriminate, stealing juice from almost anything green – grasses, sedges, carrots, weeds, vines,
shrubs, eucalypts. When one of its roots meets another root it forms a collar of tissue around it,
like a swollen wedding ring, and a hydraulically operated blade forms inside that. A model for this
parasite is shown in Figure 4. Besides, some of these models are shown in nature equivalents. Now
let us summarize the studies on surface growth model. The first study to understand the Molluscan
shell began with Moseley. The author describes the spiral coils of the Molluscan shell in terms of
the mathematical and geometrical aspects [18]. Then, several models and approaches devised by
Raup [20, 21], which strengthened the research field called ”theoretical morphology”. At first, the
initial work focused on the shape of the shells [5, 17] and understanding the evolution of the shell
form under growth process [12]. Nevertheless, there is no complete understanding of how these
structures grow in mathematically. Then, using the complex coordinates Illerts, give a formulation
that describes the seashells growth [13]. In addition, in [14], the author formulated the problem
of seashell geometry in real space R3 and obtained equations that could be used for computer
simulations. Later, Moulton et al. developed an appropriate mathematical framework, which is not
bound to computer algorithms to generate surfaces, to solve this problem [19]. In [24], the authors
consider a space curve instead of a planar curve and they define the growth vector field in terms of
an alternative moving frame {N,C,W} on the generating curve. This frame ideally describes the
growth in the direction of the Darboux vector. [25], it is investigated that the time dimension in the
method affects the growth of the surfaces. Thus, they determine the model of the growth function
in the three-dimensional Minkowski space with timelike and spacelike generating curve.

Quaternions are a non-commutative number system extends the complex numbers. Quaternions
and their applications to mechanics were first described by Rodrigues (1840) and Hamilton (1843).
Quaternions have important applications in theoretical and applied mathematics. Particularly, they
provide great convenience in applications involving three-dimensional rotations. Surfaces can be
more easily expressed using quaternions. Many studies on quaternionic representations of sur-
faces have been achieved [1–3, 6, 9, 15]. These studies have examined quaternionic expressions of
surfaces such as constant slope and canal surfaces in Euclidean and Minkowski spaces.

This paper is organized as follows: In Section 2, we give some preliminaries about Darboux
frame and quaternion algebra. In Section 3, firstly, the surface-dependent growth model with
quaternions and Darboux frame in Euclidean 3-space are introduced and the related growth ve-
locity components are calculated. Also, we present the growth model along the conditions for a
curve to be a geodesic, asymptotic, line of curvature and rhumb line on the surface. In Section 3,
various illustrated examples, which include various biological model in the nature, are presented.
In the last section is devoted to the conclusions and discussions.

2 Preliminaries

Let R3 be 3-dimensional Riemannian space endoved with the metric is given by

π(u,v) = u1v1 +u2v2 +u3v3, (1)
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for u = (u1,u2,u3) and v = (v1,v2,v3). The vector product is

u× v =

∣∣∣∣∣∣
e1 e2 e3
u1 u2 u3
v1 v2 v3

∣∣∣∣∣∣ . (2)

Let S ⊂ E3 be an oriented surface and γ : I ⊂ R→ S be a unit speed curve. Let T denote the unit
tangent vector field of γ and N denote the unit normal vector field of the surface S restricted to the
curve γ . Then the Darboux frame field along γ is given by {T,Y,N} where Y = N ∧T . Thus, we
can express the derivatives according to the arc-length parameter s of each vector field along the
curve γ as:  T ′

Y ′

N′

=

 0 kg κn
−kg 0 τg
−κn −τg 0

 T
Y
N

 , (3)

where kg, κn and τg denote the geodesic curvature, normal curvature, and geodesic torsion of the
curve γ , respectively.
For the curve γ lying on the surface S we have following three cases:
i) γ is a geodesic curve if and only if kg = 0,
ii) γ is an asymptotic line if and only if κn = 0,
iii) γ is a principal line if and only if τg = 0 [8].

Quaternions can be defined by the set Q. They defined with following multiplication rules in
Q [11].

Q =
{

Q0 +Q1i+Q2 j+Q3k, i2 = j2 =−k2 =−1, i j = k =− ji, jk = i =−k j,ki = j =−ik
}
.
(4)

The quaternion product of two quaternions P0+P1i+P2 j+P3k and Q0+Q1i+Q2 j+Q3k is defined
as

PQ = P0Q0−π(VP,VQ)+P0VQ +Q0VP +V (VP×VQ), (5)

where π(VP,VQ) and VP×VQ are the scalar product and the vector product, respectively. If P and
Q are pure, then

PQ = −π(VP,VQ)+VP×VQ (6)

= −(P1Q1 +P2Q2 +P3Q3)+

∣∣∣∣∣∣
i j k

P1 P2 P3
Q1 Q2 Q3

∣∣∣∣∣∣ .
The quaternion product is given as the form

PQ =


P0 −P1 −P2 −P3
P1 P0 −P3 P2
P2 P3 P0 −P1
P3 −P2 P1 P0




Q0
Q1
Q2
Q3

 . (7)

Conjugate, norm and inverse of the quaternion Q = Q0 +Q1i+Q2 j+Q3k are given respectively,

Q̄ = Q0−Q1i−Q2 j−Q3k, (8)
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NQ =
√

QQ̄ =
√

Q̄Q =
√

Q2
0 +Q2

1 +Q2
2 +Q2

3, (9)

Q−1 =
Q̄

NQ
. (10)

Also, each quaternion Q = Q0 +Q1i+Q2 j+Q3k can be written in the form

Q0 = Nq(cosθ + ε0 sinθ),

where cosθ = Q0
NQ

, sinθ =

√
Q2

1+Q2
2+Q2

3
NQ

, ε0 =
(Q1,Q2,Q3)√
Q2

1+Q2
2+Q2

3
, and ε2

0 =−1 [11].

Theorem 2.1. If Q = Q0+Q1i+Q2 j+Q3k = cosθ +ε0 sinθ ∈ E3, is a quaternion then the linear
map Rθ (v) = qvq−1 gives a rotation through the angle 2θ , about the axis ε0 where v ∈ R3. The
rotation matrix corresponding to the quaternion q is

Rq
θ
=

 Q2
0 +Q2

1−Q2
2−Q2

3 2Q1Q2−2Q0Q3 2Q1Q3 +2Q0Q2
2Q1Q2 +2Q0Q3 Q2

0−a1Q2
1 +Q2

2−Q2
3 2Q2Q3−2Q0q1

2Q1q3−2Q0Q2 2Q2Q3 +2Q0Q1 Q2
0−Q2

1−Q2
2 +Q2

3

 , (11)

where Rq
θ

is orthogonal, i.e, (Rq
θ
)tRq

θ
= I and det(Rq

θ
) = 1 [23].

3 Surface-dependent Growth Model
The goal of this section is to present the kinematic aspects of surface-dependent growth. Many
of the features of plant and parasite growth find their explanation on-within the surface. It is,
therefore, useful to focus on the growth of plant and parasite on the surface. The material forms
and expansion depends on the shape of the main surfaces. This form of structure grows by adding
new material so that one point remains on the surface. For this form evolution, there must be a
growth component in the direction of the vector Darboux frame component Y . For this, the growth
vector field is defined in terms of the Darboux frame {T,Y,N} on the generating curve. This frame
ideally describes the surface-dependent growth model.

Definition 3.1. Let r(s,0) = (r1(s,0),r2(s,0)) be a planar curve. Then the planarity implies that
the surface can be expressed as

r(s, t) = p(t)+µ(s, t)d3(t)+ν(s, t)(r1d2 + r2d1), (12)

where p(t) is a position vector to a point in the plane of the curve, µ(t,s) = −λλ̇ , ν(t,s) =
±λ

√
1− λ̇ 2 with the scaling λ (s, t).

3.2 Accretive Surface-Dependent Growth Model through Quaternions
Theorem 3.3. Let p(t) : I ⊂ R→ R3 be an arc-length curve with the Darboux frame apparatus
{d1,d2,d3,κn,kg,τg}. By using the unit quaternion Q(s, t) = r1+r2d3(s), we obtain the parametric
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equation of the accretive surface:
(i)Pparametric representation with quaternion product Q(s,θ)d2(t),

r(s, t) = p(t)+µ(s, t)d3(t)+ν(s, t)Q(s, t)d2(t). (13)

(ii) Parametric representation with homothetic motion

r(s, t) = p(t)+µ(s)t(t)+ν(s)Rq
θ

d2(t), (14)

where µ(s) = −λ (s, t)λ̇ (s, t),ν(s) = ±λ (s, t)
√

1+ λ̇ (s, t)2, and Rq
θ

is the matrix form of the unit
quaternion q(s, t).

Proof. Assume that r(s, t) is a surface generated by the arbitrary unit speed curve p(t). Then
we have

r(s, t) = p(t)+µ(s, t)d3(t)+ν(s, t)(r1d2 + r2d1).

If we use the quaternion product for unit quaternion Q(s, t) = r1 + r2d3(s) and the pure quaternion
d2(s), we obtain

Q(s,θ)×d2(s) = r1d2(s)+ r2d1(s).

Then using the last equation, we reach the surfaces as

r(s, t) = p(t)+µ(s, t)d3(t)+ν(s, t)Q(s, t)d2(t)

and the matrix representation of the surface given as

r(s, t) = p(t)+µ(s)t(t)+ν(s)Rq
θ

d2(t),

where β (t) = p(t)+ µ(s)d3(s) is translation vector, ν(s) is homothetic scalar and Rq
θ

orthogonal
matrix of the homothetic motion. Therefore, we can say that r(s, t) = β (t)+ ν(s)Rq

θ
d2(t) is the

homothetic motion. These complates the proof.

Example 3.4. Assume that r(s, t) is a surface generated by the unit speed curve p(t)= (cos t,sin t,1)
as the line of curvature on the surface S(u,v) = (u,v,u2 + v2). The Darboux frame and curvatures
of the curve p(t) calculated as

d1 = (− 2√
5

cos t,− 2√
5

sin t,
1√
5
),

d2 = (− 1√
5

cos t,− 1√
5

sin t,− 2√
5
), (15)

d3 = (−sin t,cos t,0),

,

κn =
2√
5
, kg =

1√
5
, τg = 0.

Then, using the eqs.(15) into the eq.(14) the surface can be obtained. It is illustrated in Figure 1(a).
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Example 3.5. Nex we take p(t) = (cos t√
2
,sin t√

2
, t√

2
) as a geodesic curve on the surface S(u,v) =

(cosu,sinu,v) Then the Darboux frame and curvatures of the curve p(t) is obtained as

d1 = (cos
t√
2
,sin

t√
2
,0),

d2 = (
1√
2

sin
t√
2
,− 1√

2
cos

t√
2
,

1√
2
),

d3 = (− 1√
2

sin
t√
2
,

1√
2

cos
t√
2
,

1√
2
).

κn =−
1
2
, kg = 0, τg =

1
2
.

Then the related surface is given in Figure 1(b).

Example 3.6. Now we take p(t)= (cos t√
2
,sin t√

2
, t√

2
) as a asymptotic curve on the surface S(u,v)=

(vcosu,vsinu,u). Then the Darboux frame and curvatures of the curve p(t) is obtained as

d1 = (− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,− 1√

2
),

d2 = (cos
s√
2
,−sin

s√
2
,0),

d3 = (− 1√
2

sin
s√
2
,

1√
2

cos
s√
2
,

1√
2
),

κn = 0, κg =−
1
2
, τg =

1
2
.

Then the related surface growth illustrated in Figure 1(c).

(a) (b) (c)

Figure 1: (a) Growth along a line of curvature, (b) Growth along a geodesic curve, (c) Growth
along an asymptotic curve

Note: In this form growth model the surface keeps shape constancy of the curve.
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3.7 Growth velocity field of the surface
Theorem 3.8. Let r(s,0) be a curve which is parameterized by arc-length and each point of the
generating curve has followed a path in time that has been on the surface. Then the growth velocity
components of the accretive surface-dependent growth model obtained as

q1 =
(ν̇r1−µκn +νr2τg)((ν

′r2 +νr′2)(1+ µ̇−νr1κn−νr2kg)− (µ ′)(µkg + ν̇r2−νr1τg))

A

+
(µkg + ν̇r2−νr1τg)((ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2kg)

A
),

q2 =−(ν̇r1−µκn +νr2τg)r2′
(ν ′r1 +νr′1)(µkg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

+(µkg + ν̇r2−νr1τg)r1′
−(ν ′r1 +νr′1)(µkg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

+(1+ µ̇−νr1κn−νr2kg)(
(r′2((ν

′r2 +νr′2)(1+ µ̇−νr1κn−νr2kg)−µ ′(µkg + ν̇r2−νr1τg)))

A

− r′1(
(ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2kg)

A
),

q3 = (ν̇r1−µκn +νr2τg)r′1 +(µkg + ν̇r2−νr1τg)r′2,

where A = ‖∂sr×∂tr‖ and µ(s, t) = −λ (s, t)λ̇ (s, t),ν(s, t) = ±λ (s, t)
√

1+ λ̇ (s, t)2 are functions
related to the stretch factor λ .

Proof. Let us consider an arbitrary unit speed curve r(s,0) = (r1(s,0),r2(s,0),0). Then, to
generate surface we take a dressing curve in the plane of d1 and d2. In these case, at any time t, the
dressing curve can be written as,

r(s) = r1d1 + r2d2.

Then the surface can be written in the following form

r(s, t) = p(t)+µ(s, t)d3(t)+ν(s, t)(r1d1 + r2d2) (16)

where p(t) is a position vector to a point in the plane of the curve, µ(t,s) = −λλ̇ , ν(t,s) =
±λ

√
1− λ̇ 2 with the scaling λ (s, t). Now, we can determine the growth velocity field as

∂tr = q1d1 +q2d2 +q3d3 (17)

where di, i = 1,2,3 are the local basis for the dressing curve. Then the velocity components of the
dressing curve are given as,

q1 = B(∂tr,d1), (18)
q2 = B(∂tr,d2),

q3 = B(∂tr,d3).

If we consider the Frenet frame di, i = 1,2,3 of the curve p(t) and the case ∂t p = d3 then we have, ḋ1
ḋ2
ḋ3

=

 0 −τg −κn
τg 0 −κg
−κn κg 0

 d1
d2
d3

 . (19)

7



By taking the derivative of the eq. (16) with respect to t, and s, respectively, we calculate

∂tr(s, t) = (ν̇r1−µκn +νr2τg)d1 +(µkg + ν̇r2−νr1τg)d2 +(1+ µ̇−νr1κn−νr2kg)d3, (20)

∂sr(s, t) = (ν ′r1 +νr′1)d1 +(ν ′r2 +νr′2)d2 +µ
′d3. (21)

On the other hand the Darboux frame of the unit speed dressing curve defined via the director
vectors as,

d1 =
∂sr×∂tr
‖∂sr×∂tr‖

, (22)

d2 =V (d1×d3)

d3 =
∂sr
‖∂sr‖B

= r′1d1 + r′2d2.

Then we compute that

d1 =
(ν ′r2 +νr′2)(1+ µ̇−νr1κn−νr2κg)− (µ ′)(µκg + ν̇r2−νr1τg)

A
d1, (23)

+
(ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2κg)

A
d2

+
(ν ′r1 +νr′1)(µκg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

d3

d2 =−r2′
(ν ′r1 +νr′1)(µκg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

d1

+ r1′
−(ν ′r1 +νr′1)(µκg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

d2

+(
(r′2((ν

′r2 +νr′2)(1+ µ̇−νr1κn−νr2κg)− (µ ′)(µκg + ν̇r2−νr1τg)))

A

− r′1(
(ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2κg)

A
)d3

d3 =
∂sr
‖∂sr‖B

= r′1d1 + r′2d2,

where A = ‖∂sr×∂tr‖.
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By substituting d1, d2 and d3 in the eq. (14), we get

q1 =
(ν̇r1−µκn +νr2τg)((ν

′r2 +νr′2)(1+ µ̇−νr1κn−νr2κg)− (µ ′)(µκg + ν̇r2−νr1τg))

A

+
(µκg + ν̇r2−νr1τg)((ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2κg)

A
)

q2 =−(ν̇r1−µκn +νr2τg)r2′
(ν ′r1 +νr′1)(µκg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

+(µκg + ν̇r2−νr1τg)r1′
−(ν ′r1 +νr′1)(µκg + ν̇r2−νr1τg)− (ν̇r1−µκn +νr2τg)(ν

′r2 +νr′2)
A

+(1+ µ̇−νr1κn−νr2κg)(
(r′2((ν

′r2 +νr′2)(1+ µ̇−νr1κn−νr2κg)− (µ ′)(µκg + ν̇r2−νr1τg)))

A

− r′1(
(ν̇r1−µκn +νr2τg)(µ

′)− (ν ′r1 +νr′1)(1+ µ̇−νr1κn−νr2κg)

A
)

q3 = (ν̇r1−µκn +νr2τg)r′1 +(µκg + ν̇r2−νr1τg)r′2,

Next we give following corollaries without of proof.

Corollary 3.9. Let r(s,0) be a curve which is parameterized by arc-length and each point of the
generating curve has followed a path in time that has been on the surface. The growth velocity
components of the surface r(s, t) = p(t)+ λ (s)(r1d1 + r2d2) with respect to the Darboux frame
obtained as follows

q1 =
(λ r2τg)(λ

′r2 +λ r′2)(1−λ r1κn−λ r2kg)− (λ ′r1 +λ r′1)(1−λ r1κn−λ r2kg)

A
,

q2 =−(λ r2τg)r2′
(λ ′r1 +λ r′1)(−λ r1τg)− (λ r2τg)(λ

′r2 +λ r′2)
A

+(−λ r1τg)r1′
−(λ ′r1 +λ r′1)(−λ r1τg)− (λ r2τg)(λ

′r2 +λ r′2)
A

+(1−λ r1κn−λ r2κg)
(r′2λ ′r2 +λ r′2)(1−λ r1κn−λ r2κg)

A

+
r′1(λ

′r1 +λ r′1)(1−λ r1κn−λ r2κg)

A
,

q3 = λ r2τgr′1−νr1τgr′2,

where A = ‖∂sr×∂tr‖ and λ (s) =±ν(s, t).

3.10 Surface-Dependent Growth Model with Growth Velocity and Darboux
Frame Fields

Suppose that at time t = 0, we get the generating curve r(s,0) : [0, I]→ R3 defined for a material
parameter s. The surface accretion is modeled via local direction q(s,0) and the rate of growth at
each point s. In addition, growth velocity field q(s, t) is defined at each material point s at time t.
The growth velocity field q(s, t) directs the evolution of the generating curve r(s,0) and defines a
surface r(s, t). This surface is thrice differentiable in the parameter s and t. The curve r(s0, t) along
time t and for a fixed s = so will be referred to as a cell track. The velocity vector can be a function
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of the local geometry as well as possible physical, chemical, or biological fields (rate of accretion,
morphogen gradient, temperature, pH, etc . . . ) [19].

In order to describe the velocity locally, we attach to the curve r(s,0) a local orthonormal
Darboux frame {d1,d2,d3}. Then the unit tangent vector field defined as,

r′ ≡ ∂sr(s, t) = Dv = λd3, (24)

where we use the Euclidean product Dv = v1d1 + v2d2 + v3d3, v ∈ E3 and λ = (0,0,λ ) describes
the stretch of the curve with respect to the initial arc length expressed in the local frame.

The derivations of the frame for the parameters s and t can be given as,

D′ ≡ ∂sD = DU, (25)
·

D≡ ∂tD = DW,

where U and W are the Darboux matrices in E3 defined as

U :=

 0 −u3 u2
u3 0 −u1
−u2 u1 0

and W :=

 0 −w3 w2
w3 0 −w1
−w2 w1 0

 . (26)

If we use the generating curve and its attached basis, then we can write the velocity vector q(s, t)
through the local frame as follows,

·
r(s, t) = ∂tr = q(s, t) = Dq, (27)

where q = (q1,q2,q3) is the velocity expressed in the local frame. Since the general basis of D is
orthonormal (i.e, DT D = 1), we have

q′−
·
λ =Wλ −Uq, (28)

W ′−U · =UW −WU.

The Darboux matrix U takes the form,

U = λ

 0 −τg −κn
τg 0 −κg
κn κg 0

 ,
which is providing a structure for the growth velocity and solving the system.

The Darboux derivative formulas can be written as: d′1
d′2
d′3

=

 0 −τg −κn
τg 0 −κg
−κn κg 0

 d1
d2
d3

 . (29)

If the equations are rewritten in terms of the components, then the eq.(11) and eq.(29) gives us a
set of six nonlinear first order partial differential equations for a given velocity vector q.

q
′
1−κnq3− τgq2 = λw2,

q
′
2 + τgq1−κgq3 =−λw1,

q
′
3 +κgq2 +κnq1 =

·
λ ,

−w
′
1 =−κnw3− τgw2,

−w
′
2 = τgw1−κgw3,

−w
′
3 = kgw2−κnw1.

10



In these situations, we can give the following theorem without proof.

Theorem 3.11. (Main theorem) The growth of a surface from a generating curve with respect to
Darboux frame satisfy the following differential systems:

q
′
1−κnq3− τgq2 = λw2,

q
′
2 + τgq1−κgq3 =−λw1,

q
′
3 +κgq2 +κnq1 =

·
λ ,

−w
′
1 =−κnw3− τgw2,

−w
′
2 = τgw1−κgw3,

−w
′
3 = kgw2−κnw1.

(30)

For a given growth velocity, the local frame on the generating curve is freely chosen and the
system is solved. After then the surfaces is obtained by the integrating the equation ∂tr(s, t) = Dq.

4 Examples

Fist, we choose the dressing curve as a curve parameterized as r(s,0)= ((1+0.12cos10s)coss,(1+
0.12cos10s)sins,0). Then the component of the growth velocity obtained as follows

q1 =
−(λ r′1)(1+λ r1−λ r2kg)

A
,

q2 = (1+λ r1−λ r2κg)
(r′2λ ′r2 +λ r′2)(1+λ r1−λ r2κg)

A

+
r′1(λ

′r1 +λ r′1)(1+λ r1−λ r2κg)

A
,

q3 = 0,

where r1 = (1+ 0.12cos10s)coss and r2 = (1+ 0.12cos10s)sins. The surfaces are obtained by
integrating ∂tr(s,0) = Dq or using the quaternion Q = Q0 +Q1i+Q2 j+Q3k in Theorem 4.

The components of the quaternion Q computed as in the following forms: For surface growth
along the helices on the sphere,

Q0 =
(1+0.12cos10t)cos t

A

Q1 =−
(1+0.12cos10t)sin t(sin s

c(b
2− s2)+ cos s

csc)
A

,

Q2 =−
(1+0.12cos10t)sin t(cos s

c(−b2 + s2 + sc)+ sin s
csc))

A
,

Q3 =
(1+0.12cos10t)sin t

A
,

where A =
√
(b4+b2c2−2b2s2+s4

(b2s2)c2 ) and b,c ∈ R.

11



For surface growth along the rhumb lines of the sphere,

Q0 =
(1+0.12cos10t)cos t

B
,

Q1 =
(1+0.12cos10t)sin t(cosssinh(ks)+ sinscosh(ks))

B
,

Q2 =−
(1+0.12cos10t)sin t(sinssinh(ks)− cosscosh(ks))

B
,

Q3 =
(1+0.12cos10t)k sin t

B
,

where B = cosh(ks)
√

(k2 +1) and k ∈ R. The surfaces are illustrated in Figure 2.

(a) (b) (c) (d)

Figure 2: (a) The cross-section of the curves on the sphere, (b) Surface growth along a helix on
the sphere with λ = 0.25, (c) Surface growth along a rhumb line of the sphere with λ = 0.25s, (d)
Surface growth along the rhumb lines of the sphere with λ = 0.25.

In the following examples we take the dressing curve as a circle for easier calculation. First we
determine the growth velocity and

Example 4.1. Next we choose the dressing curve as a circle parameterized as r(s,0)= (coss,sins,0)
and the center of the circle traces out the curve p(t) on the 2D sphere. Then the growth velocity
components calculated as

q1 =
(λ sins)(1+λ coss−λ sinsκg)

A
,

q2 = (1+λ coss−λ sinsκg)
(cossλ ′ sins+λ coss)(1+λ coss−λ sinsκg)

A

+
−coss(λ ′ coss−λ sins)(1+λ coss−λ sinsκg)

A
,

q3 = 0,

The surfaces are obtained by integrating ∂tr(s,0) = Dq or using the quaternion Q = Q0 +Q1i+
Q2 j + Q3k in Theorem 4. The components of the quaternion Q computed as in the following

12



forms: For growth along a circle

Q0 =
cos t

A
,

Q1 =
sin t(sin(coss)sinssin(sins)+ cos(coss)cos(sins)coss)

A
,

Q2 =
sin t(sin(coss)sinscos(sins)− cos(coss)sin(sins)coss)

A
,

Q3 =−
sin t cos(coss)sins

A
,

where A =
√

(
cos2( coss

2 )cos2 s−cos2 s+1
2 ). For growth along a spiral,

Q0 =
cos t

A

Q1 =
−sin t(−sin(FresnelC(s))cos2(πs2

2 )sin(FresnelS(s)))
A

+
cos(FresnelC(s))sin2(πs2

2 )cos(FresnelS(s)))
A

,

Q2 =
−sin t(−sin(FresnelC(s))cos2(πs2

2 )cos(FresnelS(s)))
A

−
cos(FresnelC(s))sin2(πs2

2 )sin(FresnelS(s)))
A

,

Q3 =−
sin t cos(FresnelC(s))cos2(πs2

2 )

A
,

where A =
√

(− cos2(FresnelC(s))cos2(πs2

2 )+ cos2(FresnelC(s))+ cos2(πs2

2 )).

For growth along a helix,

Q0 =
cos t

A
,

Q1 =−
sin t(sin s

c(b
2− s2)+ cos s

csc)
A

,

Q2 =−
sin t(cos s

c(−b2 + s2 + sc)+ sin s
csc))

A
,

Q3 =
sin t
A

,

where A =
√
(b4+b2c2−2b2s2+s4

(b2s2)c2 ) and b,c ∈ R. The surfaces are illustrated in Figure 3.

13



(a) (b) (c)

Figure 3: (a) Growth along a circle, (b) Growth along a spiral, (c) Growth along a helix.

Example 4.2. Next, we choose the dressing curve as a circle parameterized as r(s,0)= (coss,sins,0)
and the center of the circle traces out the curve p(t) on the 2D torus.

q1 =
(λ sinsτg)(λ

′ sins+λ coss)(1−λ cossκn−λ sinsκg)

A

−
(λ ′ coss−λ sins)(1−λ cossκn−λ sinsκg)

A
,

q2 =−(λ sinsτg)coss
(λ ′ coss−λ sins)(−λ cossτg)− (λ sinsτg)(λ

′ sins+λ coss)
A

− (−λ cossτg)sins
−(λ ′ coss−λ sins)(−λ cossτg)− (λ sinsτg)(λ

′ sins+λ coss)
A

+(1−λ cossκn−λ sinsκg)
(cossλ ′ sins+λ coss)(1−λ cossκn−λ sinsκg)

A

−
sins(λ ′ coss−λ sins)(1−λ cossκn−λ sinskg)

A
,

q3 =−λ sinsτg sins−ν cossτg coss.

In these cases, the surface is obtained by integrating ∂tr(s,0) = Dq or using the quaternion Q =
Q0 +Q1i+Q2 j +Q3k in Theorem 4. The components of the quaternion Q computed as in the
following forms:

Q0 =
cos t

A
,

Q1 =−sin t sins,
Q2 = 0,
Q3 =−sin t coss,

14



For growth along a spiral,

Q0 =
cos t

A
,

Q1 =
sin t(−sin(FresnelC(s))cos(πs2

2 )cos(FresnelS(s)))
A

−
sin(FresnelS(s))sin(πs2

2 )cos(FresnelC(s)))−2sin(FresnelS(s))sin(πs2

2 )

A
,

Q2 =
−sin t(−sin(FresnelC(s))cos(πs2

2 )sin(FresnelS(s)))
A

−
+cos(FresnelS(s))sin(πs2

2 )cos(FresnelC(s)))+2cos(FresnelS(s))sin(πs2

2 )

A
,

Q3 =
sin t cos(FresnelC(s))cos(πs2

2 )

A
,

where A =
√

(− cos2(FresnelC(s))cos2(πs2

2 )+ cos2(FresnelC(s))+ cos2(πs2

2 )).
For growth along an arbitray curve,

Q0 =
cos t

A
,

Q1 =−
sin t(sin(as)acos(ps)+ sin(ps)pcos(as)+2sin(ps)p)

A
,

Q2 =−
sin t(−cos(as)acos(ps)+ sin(ps)psin(as)−2cos(ps)p)

A
,

Q3 =
sin t cos(as)a

A
,

where A =
√

(cos2(as)p2 + 4cos(as)p2 + a2 + 4p2) and b,c ∈ R. The surfaces are illustrated in
Figure 4.

(a) (b) (c) (d)

Figure 4: Surfaces model for growth on the torus.

In the following figures we give various models for surface-dependent growth models in the
nature.
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q1 =
(λ sins)(1+λ coss−λ sinsκg)

A
,

q2 = (1+λ coss−λ sinsκg)
(cossλ ′ sins+λ coss)(1+λ coss−λ sinsκg)

A

+
−coss(λ ′ coss−λ sins)(1+λ coss−λ sinsκg)

A
,

q3 = 0,

Q0 =
cos t

A
,

Q1 =−
sin t(sin s

c(b
2− s2)+ cos s

csc)
A

,

Q2 =−
sin t(cos s

c(−b2 + s2 + sc)+ sin s
csc))

A
,

Q3 =
sin t
A

,

where A =
√
(b4+b2c2−2b2s2+s4

(b2s2)c2 ) and b,c ∈ R.

(a) (b)

Figure 5: (a).Tissue expansion in pediatric forehead reconstruction. It shows forehead, anterior
and posterior scalp expansion to trigger skin growth in situ [4, 10]. Computational simulation
of transversely isotropic area growth predicts area growth in response to controlled mechanical
overstretch during tissue expansion [28, 29]. (b) A geometric model for isotropic area growth, for
c = 0.40, b = 3, and r = 0.5sin(6s)+0.5s.
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Q0 = cos t,

Q1 = sin t(
√

2cos2 ssin1−
√

2
2

sin1+2cos1sinscoss),

Q2 = sin t(−
√

2cos2 scos1+

√
2

2
cos1+2sin1sinscoss),

Q3 = sin t(

√
2

2
)(2cos2−1).

Figure 6: A Christmas tree parasite model.

Q0 = cos t,

Q1 =−
1√
2

sin t sins,

Q2 =
1√
2

sin t coss,

Q3 =
1√
2

sin t.
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Figure 7: A growth model of the Liana parasite on the tree.

Q0 =
cos t

A
,

Q1 =
sin t(2exp−(coss+ sins)((sins− coss)(sin(sins+ coss))− (sins+ coss)cos(sins+ coss))

A
,

Q2 =
sin t(2exp(coss+ sins)((sins− coss)(sin(sins+ coss))+(sins− coss)cos(sins+ coss))

A
,

Q3 = 0,

where A = 2
√

2exp2(coss− sins)
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Figure 8: A leaf tree parasite model.

Q0 = t
cos t

A
,

Q1 =−t2 sin t(sin s
c(b

2− s2)+ cos s
csc)

A
,

Q2 =−t2 sin t(cos s
c(−b2 + s2 + sc)+ sin s

csc))
A

,

Q3 = t2 sin t
A

,

where A =
√
(b4+b2c2−2b2s2+s4

(b2s2)c2 ) and b,c ∈ R.

Figure 9: An Oak Apple Gall parasite model.
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5 Conclusions and Discussions
Generally, the development of the cancer cell, cysts, tumor, etc. are governed by the anatomy of
their surface. These creatures form depending on the surface and the surface controls the accumu-
lation of new material of the parasite. Thus, it may be useful to consider the surface-dependent
model when modeling the growth process of these creatures. In this study, the growth kinematics
of the different creatures such as parasites, cancer cell, cysts, tumor, etc. are obtained by applying
the surface-dependent growth model. In light of these models, generally, we can say that these
creatures wrap the surface along the geodesic curves. For example, the geodesics of the cylinder
surface are the main lines of the cylinder, circular helices, and circles. If we consider the trunk of a
tree as a cylinder, it is seen that some parasites species prefer one of these geodesics. For example,
a green vine prefers the main lines of the cylinder, the Liana prefers the helices of the cylinder
and the Christmas tree parasite prefers the circle of the cylinder. When we examine nature, it can
be examined whether these parasites grow along different curves of the surface such as asymptotic
curve, line of curvature and rhumb line. Some images relating to these biological families are given
as follows: In Figure 6, we give a model for Christmas tree parasite and in Figure 8 we give a model
for the leaf tree parasites. Also, this form of toroidal parasite called chelonibia testudinaria can be
seen on the shell surface of the tortoise. In Figure 9 we present a model for an Oak Apple Gall
parasite, . Also, the other this form (spherical form parasites) of parasites are leaf parasite, cancer
cell, cysts, tumor, etc. In Figure 5 and Figure 7, we give helical parasite model. Figure 5 gives a
geometric model for isotropic area growth and Figure 7 gives a model for Liana parasite.
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Clifford Algebras 27 (2017) 1175ñ1190, doi:10.1007/s00006-016-0703-9.

[10] Gosain, A.K., Cortes, W., 2007. Pediatric tissue expansion for forehead reconstruction: a
13-year review and an algorithmfor its use.Am. Soc. Plast Surg. Baltimore, Abstract 13288.

[11] Hamilton, W.R.: On Quaternions; or on a new system of imaginaries in algebra. Lond. Edinb.
Dublin. Philos. Mag. J. Sci. 25(3), 489–495 (1844)

[12] Ø. Hammer, H. Bucher, Models for the morphogenesis of the molluscan shell, int. J. Paleont.
Str. 38(2)(2005), 111-122.

[13] C. Illert, Formulation and solution of the classical problem, I Seashell geometry, Nuovo Ci-
mento, 9(7)(1987), 791-814.

[14] C. Illert, Formulation and solution of the classical problem, II Tubular three dimensional
surfaces, Nuovo Cimento, 11(1989), 761-780.

[15] E. Kocakusaklı, O. O. Tuncer, I.Gök and Y. Yayli, A new representation of canal surfaces with
split quaternions in Minkowski 3-space, Adv. Appl. Clifford Algebras 27 (2017) 1387ñ1409,
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