REFERENCES
Aanstad, P., Santos, N., Corbit, K. C., Scherz, P. J., Trinh, L. A., Huisken, J., … Stainier, D. Y. R. (2010). The extracellular domain of Smoothened regulates ciliary localisation and is required for maximal Hh pathway activation in zebrafish. Current Biology, 19(12), 1034–1039. https://doi.org/10.1016/j.cub.2009.04.053.
Abramyan, J. (2019). Hedgehog signaling and embryonic craniofacial disorders. Journal of Developmental Biology, 7(2). https://doi.org/10.3390/JDB7020009
Anderson, K. V. (2006). Cilia and Hedgehog signaling in the mouse embryo. Harvey Lectures, 102(3), 103–115. https://doi.org/10.1002/9780470593042.ch5
Arensdorf, A. M., Marada, S., & Ogden, S. K. (2016). Smoothened Regulation: A Tale of Two Signals. Trends in Pharmacological Sciences, 37(1), 62–72. https://doi.org/10.1016/j.tips.2015.09.001
Ayers, K. L., & Thérond, P. P. (2010). Evaluating Smoothened as a G-protein-coupled receptor for Hedgehog signalling. Trends in Cell Biology, 20(5), 287–298. https://doi.org/10.1016/j.tcb.2010.02.002
Belloni, E., Traverso, G., Frumkin, A., Koop, B., Martindale, D., & Scherer, S. W. (1996). Identification of Sonic hedgehog as a candidate gene responsible for holoprosencephaly. Nature Genetics, 14(7), 353–356.
Bertrand, N., & Dahmane, N. (2006). Sonic hedgehog signaling in forebrain development and its interactions with pathways that modify its effects. Trends in Cell Biology, 16(11), 597–605. https://doi.org/10.1016/j.tcb.2006.09.007
Blassberg, R., Macrae, J. I., Briscoe, J., & Jacob, J. (2016). Reduced cholesterol levels impair Smoothened activation in Smith-Lemli-Opitz syndrome. Human Molecular Genetics, 25(4), 693–705. https://doi.org/10.1093/hmg/ddv507
Briscoe, J., & Thérond, P. P. (2013). The mechanisms of Hedgehog signalling and its roles in development and disease. Nature Reviews Molecular Cell Biology, 14(7), 418–431. https://doi.org/10.1038/nrm3598
Brown, S. A., Warburton, D., Brown, L. Y., Yu, C. Y., Roeder, E. R., Stengel-Rutkowski, S., … Muenke, M. (1998). Holoprosencephaly due to mutations in ZIC2, a homologue of Drosophila odd-paired. Nature Genetics, 20(2), 180–183. https://doi.org/10.1038/2484
Byrne, E. F. X., Sircar, R., Miller, P. S., Hedger, G., Luchetti, G., Nachtergaele, S., … Siebold, C. (2016). Structural basis of Smoothened regulation by its extracellular domains. Nature, 535(7613), 517–522. https://doi.org/10.1038/nature18934
Byrne, E. F., Luchetti, G., Rohatgi, R., & Siebold, C. (2018). Multiple ligand binding sites regulate the Hedgehog signal transducer Smoothened in vertebrates. Current Opinion in Cell Biology, 51, 81–88. https://doi.org/10.1016/j.ceb.2017.10.004
Chen, W., Burgess, S., & Hopkins, N. (2001). Analysis of the zebrafish smoothened mutant reveals conserved and divergent functions of hedgehog activity. Development, 128(12), 2385–2396.
Chiang, C., Litingtung, Y., Lee, E., Youngt, K. E., Cordent, J. L., Westphal, H., & Beachyt, P. A. (n.d.). mice lacking Sonic hedgehog gene function. 5, 407–413.
Cooper, M. K., Wassif, C. A., Krakowiak, P. A., Taipale, J., Gong, R., Kelley, R. I., … Beachy, P. A. (2003). A defective response to Hedgehog signaling in disorders of cholesterol biosynthesis. Nature Genetics, 33(4), 508–513. https://doi.org/10.1038/ng1134
Corbit, K. C., Aanstad, P., Singla, V., Norman, A. R., Stainier, D. Y. R., & Reiter, J. F. (2005). Vertebrate Smoothened functions at the primary cilium. Nature, 437(7061), 1018–1021. https://doi.org/10.1038/nature04117
Deshpande, I., Liang, J., Hedeen, D., Roberts, K. J., Zhang, Y., Ha, B., … Manglik, A. (2019). Smoothened stimulation by membrane sterols drives Hedgehog pathway activity. Nature, 571(7764), 284–288. https://doi.org/10.1038/s41586-019-1355-4
England, S. J., Blanchard, G. B., Mahadevan, L., & Adams, R. J. (2006). A dynamic fate map of the forebrain shows how vertebrate eyes form and explains two cause of cyclopia. Development, 133(23), 4613–4617. https://doi.org/10.1242/dev.02678
Gigante, E. D., Long, A. B., Ben-Ami, J., & Caspary, T. (2018). Hypomorphic Smo mutant with inefficient ciliary enrichment disrupts the highest level of vertebrate Hedgehog response. Developmental Biology, 437(2), 152–162. https://doi.org/10.1016/j.ydbio.2018.03.019
Hammerschmidt, M., Bitgood, M. J., & McMahon, A. P. (1996). Protein kinase A is a common negative regulator of Hedgehog signaling in the vertebrate embryo. Genes and Development, 10(6), 647–658. https://doi.org/10.1101/gad.10.6.647
Hammerschmidt, M., & McMahon, A. P. (1998). The effect of pertussis toxin on zebrafish development: A possible role for inhibitory G-proteins in Hedgehog signaling. Developmental Biology, 194(2), 166–171. https://doi.org/10.1006/dbio.1997.8796
Hong, M., Srivastava, K., Kim, S., Allen, B. L., Leahy, D. J., Hu, P., … Muenke, M. (2017). BOC is a modifier gene in holoprosencephaly. Human Mutation, 38(11), 1464–1470. https://doi.org/10.1002/humu.23286
Hong, S., Hu, P., Marino, J., Hufnagel, S. B., Hopkin, R. J., Toromanović, A., … Muenke, M. (2016). Dominant-negative kinase domain mutations in FGFR1 can explain the clinical severity of Hartsfield syndrome. Human Molecular Genetics, 25(10), 1912–1922. https://doi.org/10.1093/hmg/ddw064
Hong, S., Hu, P., Roessler, E., Hu, T., & Muenke, M. (2018). Loss-of-function mutations in FGF8 can be independent risk factors for holoprosencephaly. Human Molecular Genetics, 27(11), 1989–1998. https://doi.org/10.1093/hmg/ddy106
Hu, A., & Song, B. L. (2019). The interplay of Patched, Smoothened and cholesterol in Hedgehog signaling. Current Opinion in Cell Biology, 61, 31–38. https://doi.org/10.1016/j.ceb.2019.06.008
Huang, P., Nedelcu, D., Watanabe, M., Jao, C., Kim, Y., Liu, J., & Salic, A. (2016). Cellular Cholesterol Directly Activates Smoothened in Hedgehog Signaling. Cell, 166(5), 1176-1187.e14. https://doi.org/10.1016/j.cell.2016.08.003
Huang, P., Zheng, S., Wierbowski, B. M., Kim, Y., Nedelcu, D., Aravena, L., … Salic, A. (2018). Erratum: Structural Basis of Smoothened Activation in Hedgehog Signaling (Cell (2018) 174(2) (312–324.e16), (S0092867418305221) (10.1016/j.cell.2018.04.029)). Cell, 175(1), 295–297. https://doi.org/10.1016/j.cell.2018.09.003
Huangfu, D., & Anderson, K. V. (2006). Signaling from Smo to Ci/Gli: Conservation and divergence of Hedgehog pathways from Drosophila to vertebrates. Development, 133(1), 3–14. https://doi.org/10.1242/dev.02169
Ingham, P. W., Nakano, Y., & Seger, C. (2011). Mechanisms and functions of Hedgehog signalling across the metazoa. Nature Reviews Genetics, 12(6), 393–406. https://doi.org/10.1038/nrg2984
Koudijs, M. J., Den Broeder, M. J., Groot, E., & Van Eeden, F. J. M. (2008). Genetic analysis of the two zebrafish patched homologues identifies novel roles for the hedgehog signaling pathway. BMC Developmental Biology, 8, 1–17. https://doi.org/10.1186/1471-213X-8-15
Kudoh, T., Tsang, M., Hukriede, N. A., Chen, X., Dedekian, M., Clarke, C. J., … Dawid, I. B. (2001). A gene expression screen in zebrafish embryogenesis. Genome Research, 11(12), 1979–1987. https://doi.org/10.1101/gr.209601
Lam, C. W., Xie, J., To, K. F., Ng, H. K., Lee, K. C., Yuen, N. W. F., … McCormick, F. (1999). A frequent activated smoothened mutation in sporadic basal cell carcinomas. Oncogene, 18(3), 833–836. https://doi.org/10.1038/sj.onc.1202360
Lee, J., Willer, J. R., Willer, G. B., Smith, K., Gregg, R. G., & Gross, J. M. (2008). Zebrafish blowout provides genetic evidence for Patched1-mediated negative regulation of Hedgehog signaling within the proximal optic vesicle of the vertebrate eye. Developmental Biology, 319(1), 10–22. https://doi.org/10.1016/j.ydbio.2008.03.035
Li, H. S., Tierney, C., Wen, L., Wu, J. Y., & Rao, Y. (1997). A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development, 124(3), 603–615.
Luchetti, G., Sircar, R., Kong, J. H., Nachtergaele, S., Sagner, A., Byrne, E. F. X., … Rohatgi, R. (2016). Cholesterol activates the G-protein coupled receptor smoothened to promote hedgehog signaling. ELife, 5(OCTOBER2016), 1–22. https://doi.org/10.7554/eLife.20304
Miyake, A., Nihno, S., Murakoshi, Y., Satsuka, A., Nakayama, Y., & Itoh, N. (2012). Neucrin, a novel secreted antagonist of canonical Wnt signaling, plays roles in developing neural tissues in zebrafish. Mechanisms of Development, 128(11–12), 577–590. https://doi.org/10.1016/j.mod.2012.01.001
Myers, B. R., Neahring, L., Zhang, Y., Roberts, K. J., & Beachy, P. A. (2017). Rapid, direct activity assays for Smoothened reveal Hedgehog pathway regulation by membrane cholesterol and extracellular sodium. Proceedings of the National Academy of Sciences of the United States of America, 114(52), E11141–E11150. https://doi.org/10.1073/pnas.1717891115
Myers, B. R., Sever, N., Chong, Y. C., Kim, J., Belani, J. D., Rychnovsky, S., … Beachy, P. A. (2013). Hedgehog pathway modulation by multiple lipid binding sites on the smoothened effector of signal response. Developmental Cell, 26(4), 346–357. https://doi.org/10.1016/j.devcel.2013.07.015
Nachtergaele, S., Whalen, D. M., Mydock, L. K., Zhao, Z., Malinauskas, T., Krishnan, K., … Rohatgi, R. (2013). Structure and function of the Smoothened extracellular domain in vertebrate Hedgehog signaling. ELife, 2013(2), 1–32. https://doi.org/10.7554/eLife.01340.001
Nakano, Y., Nystedt, S., Shivdasani, A. A., Strutt, H., Thomas, C., & Ingham, P. W. (2004). Functional domains and sub-cellular distribution of the Hedgehog transducing protein Smoothened in Drosophila. Mechanisms of Development, 121(6), 507–518. https://doi.org/10.1016/j.mod.2004.04.015
Ohkubo, Y., Chiang, C., & Rubenstein, J. L. R. (2002). Coordinate regulation and synergistic actions of BMP4, SHH and FGF8 in the rostral prosencephalon regulate morphogenesis of the telencephalic and optic vesicles. Neuroscience, 111(1), 1–17. https://doi.org/10.1016/S0306-4522(01)00616-9
Pillai-Kastoori, L., Wen, W., & Morris, A. C. (2015). Keeping an eye on SOXC proteins. Developmental Dynamics, 244(3), 367–376. https://doi.org/10.1002/dvdy.24235
Qi, X., Liu, H., Thompson, B., McDonald, J., Zhang, C., & Li, X. (2019). Cryo-EM structure of oxysterol-bound human Smoothened coupled to a heterotrimeric Gi. Nature. https://doi.org/10.1038/s41586-019-1286-0
Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., … Rehm, H. L. (2015). Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine, 17(5), 405–424. https://doi.org/10.1038/gim.2015.30
Roessler, E., Belloni, E., Gaudenz, K., Jay, P., Berta, P., Stephen W. Scherer, … Muenke, M. (1996). Mutations in the human Sonic Hedgehog gene cause holoprosencephaly. 14(november), 357–360.
Roessler, E., Hu, P., Marino, J., Hong, S., Hart, R., Berger, S., … Muenke, M. (2018). Common genetic causes of holoprosencephaly are limited to a small set of evolutionarily conserved driver genes of midline development coordinated by TGF-β, hedgehog, and FGF signaling. Human Mutation, 39(10), 1416–1427. https://doi.org/10.1002/humu.23590
Roessler, E., Hu, P., & Muenke, M. (2018). Holoprosencephaly in the genomics era. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 178(2), 165–174. https://doi.org/10.1002/ajmg.c.31615
Roessler, E., & Muenke, M. (2010). The molecular genetics of holoprosencephaly. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 154(1), 52–61. https://doi.org/10.1002/ajmg.c.30236
Sanek, N. A., Taylor, A. A., Nyholm, M. K., & Griblat, Y. (2009). Zebrafish zic2a patterns the forebrain through modulation of Hedgehog-activated gene expression. Development, 136(22), 3791–3800. https://doi.org/10.1242/dev.037820
Sharpe, H. J., Pau, G., Dijkgraaf, G. J., Basset-Seguin, N., Modrusan, Z., Januario, T., … de Sauvage, F. J. (2015). Genomic Analysis of Smoothened Inhibitor Resistance in Basal Cell Carcinoma. Cancer Cell, 27(3), 327–341. https://doi.org/10.1016/j.ccell.2015.02.001
Simonis, N., Migeotte, I., Lambert, N., Perazzolo, C., de Silva, D. C., Dimitrov, B., … Vilain, C. (2013). FGFR1 mutations cause hartsfield syndrome, the unique association of holoprosencephaly and ectrodactyly. Journal of Medical Genetics, 50(9), 585–592. https://doi.org/10.1136/jmedgenet-2013-101603
Sood, R., Carrington, B., Bishop, K., Jones, M. P., Rissone, A., Candotti, F., … Liu, P. (2013). Efficient Methods for Targeted Mutagenesis in Zebrafish Using Zinc-Finger Nucleases: Data from Targeting of Nine Genes Using CompoZr or CoDA ZFNs. PLoS ONE, 8(2). https://doi.org/10.1371/journal.pone.0057239
Storm, E. E., Garel, S., Borello, U., Hebert, J. M., Martinez, S., McConnel, S. K., … Rubenstein, J. L. R. (2006). Dose-dependent functions fo Fgf8 in regulating telencephalic patterning centers. Development, 133(9), 1831–1844. https://doi.org/10.1242/dev.02324
Taipale, J., Cooper, M. K., Maiti, T., & Beachy, P. A. (2002). Patched acts catalytically to suppress the activity of Smoothened. Nature, 418(22), 892–896. https://doi.org/10.1073/pnas.152330599
Taipale, J., Chen, J. K., Cooper, M. K., Wang, B., Mann, R. K., Milenkovic, L., … Beachy, P. A. (2000). Effects of oncogenic mutations in Smoothened and Patched can be reversed by cyclopamine. Nature, 406(6799), 1005–1009. https://doi.org/10.1038/35023008
Twigg, S. R. F., Hufnagel, R. B., Miller, K. A., Zhou, Y., McGowan, S. J., Taylor, J., … Wilkie, A. O. M. (2016). A Recurrent Mosaic Mutation in SMO, Encoding the Hedgehog Signal Transducer Smoothened, Is the Major Cause of Curry-Jones Syndrome. American Journal of Human Genetics, 98(6), 1256–1265. https://doi.org/10.1016/j.ajhg.2016.04.007
Varshney, G. K., Carrington, B., Pei, W., Bishop, K., Chen, Z., Fan, C., … Burgess, S. M. (2016). A high-throughput functional genomics workflow based on CRISPR/Cas9-mediated targeted mutagenesis in zebrafish. Nature Protocols, 11(12), 2357–2375. https://doi.org/10.1038/nprot.2016.141
Vinothkumar, S., Rastegar, S., Takamiya, M., Ertzer, R., & Strähle, U. (2008). Sequential and cooperative action of Fgfs and Shh in the zebrafish retina. Developmental Biology, 314(1), 200–214. https://doi.org/10.1016/j.ydbio.2007.11.034
Wallis, D. E., Roessler, E., Hehr, U., Nanni, L., Wiltshire, T., Richieri-Costa, A., … Muenke, M. (1999). Mutations in the homeodomain of the human SIX3 gene cause holoprosencephaly. Nature Genetics, 22(2), 196–198. https://doi.org/10.1038/9718
Wilson, S. W., & Houart, C. (2004). Early steps in the development of the forebrain. Developmental Cell, 6(2), 167–181. https://doi.org/10.1016/S1534-5807(04)00027-9
Xavier, G. M., Seppala, M., Barrell, W., Birjandi, A. A., Geoghegan, F., & Cobourne, M. T. (2016). Hedgehog receptor function during craniofacial development. Developmental Biology, 415(2), 198–215. https://doi.org/10.1016/j.ydbio.2016.02.009
Xie, J., Murone, M., Luoh, S., Ryan, A., Gu, Q., Zhang, C., … Sauvage, F. J. De. (1998). Mutations in Sporadic Basal-Cell Carcinoma. Nature, 391(January), 90–92.
Zhang, Y., Bulkley, D. P., Xin, Y., Roberts, K. J., Asarnow, D. E., Sharma, A., … Beachy, P. A. (2018). Structural Basis for Cholesterol Transport-like Activity of the Hedgehog Receptor Patched. Cell, 175(5), 1352-1364.e14. https://doi.org/10.1016/j.cell.2018.10.026
Zhao, Y., Tong, C., & Jiang, J. (2007). Hedgehog regulates smoothened activity by inducing a conformational switch. Nature, 450(7167), 252–258. https://doi.org/10.1038/nature06225