REFERENCES
(1) Benhammada, A.; Trache, D. Thermal Decomposition of Energetic
Materials Using TG-FTIR and TG-MS: A State-of-the-Art Review.Applied Spectroscopy Reviews 2020 , 55 (8),
724–777. https://doi.org/10.1080/05704928.2019.1679825.
(2) Trache, D.; DeLuca, L. T. Nanoenergetic Materials: Preparation,
Properties, and Applications. Nanomaterials 2020 ,10 (12), 2347. https://doi.org/10.3390/nano10122347.
(3) Hanafi, S.; Trache, D.; He, W.; Xie, W.-X.; Mezroua, A.; Yan, Q.-L.
Thermostable Energetic Coordination Polymers Based on Functionalized GO
and Their Catalytic Effects on the Decomposition of AP and RDX. J.
Phys. Chem. C 2020 , 124 (9), 5182–5195.
https://doi.org/10.1021/acs.jpcc.9b11070.
(4) Wang, J.; Wang, W.; Wang, J.; Xu, K. In Situ Synthesis of MgWO4–GO
Nanocomposites and Their Catalytic Effect on the Thermal Decomposition
of HMX, RDX and AP. Carbon Lett. 2020 , 30 (4),
425–434. https://doi.org/10.1007/s42823-019-00112-1.
(5) Wei, T.; Zhang, Y.; Xu, K.; Ren, Z.; Gao, H.; Zhao, F. Catalytic
Action of Nano Bi2WO6 on Thermal Decompositions of AP, RDX, HMX and
Combustion of NG/NC Propellant. RSC Adv. 2015 , 5(86), 70323–70328. https://doi.org/10.1039/C5RA13257F.
(6) Bushell, M.; Beauchemin, S.; Kunc, F.; Gardner, D.; Ovens, J.; Toll,
F.; Kennedy, D.; Nguyen, K.; Vladisavljevic, D.; Rasmussen, P. E.;
Johnston, L. J. Characterization of Commercial Metal Oxide
Nanomaterials: Crystalline Phase, Particle Size and Specific Surface
Area. Nanomaterials 2020 , 10 (9), 1812.
https://doi.org/10.3390/nano10091812.
(7) Zhang, W.; Wang, L.; Liu, H.; Hao, Y.; Li, H.; Khan, M. U.; Zeng, J.
Integration of Quantum Confinement and Alloy Effect to Modulate
Electronic Properties of RhW Nanocrystals for Improved Catalytic
Performance toward CO2 Hydrogenation. Nano Lett. 2017 ,17 (2), 788–793. https://doi.org/10.1021/acs.nanolett.6b03967.
(8) Padwal, M. B.; Varma, M. Thermal Decomposition and Combustion
Characteristics of HTPB-Coarse AP Composite Solid Propellants Catalyzed
with Fe2O3. Combustion Science and Technology 2018 ,190 (9), 1614–1629.
https://doi.org/10.1080/00102202.2018.1460599.
(9) Benhammada, A.; Trache, D.; Chelouche, S.; Mezroua, A. Catalytic
Effect of Green CuO Nanoparticles on the Thermal Decomposition Kinetics
of Ammonium Perchlorate. Zeitschrift für anorganische und
allgemeine Chemie 2021 , 647(4) , 312-325.
https://doi.org/10.1002/zaac.202000295.
(10) Vara, J. A.; Dave, P. N.; Chaturvedi, S. The Catalytic Activity of
Transition Metal Oxide Nanoparticles on Thermal Decomposition of
Ammonium Perchlorate. Defence Technology 2019 , 15(4), 629–635. https://doi.org/10.1016/j.dt.2019.04.002.
(11) Hu, Y.; Tao, B.; Shang, F.; Zhou, M.; Hao, D.; Fan, R.; Xia, D.;
Yang, Y.; Pang, A.; Lin, K. Thermal Decomposition of Ammonium
Perchlorate over Perovskite Catalysts: Catalytic Decomposition Behavior,
Mechanism and Application. Applied Surface Science 2020 ,513 , 145849. https://doi.org/10.1016/j.apsusc.2020.145849.
(12) Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.;
Shao-Horn, Y. Perovskites in Catalysis and Electrocatalysis.Science 2017 , 358 (6364), 751–756.
https://doi.org/10.1126/science.aam7092.
(13) Boldyrev, V. V. Thermal Decomposition of Ammonium Perchlorate.Thermochimica Acta 2006 , 443 (1), 1–36.
https://doi.org/10.1016/j.tca.2005.11.038.
(14) Chakraborty, D.; Muller, R. P.; Dasgupta, S.; Goddard, W. A.
Mechanism for Unimolecular Decomposition of HMX
(1,3,5,7-Tetranitro-1,3,5,7-Tetrazocine), an Ab Initio Study. J.
Phys. Chem. A 2001 , 105 (8), 1302–1314.
https://doi.org/10.1021/jp0026181.
(15) Botcher, T. R.; Beardall, D. J.; Wight, C. A.; Fan, L.; Burkey, T.
J. Thermal Decomposition Mechanism of NTO. J. Phys. Chem.1996 , 100 (21), 8802–8806.
https://doi.org/10.1021/jp952984y.
(16) Botcher, T. R.; Wight, C. A. Explosive Thermal Decomposition
Mechanism of RDX. The Journal of Physical Chemistry1994 , 98 (21), 5441–5444.
(17) Kumar, H.; Tengli, P. N.; Mishra, V. K.; Tripathi, P.; Bhushan, A.;
Mishra, P. K. The Effect of Reduced Graphene Oxide on the Catalytic
Activity of Cu–Cr–O–TiO2 to Enhance the Thermal Decomposition Rate of
Ammonium Perchlorate: An Efficient Fuel Oxidizer for Solid Rocket Motors
and Missiles. RSC Adv. 2017 , 7 (58),
36594–36604. https://doi.org/10.1039/C7RA06012B.
(18) Yang, F.; Pei, J.; Zhao, H. First-Principles Investigation of
Graphene and Fe2O3 Catalytic Activity for Decomposition of Ammonium
Perchlorate. Langmuir 2022 .
https://doi.org/10.1021/acs.langmuir.2c00027.
(19) Oliveira, A. E. F.; Braga, G. B.; Tarley, C. R. T.; Pereira, A. C.
Thermally Reduced Graphene Oxide: Synthesis, Studies and
Characterization. J Mater Sci 2018 , 53 (17),
12005–12015. https://doi.org/10.1007/s10853-018-2473-3.
(20) Mukundan, T.; Pur, G. N.; Nair, J. K.; Pansare, S. M.; Sinha, R.
K.; Singh, H. Explosive Nitrotriazolone Formulates. Def Sci J2002 , 52 (2), 127–133.
(21) Madhuri Sailaja, J.; Murali, N.; Margarette, S. J.; Jyothi, N. K.;
Rajkumar, K.; Veeraiah, V. Chemically Stable Proton Conducting Doped
BaCeO3 by Citrate-EDTA Complexing Sol-Gel Process for Solid Oxide Fuel
Cell. South African Journal of Chemical Engineering2018 , 26 , 61–69.
https://doi.org/10.1016/j.sajce.2018.08.002.
(22) Ao, R.; Ma, L.; Guo, Z.; Yang, J.; Mu, L.; Yang, J.; Wei, Y. NO
Oxidation Performance and Kinetics Analysis of BaMO3 (M=Mn, Co)
Perovskite Catalysts. Environ Sci Pollut Res 2021 ,28 (6), 6929–6940. https://doi.org/10.1007/s11356-020-10993-9.
(23) Patterson, A. The Scherrer Formula for X-Ray Particle Size
Determination. Physical review 1939 , 56 (10),
978.
(24) Chamorro, N.; Martínez-Esaín, J.; Puig, T.; Obradors, X.; Ros, J.;
Yáñez, R.; Ricart, S. Hybrid Approach to Obtain High-Quality BaMO 3
Perovskite Nanocrystals. RSC Advances 2020 , 10(48), 28872–28878. https://doi.org/10.1039/D0RA03861J.
(25) Ding, N.; Chen, Y.; Li, R.; Chen, J.; Wang, C.; Li, Z.; Zhong, S.
Pomegranate Structured C@pSi/RGO Composite as High Performance Anode
Materials of Lithium-Ion Batteries. Electrochimica Acta2021 , 367 , 137491.
https://doi.org/10.1016/j.electacta.2020.137491.
(26) Mergen, Ö. B.; Arda, E. Determination of Optical Band Gap Energies
of CS/MWCNT Bio-Nanocomposites by Tauc and ASF Methods. Synthetic
Metals 2020 , 269 , 116539.
https://doi.org/10.1016/j.synthmet.2020.116539.
(27) Pei, J.; Zhao, H.; Yang, F.; Yan, D. Graphene Oxide/Fe2O3
Nanocomposite as an Efficient Catalyst for Thermal Decomposition of
Ammonium Perchlorate via the Vacuum-Freeze-Drying Method.Langmuir 2021 , 37 (20), 6132–6138.
https://doi.org/10.1021/acs.langmuir.1c00108.
(28) Hu, Y.; Yang, S.; Tao, B.; Liu, X.; Lin, K.; Yang, Y.; Fan, R.;
Xia, D.; Hao, D. Catalytic Decomposition of Ammonium Perchlorate on
Hollow Mesoporous CuO Microspheres. Vacuum 2019 ,159 , 105–111. https://doi.org/10.1016/j.vacuum.2018.10.020.
(29) Juibari, N. M.; Tarighi, S. MnCo2O4 Nanoparticles with Excellent
Catalytic Activity in Thermal Decomposition of Ammonium Perchlorate.J Therm Anal Calorim 2018 , 133 (3), 1317–1326.
https://doi.org/10.1007/s10973-018-7217-8.
(30) Abarca, G.; L. Ríos, P.; Povea, P.; Cerda-Cavieres, C.;
Morales-Verdejo, C.; L. Arroyo, J.; B. Camarada, M. Nanohybrids of
Reduced Graphene Oxide and Cobalt Hydroxide (Co(OH) 2 |rGO) for
the Thermal Decomposition of Ammonium Perchlorate. RSC Advances2020 , 10 (39), 23165–23172.
https://doi.org/10.1039/D0RA02853C.
(31) Coats, A. W.; Redfern, J. P. Kinetic Parameters from
Thermogravimetric Data. Nature 1964 , 201 (4914),
68–69. https://doi.org/10.1038/201068a0.
(32) Mishra, R. K.; Mohanty, K. Pyrolysis Kinetics and Thermal Behavior
of Waste Sawdust Biomass Using Thermogravimetric Analysis.Bioresource technology 2018 , 251 , 63–74.
(33) Dhyani, V.; Kumar, J.; Bhaskar, T. Thermal Decomposition Kinetics
of Sorghum Straw via Thermogravimetric Analysis. Bioresource
technology 2017 , 245 , 1122–1129.