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Abstract. This paper focused to the study of the boundedness, the persis-
tence, and the asymptotic behavior of the positive solutions of the system of
three di¤erence equations of exponential form:

xn+1 =
�+�e�xn+"e�yn

�+!yn
; yn+1 =

�+�e�yn+"e�zn
�+!zn

; zn+1 =
�+�e�zn+"e�xn

�+!xn

where �; �; "; � and ! are positive constants and the initial values xo; yo; zo
are positive real values.
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1. Introduction

Discrete dynamical structures de�ned by means of di¤erence equations are great
appropriate for population dynamics in comparison to maintains ones. Population
fashions incorporate exponential di¤erence equations and their stability evaluation
although complex, however interesting. The start of 21st century has witnessed
a growing interest inside the population dynamics. Therefore, many works were
regarded on di¤erence equations or systems of di¤erence equations associated with
exponential terms (see [1-9] and reference referred to therein). "As an instance,
Metwally et al. [1] have investigated the dynamics of the subsequent second-order
di¤erence equation:

zn+1 = � +  zn�1e
�zn (1)

That is the solution of the subsequent logistic equation with piecewise regular
arguments:

dz

dt
= rz(1� z

K
) (2)

Wherein � and  and preliminary conditions z�1; z0 are arbitrary non-negative
real numbers. Equation (1) can be considered as a model in Mathematical Biology
where � is immigration rate and  is the populace growth rate. Further it�s far
additionally mentioned in [2] that this model is recommended through the people
from the Harvard school of public health, reading the poplution dynamics of single-
species zn:
Further, Papaschinopoulos et al. [2] and Papaschinopoulos and Schinas [3] deliv-

ered pleasant outcomes toward this path by exploring the dynamical properties like
boundedness and persistence of positive solutions, existence of the unique positive
equilibrium, local and global asymptotic stability of two-species model portrayed
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by frameworks of di¤erecne equations, which is natural extension of single-species
population model depicted in (1).
In [4], Grove et al. have researched the global dynamics of the positive solution

of the accompanying di¤erence equations:

zn+1 = �zn +  zn�1e
�zn (3)

where �;  and initial conditions z�1; z0 are arbitrary non-negative real num-
bers. This equation can be considered as a biological model, since it arises from
models studying the amount of litter in perennial grassland (see [6]). After that
Papaschinopoulos et al. [5, 6] have studied the asymptotic conduct of the e¤ective
result of two-species model which is also natural extension of single-species model
represented in (3). In 2016, Wang and Feng [7] have investigated the dynamics of
positive solution for the following di¤erence equation that is clearly a brand new
form of single-species model depicted in (1):

zn+1 = � +  zne
�zn�1 (4)

where �;  and initial conditions z�1; z0 are arbitrary nonnegative real numbers.
According to biological point of view � is immigration rate and  is population
growth rate.
Ozturk et al. [8] have investigated the global asymptotic stability, boundedness

and periodic nature of the following 2nd-order exponential di¤erence equation:

zn+1 =
� +  e�zn

�+ zn�1
; n = 0; 1; ::: (5)

where �;  ; � and z�1; z0 are arbitrary non-negative numbers.
Equation (5) is likewise viewed as a model in Mathematical Biology wherein � is

immigration rate,  is population growth rate and � is the carrying capacity. Later
Papaschinopoulos et al. [9] have investigated boundedness and persistence and
local and global asymptotic behavior of two-species model which is natural exten-
sion of single-species model (5), represented by way of the subsequent exponential
structures of di¤erence equations:

xn+1 =
�+ �e�yn

 + yn�1
; yn+1 =

� + �e�xn

& + xn�1

xn+1 =
�+ �e�yn

 + xn�1
; yn+1 =

� + �e�xn

& + yn�1
(6)

xn+1 =
�+ �e�xn

 + yn�1
; yn+1 =

� + �e�yn

& + xn�1

where �; �; ; �; �; & and initial conditions x�1; x0; y�1; y0 are non-negative
real numbers.
Vu Van Khuong and Tran Hang Thai [10], have investigated the boundedness,

persistence, and the asymptotic behavior of the positive solutions of the system of
two di¤erence equations of exponential form:

xn+1 =
a+ be�yn + ce�xn

d+ hyn
; yn+1 =

a+ be�xn + ce�yn

d+ hxn
(7)
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where a; b; c; d and h are positeve constants and the initial values x0; y0 are
positive real values".
Prompted by means of the above study, we can amplify the above di¤erence

equation to a system of di¤erence equations; our aim could be to research the
boundedness character, persistence, and asymptotic conduct of the positive solu-
tions of the following system of exponential form:

xn+1 =
�+ �e�xn + "e�yn

� + !yn
; yn+1 =

�+ �e�yn + "e�zn

� + !zn
; zn+1 =

�+ �e�zn + "e�xn

� + !xn
(8)

where �; �; "; � and ! are positive constants and the initial values xo; yo; zo
are positive real values.
Di¤erence equations and system of di¤erence equations of exponential form can

be discovered in [1, 2, 11, 12, 13]. Furthermore, as di¤erence equations have many
programs in applied sciences, there are numerous papers and books that can be
determined concerning the theory and applications of di¤erence equations; see [14-
16] and the references mentioned therein.

2. Preliminaries

Let us consider three-dimensional discrete dynamical system of the following
form:

xn+1 = f(xn; yn); yn+1 = g(yn; zn); zn+1 = h(zn; xn); n = 0; 1; 2; :::: (9)

where f : I�J ! I; g : J�K ! J and h : K�I ! K are continuously di¤eren-
tiable functions and I; J and K are some intervals of real numbers. Furthermore, a
solution fxn; yn; zng1n=0 of system (9) is uniquely determined by initial conditions
(x0; y0; z0) 2 I �J �K:We consider the corresponding vector map F = (f; g; h)
along with system (9): An equilibrium point of (9) is a point (�x; �y; �z) that satis�es

�x = f(�x; �y; �z); �y = g(�x; �y; �z); �z = h(�x; �y; �z):

So, this point (�x; y; �z) of the vector map F is also called a �xed point.

De�nition 1. (see[24]) "Let (�x; �y; �z) be an equilibrium point of system(9):
(i) An equilibrium point (�x; �y; �z) is said to be stable if for any " > 0 there is � > 0

such that for every initial conditions (x0; y0; z0); if k(x0; y0; z0)� (�x; �y; �z)k < �
implies that
k(xn; yn; zn)� (�x; �y; �z)k < " for all n > 0; where k:k is usual Euclidean norm

in R2:
(ii) An equilibrium point (�x; �y; �z) is said to be unstable if it is not stable.
(iii) An equilibrium point (�x; �y; �z) is said to be asymptotically stable if there

exists r > 0 such that (xn; yn; zn)! (�x; �y; �z) as n!1 for all (x0; y0; z0) that
satisfy k(x0; y0; z0)� (�x; �y; �z)k < r:
(iv) An equilibrium point (�x; �y; �z) is called global attractor if (xn; yn; zn) !

(�x; �y; �z) as n!1:
(v) An equilibrium point (�x; �y; �z) is called asymptotic global attractor if it is a

global attractor and stable.
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De�nition 2. (see[24]) Let (�x; �y; �z) be an equilibrium point of a map F = (f; g; h)
where f; g and h are continuously di¤erentiable functions at (�x; �y; �z):The linearized
system of (9) about the equilibrium point (�x; �y; �z) is

Xn+1 = JFXn

Where Xn =

0@ xn
yn
zn

1A and JF is the Jacobian matrix of system (9) about the

equilibrium point (�x; �y; �z).

Lemma 3. (see[23]) Assume that Xn+1 = F (Xn); n = 0; 1; :::;is a system of
di¤erence equations such that X is a �xed point of F . If all eigenvalues of the
Jacobian matrix JF about X lie inside the open unit disk j�j < 1, then X is locally
asymptotically stable. If one of them has a modulus greater than one, then X is
unstable.
The following results give the rate of convergence of solutions of a system of

di¤erence equations

Xn+1 = [A+B(n)]Xn (10)

where Xn is a m-dimensional vector, A 2 Cm�m is a constant matrix, and
B : Z+ ! Cm�m is a matrix function satisfying

kB(n)k ! 0 when n!1 (11)

where k:k denotes any matrix norm which is associated with the vector norm

k(x; y; z)k =
p
x2 + y2 + z2

Proposition 4. (Perron�s theorem [22]) Assume that condition (11) holds. If Xn

is a solution of system (10); then either Xn = 0 for all large n or

� = Lim
n!1

n
p
kXnk (12)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Proposition 5. (Perron�s theorem [22]) Assume that condition (11) holds. If Xn

is a solution of system (10); then either Xn = 0 for all large n or

� = Lim
n!1

kXn+1k
kXnk

(13)

exists and is equal to the modulus of one of the eigenvalues of matrix A".

De�nition 6. (Persistence): In mathematics, the persistence of a number is the
number of times one must apply a given operation to an integer before reaching a
�xed point at which the operation no longer alters the number. The persistence of
a number is unde�ned if a �xed point is never reached.

3. Global Behavior of Solutions of System(8)

Inside the �rst lemma we take a look at the boundedness and persistence of the
positive solutions of (8).

Lemma 7. Every positive solution of (8) is bounded and persists.
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Proof. Let (xn; yn; zn) be an arbitrary solution of (8).
from (8) we can see that

xn �
�+ �+ "

�
; yn �

�+ �+ "

�
; zn �

�+ �+ "

�
; n = 1; 2; :::: (14)

In addition from (8) & (9)

xn+1 =
�+ �e�xn + "e�yn

� + !yn
; xn �

�+ �e�(�+�+")=� + "e�(�+�+")=�

� + !((�+ �+ ")=�)

yn+1 =
�+ �e�yn + "e�zn

� + !zn
; yn �

�+ �e�(�+�+")=� + "e�(�+�+")=�

� + !((�+ �+ ")=�)
(15)

zn+1 =
�+ �e�zn + "e�xn

� + !xn
; zn �

�+ �e�(�+�+")=� + "e�(�+�+")=�

� + !((�+ �+ ")=�)

n = 2; 3; ::

Concluding from (14) and (15), the proof is completed.

A good way to prove the main result of this phase, we remember the following
theorem without its proof (see [17, 18]).

Theorem 8. (see[17,18 ]). "Let R = [a1; b1]� [c1; d1]� [e1; f1] and

f : R! [a1; b1]; g : R! [c1; d1]; t : R! [e1; f1] (16)

be a continuous funtions such that the following hold:
(a) f(x; y); g(y; z) and t(z; x) are non-increasing in their variables for each

(x; y; z) 2 R
(b) If (m1; M1; m2; M2; m3; M3) 2 R3 is a solution of

M1 = f(m1; m2); m1 = f(M1; M2)

M2 = g(m2; m3); m2 = g(M2; M3) (17)

M3 = t(m3; m1); m3 = t(M3;M1)

Then m1 = M1; m2 = M2; m3 = M3 then the following system of di¤erence
equations.

xn+1 = f(xn; yn); yn+1 = g(yn; zn); zn+1 = t(zn; xn) (18)

has a unique equilibrium (x; y; z) and every solution (xn; yn; zn) of the system
(18), with (xo; yo; zo) 2 R converges to the unique equilibrium (x; y; z). In
addition, the equilibrium (x; y; z) is globally asymptotically stable.
Now, on this phase, we state the main theorem.

Theorem 9. (see[10]). Assume that the following relation holds true for system
(8):

�+ " < � (19)

then system (8) has a unique positive equilibrium (x; y; z) and each positive
solution of (8) approaches to the unique positive equilibrium (x; y; z) as n ! 1.
In addition, the system is globally asymptotically stable on the equilibrium (x; y; z).
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Proof. Let us consider the functions

f(u; v) =
�+ �e�u + "e�v

� + !v

g(v; w) =
�+ �e�v + "e�w

� + !w
(20)

t(w; u) =
�+ �e�w + "e�u

� + !u

Where

u; v; w 2 I =
�
�+ (�+ ")e�(�+�+")=�

� + !f(�+ �+ ")=�g ;
�+ (�+ ")e�(�+�+")=�

� + !f(�+ �+ ")=�g ;
�+ �+ "

�

�
(21)

It can be seen that f(u; v); g(v; w) & t(w; u) are non-increasing in variables
for each (u; v; w) 2 I � I � I: In addition from (20) and (21) we have f(u; v) 2
I; g(v; w) 2 I & t(w; u) 2 I as (u; v; w) 2 I � I � I and so f : I � I � I ! I; g :
I � I � I ! I; t : I � I � I ! I
Now let m1; M1; m2; M2; m3 & M3 be positive real numbers such that

M1 =
�+ �e�m1 + "e�m2

� + !m2
; m1 =

�+ �e�M1 + "e�M2

� + !M2

M2 =
�+ �e�m2 + "e�m3

� + !m3
; m2 =

�+ �e�M2 + "e�M3

� + !M3
(22)

M3 =
�+ �e�m3 + "e�m1

� + !m1
; m3 =

�+ �e�M3 + "e�M1

� + !M1

Furthermore arguing as inside the proof of theorem (7). It su¢ ces to assume
that

m1 �M1; m2 �M2; m3 �M3 (23)

From (22), we get:

M1 =
�+ �e�m1 + "e�m2

� + !m2

M1 (� + !m2) = �+ �e�m1 + "e�m2

�e�m1 + "e�m2 = M1 (� + !m2)� �

Similarly

�e�M1 + "e�M2 = m1 (� + !M2)� �
�e�m2 + "e�m3 = M2 (� + !m3)� �
�e�M2 + "e�M3 = m2 (� + !M3)� � (24)

�e�m3 + "e�m1 = M3 (� + !m1)� �
�e�M3 + "e�M1 = m3 (� + !M1)� �
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Which implies that

�e�m1 + "e�m2 � �e�M1 � "e�M2 = M1 (� + !m2)� ��m1 (� + !M2) + �

�(e�m1 � e�M1) + "(e�m2 � e�M2) = �M1 + !m2M1 � �m1 � !m1M2

�(M1 �m1) + !(m2M1 �m1M2) = �e�m1�M1(eM1 � em1)

+"e�m2�M2(eM2 � em2)

�(M1 �m1) + !(m2M1 �m1M2) = �e�m1�M1(eM1 � em1)

+"e�m2�M2(eM2 � em2)

Similarly

�(M2 �m2) + !(m3M2 �m2M3) = �e�m2�M2(eM2 � em2)

+"e�m3�M3(eM3 � em3)

�(M3 �m3) + !(m1M3 �m3M1) = �e�m3�M3(eM3 � em3)

+"e�m1�M1(eM1 � em1) (25)

Moreover, we get

eM1 � em1 = e�(M1 �m1); m1 � � �M1

eM2 � em2 = e�(M2 �m2); m2 � � �M2 (26)

eM3 � em3 = e(M3 �m3); m3 �  �M3

Then by adding the two relations (25) we obtained:

�(M1 �m1) + �(M2 �m2) + �(M3 �m3) +

!(m2M1 �m1M2) + !(m3M2 �m2M3) +

!(m1M3 �m3M1)

= �e�m1�M1+�(M1 �m1) + "e
�m2�M2+�(M2 �m2)

+�e�m2�M2+�(M2 �m2) + "e
�m3�M3+(M3 �m3) +

�e�m3�M3+(M3 �m3) + "e
�m1�M1+�(M1 �m1)

�(M1 �m1) + �(M2 �m2) + �(M3 �m3) +

!(m2M1 �m1M2 +m3M2 �m2M3 +m1M3 �m3M1)

= (�+ ")e�m1�M1+�(M1 �m1) + (�+ ")e
�m2�M2+�(M2 �m2) +

(�+ ")e�m3�M3+(M3 �m3)

(M1 �m1)[� � (�+ ")e�m1�M1+�] + (M2 �m2)[� � (�+ ")e�m2�M2+� ] +

(M3 �m3)[� � (�+ ")e�m3�M3+ ] +

!(m2M1 �m1M2 +m3M2 �m2M3 +m1M3 �m3M1)

= 0 (27)

Therefore from (27) we have:

(M1 �m1)[� � (�+ ")e�m1�M1+�] + (M2 �m2)[� � (�+ ")e�m2�M2+� ]

+(M3 �m3)[� � (�+ ")e�m3�M3+ ]

= 0 (28)

and
!(m2M1 �m1M2 +m3M2 �m2M3 +m1M3 �m3M1) = 0 (29)
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Then using (19), (23) and (28) gives us

m1 =M1;m2 =M2 and m3 =M3

Hence from theorem (7) system (8) has a unique positive equilibrium (x; y; z)
and each positive solution of (8) approaches to the unique positive equilibrium
(x; y; z) as n ! 1. In addition, the system (8) is globally asymptotically stable
on the equilibrium (x; y; z). The proof of the theorem is completed now.

4. Rate of Convergence

On this segment, we provide the rate of convergence of a solution of the system
(8) for all values of parametersthat converges to the equilibrium E = (x; y; z). In
[19, 20], The rate of convergence of solutions that converges to an equilibrium for
some three dimensional systems has been obtained.
The following outcomes provide us the rate of convergence of solutions of a

system of di¤erence equations:

Zn+1 = [A+B(n)]Zn (30)

wherein Zn is a k-dimensional vector, A 2 Ck�k is a constant matrix, and
B : Z+ ! Ck�k is a matrix function that satisfying

kB(n)k ! 0 when n!1 (31)

Where k:k denotes any matrix norm which is associated with the vector norm;
k:k also denotes the Euclidean norm in R3 given by

kxk = k(x; y; z)k =
p
x2 + y2 + z2 (32)

Theorem 10. (See [21]). Assume that condition (31) holds. If xn is a solution of
system (30), then either xn = 0 for all large n or

� = Lim
n!1

n
p
kxnk (33)

exists and is equal to the modulus of one of the eigenvalues of matrix A.

Theorem 11. (see[21]). Assume that condition (31) holds. If xn is a solution of
system (30), then either xn = 0 for all large n or

� = Lim
n!1

kxn+1k
kxnk

(34)

exists and equals to the modulus of one of the eignvalues of matrix A.
The following system of equation is satis�ed by the equilibrium point of the system

(8).

x =
�+ �e�x + "e�y

� + !y
; y =

�+ �e�y + "e�z

� + !z
; z =

�+ �e�z + "e�x

� + !x
(35)

If � + " < �; we can easily see that the system (35) has a unique equilibrium
E = (x; x; x):
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The system (8) is associated with map T as:

T (x; y; z) =

0@ f(x; y)
g(y; z)
t(z; x)

1A =

0BB@
�+�e�x+"e�y

�+!y
�+�e�y+"e�z

�+!z
�+�e�z+"e�x

�+!x

1CCA (36)

The Jacobian matrix T is:

JT =

0@ fx fy fz
gx gy gz
tx ty tz

1A
f(x; y) =

�+ �e�x + "e�y

� + !y
; g(y; z) =

�+ �e�y + "e�z

� + !z
; t(z; x) =

�+ �e�z + "e�x

� + !x

@f

@x
= fx =

��e�x
� + !y

;
@f

@y
= fy =

(� + !y)(�"e�y)� (�+ �e�x + "e�y)!
(� + !y)2

;
@f

@z
= fz = 0

@g

@x
= gx = 0;

@g

@y
= gy =

��e�y
� + !z

;
@g

@z
= gz =

(� + !z)(�"e�z)� (�+ �e�y + "e�z)!
(� + !z)2

@t

@x
= tx =

(� + !x)(�"e�x)� (�+ �e�z + "e�x)!
(� + !x)2

;
@t

@y
= ty = 0;

@t

@z
= tz =

��e�z
� + !x

JT =

2664
��e�x
�+!y

(�+!y)(�"e�y)�(�+�e�x+"e�y)!
(�+!y)2 0

0 ��e�y
�+!z

(�+!z)(�"e�z)�(�+�e�y+"e�z)!
(�+!z)2

(�+!x)(�"e�x)�(�+�e�z+"e�x)!
(�+!x)2 0 ��e�z

�+!x

3775
(37)

At the equilibrium point E = (x; y; z) = (x; x; x); the value of Jacobian matrix T
from the system (35) is:

JT =

2664
��e�x
�+!x

(�+!x)(�"e�x)�(�+�e�x+"e�x)!
(�+!x)2 0

0 ��e�x
�+!x

(�+!x)(�"e�x)�(�+�e�x+"e�x)!
(�+!x)2

(�+!x)(�"e�x)�(�+�e�x+"e�x)!
(�+!x)2 0 ��e�x

�+!x

3775
(38)

Our intention on this segment is to evaluate the rate of convergence of each
solution of the system (8) inside the areas in which the factors �; �; "; � & ! 2
(0;1); (� + " < �) and initial conditions xo and yo are arbitrary, non-negative
numbers.

Theorem 12. The error vector en =

0@ e1n
e2n
e3n

1A =

0@ xn � x
yn � y
zn � z

1A of every solution

xn 6= 0 of (8) satis�es both of the following asymptotic relations.

Lim
n!1

n
p
kenk = j�i(JT (E))j for some i = 1; 2; 3::::

Lim
n!1

ken+1k
kenk

= j�i(JT (E))j for some i = 1; 2; 3:::: (39)
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wherein j�i(JT (E))j is equal to modulus of one of the eigenvalues evaluated on
the equilibrium JT (E) of the Jacobian matrix.

Proof. Initially, we can �nd a system that satis�ed by means of error terms. The
error terms are given as:

xn+1 � x =
�+ �e�xn + "e�yn

� + !yn
� �+ �e�x + "e�y

� + !y

xn+1 � x =
(�+ �e�xn + "e�yn)(� + !y)� (�+ �e�x + "e�y)(� + !yn)

(� + !yn)(� + !y)

xn+1 � x =

�� + �!y + ��e�xn + �!e�xny + "�e�yn + "!ye�yn � �� � �!yn�
��e�x � �!yne�x � "�e�y � "!yne�y

(� + !yn)(� + !y)

xn+1 � x =

�!(y � yn) + ��(e�xn � e�x) + �!(ye�xn � yne�x) + "�(e�yn � e�y)+
"!(ye�yn � yne�y)
(� + !yn)(� + !y)

xn+1 � x =
���(exn � ex)

exn+x(� + !yn)(� + !y)
+

�"�(eyn � ey)
eyn+y(� + !yn)(� + !y)

+
�!(ye�xn � yne�x)
(� + !yn)(� + !y)

+

"!(ye�yn � yne�y)
(� + !yn)(� + !y)

+
��!(yn � y)

(� + !yn)(� + !y)

xn+1 � x =
���(exn � ex)

exn+x(� + !yn)(� + !y)
+

�"�(eyn � ey)
eyn+y(� + !yn)(� + !y)

+

�!(ye�xn � e�xnyn + e�xnyn � yne�x)
(� + !yn)(� + !y)

+

"!(ye�yn � e�ynyn + e�ynyn � yne�y)
(� + !yn)(� + !y)

+
��!(yn � y)

(� + !yn)(� + !y)

xn+1 � x =
���(exn � ex)

exn+x(� + !yn)(� + !y)
+

�"�(eyn � ey)
eyn+y(� + !yn)(� + !y)

+

�!e�xn(y � yn)
(� + !yn)(� + !y)

+
�!yn(e

�xn � e�x)
(� + !yn)(� + !y)

+
"!e�yn(y � yn)
(� + !yn)(� + !y)

+
"!yn(e

�yn � e�y)
(� + !yn)(� + !y)

+
��!(yn � y)

(� + !yn)(� + !y)

xn+1 � x =
��(exn � ex)

exn+x(� + !yn)(� + !y)
f� + !yng+

�"(eyn � ey)
eyn+y(� + !yn)(� + !y)

f� + !yng+

�!(yn � y)
(� + !yn)(� + !y)

f�+ �e�xn + "e�yng

xn+1 � x =
��

exn+x(� + !y)
(exn � ex) + �"

eyn+y(� + !y)
(eyn � ey) + �!(�+ �e

�xn + "e�yn)

(� + !yn)(� + !y)
(yn � y)

xn+1�x =
��

exn(� + !y)
(exn�x�1)+ �"

eyn(� + !y)
(eyn�y�1)+�!(�+ �e

�xn + "e�yn)

(� + !yn)(� + !y)
(yn�y)
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xn+1 � x =
��

exn(� + !y)
[(xn � x) + 	1(xn � x)2] +

�"
eyn(� + !y)

[(yn � y) + 	2(yn � y)2] +

�!(�+ �e�xn + "e�yn)
(� + !yn)(� + !y)

(yn � y)

xn+1 � x =
��

exn(� + !y)
(xn � x) +

�"e�yn(� + !yn)� !(�+ �e�xn + "e�yn)
(� + !yn)(� + !y)

(yn � y) +

��
exn(� + !y)

	1(xn � x)2 +
�"

eyn(� + !y)
	2(yn � y)2

xn+1 � x =
��

exn(� + !y)
(xn � x) +

�"e�yn(� + !yn)� !(�+ �e�xn + "e�yn)
(� + !yn)(� + !y)

(yn � y) +

��
exn(� + !y)

	1(xn � x)2 +
�"

eyn(� + !y)
	2(yn � y)2 (40)

Similarly, we get

yn+1 � y =
��

eyn(� + !z)
(yn � y) +

�"e�zn(� + !zn)� !(�+ �e�yn + "e�zn)
(� + !zn)(� + !z)

(zn � z) +

��
eyn(� + !z)

	3(yn � y)2 +
�"

ezn(� + !z)
	4(zn � z)2 (41)

zn+1 � z =
��

ezn(� + !x)
(zn � z) +

�"e�xn(� + !xn)� !(�+ �e�zn + "e�xn)
(� + !xn)(� + !x)

(xn � x) +

��
ezn(� + !x)

	5(zn � z)2 +
�"

exn(� + !x)
	6(xn � x)2 (42)

From equations (40), (41) & (42)

xn+1 � x � ��
exn(� + !y)

(xn � x) +
�"e�yn(� + !yn)� !(�+ �e�xn + "e�yn)

(� + !yn)(� + !y)
(yn � y)

yn+1 � y � ��
eyn(� + !z)

(yn � y) +
�"e�zn(� + !zn)� !(�+ �e�yn + "e�zn)

(� + !zn)(� + !z)
(zn � z)

zn+1 � z � ��
ezn(� + !x)

(zn � z) +
�"e�xn(� + !xn)� !(�+ �e�zn + "e�xn)

(� + !xn)(� + !x)
(xn � x)(43)

set

e1n = xn � x; e2n = yn � y; e3n = zn � z (44)

Then system (43) can be represented as:

e1n+1 � ane
1
n + bne

2
n

e2n+1 � cne
2
n + dne

3
n (45)

e3n+1 � pne
3
n + qne

1
n
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Where

an =
��

exn(� + !y)
; bn =

�"e�yn(� + !yn)� !(�+ �e�xn + "e�yn)
(� + !yn)(� + !y)

cn =
��

eyn(� + !z)
; dn =

�"e�zn(� + !zn)� !(�+ �e�yn + "e�zn)
(� + !zn)(� + !z)

(46)

pn =
��

ezn(� + !x)
; qn =

�"e�xn(� + !xn)� !(�+ �e�zn + "e�xn)
(� + !xn)(� + !x)

Taking the limits of an; bn; cn; dn; pn and qn as n!1; we obtain

Lim
n!1

an =
��

ex(� + !y)
=

��
ex(� + !x)

Lim
n!1

bn =
�"e�y(� + !y)� !(�+ �e�x + "e�y)

(� + !y)(� + !y)
=
�"e�x(� + !x)� ![�+ (�+ ")e�x]

(� + !x)2

Lim
n!1

cn =
��

ey(� + !z)
=

��
ex(� + !x)

(47)

Lim
n!1

dn =
�"e�z(� + !z)� !(�+ �e�y + "e�z)

(� + !z)(� + !z)
=
�"e�x(� + !x)� ![�+ (�+ ")e�x]

(� + !x)2

Lim
n!1

pn =
��

ez(� + !x)
=

��
ex(� + !x)

Lim
n!1

qn =
�"e�x(� + !x)� !(�+ �e�z + "e�x)

(� + !x)(� + !x)
=
�"e�x(� + !x)� ![�+ (�+ ")e�x]

(� + !x)2

that is

an =
��

ex(� + !x)
+ �n ; bn =

�"e�x(� + !x)� ![�+ (�+ ")e�x]
(� + !x)2

+ �n

cn =
��

ex(� + !x)
+ n ; dn =

�"e�x(� + !x)� ![�+ (�+ ")e�x]
(� + !x)2

+ �n(48)

pn =
��

ex(� + !x)
+ �n ; qn =

�"e�x(� + !x)� ![�+ (�+ !)e�x]
(� + !x)2

+ �n

where �n ! 0; �n ! 0; n ! 0; �n ! 0; �n ! 0; & �n ! 0 as n!1
Now, in accordance to the system of the form (30), we have:

en+1 = [A+B(n)]en (49)

A =

2664
��e�x
(�+!x)

�"e�x(�+!x)�![�+(�+")e�x]
(�+!x)2 0

0 ��e�x
(�+!x)

�"e�x(�+!x)�![�+(�+")e�x]
(�+!x)2

�"e�x(�+!x)�![�+(�+")e�x]
(�+!x)2 0 ��e�x

(�+!x)

3775
(50)

B(n) =

24 �n �n 0
0 n �n
�n 0 �n

35
kB(n)k ! 0, as n!1

Thus,the limiting system of error terms can be written as24 e1n+1
e2n+1
e3n+1

35 = A

24 e1n
e2n
e3n

35 (51)
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The system (8) which evaluated at the equilibrium E = (x; y; z) = (x; x; x) is
perfectly linearized system. Then Theorems 9 and 10 follow the result.

5. Numerical Simulations

If you want to a¢ rm our theoretical discussion, we keep in mind numerous
thrilling numerical examples on this phase. These examples constitute one of a
kind forms of qualitative behavior of solutions to the system (8) of nonlinear dif-
ference equations. The �rst example suggests that positive equilibrium of system
(8) is unstable with suitable parametric choices. Moreover, from the remaining
examples it is clear that unique positive equilibrium point of system (8) is globally
asymptotically stable with di¤erent parametric values. All plots on this phase are
drawn with MATLAB.

Example 13. Let � = 7:6; � = 9:2; " = 3:8; � = 5:2 and ! = 1:9 then system can
be written as

xn+1 =
7:6 + 9:2e�xn + 3:8e�yn

5:2 + 1:9yn
; yn+1 =

7:6 + 9:2e�yn + 3:8e�zn

5:2 + 1:9zn
; zn+1 =

7:6 + 9:2e�zn + 3:8e�xn

5:2 + 1:9xn
(52)

with initial condition xo = 1:5; yo = 1:8 and zo = 2:2:
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(a) Plot of xn; yn & zn for system (52) (b) Phase portrait of system (52)

Figure 1: Plots for the system (52)

In this case, the positive equilibrium point of the system (52) is unstable. More-
over, in Figure 1 the plot of xn; yn & zn are shown in Figure 1(a) and a phase
portrait of the system (52) is shown in Figure 1(b):

Example 14. Let � = 6:6; � = 0:2; " = 0:8; � = 1:2 and ! = 0:9 then system can
be written as

xn+1 =
6:6 + 0:2e�xn + 0:8e�yn

1:2 + 0:9yn
; yn+1 =

6:6 + 0:2e�yn + 0:8e�zn

1:2 + 0:9zn
; zn+1 =

6:6 + 0:2e�zn + 0:8e�xn

1:2 + 0:9xn
(53)
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with initial condition xo = 1:3; yo = 1:1 and zo = 2:5:
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(a) Plot of xn; yn & zn for system (53) (b) Attractors of system (53)

Figure 2: Plots for the system (53)

In this case, the unique positive equilibrium point of the system (53) is given
by (x; y; z) = (2:14542; 2:14542; 2:14542): Moreover, in Figure 2; the plot of
xn; yn & zn are shown in Figure 2(a), and XY, YZ & ZX attractors of the system
(53) is shown in Figure 2(b):

Example 15. Let � = 4:5; � = 1:2; " = 1:8; � = 4:2 and ! = 1:9 then system can
be written as

xn+1 =
4:5 + 1:2e�xn + 1:8e�yn

4:2 + 1:9yn
; yn+1 =

4:5 + 1:2e�yn + 1:8e�zn

4:2 + 1:9zn
; zn+1 =

4:5 + 1:2e�zn + 1:8e�xn

4:2 + 1:9xn
(54)

with initial condition xo = 1:7; yo = 1:9 and zo = 3:2:
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(a) Plot of xn; yn & zn for system (54) (b) Attractors of system (54)

Figure 3: Plots for the system (54)

In this case, the unique positive equilibrium point of the system (54) is given
by (x; y; z) = (0:945045; 0:945045; 0:945045): Moreover, in Figure 3; the plot of
xn; yn & zn are shown in Figure 3(a), and XY, YZ & ZX attractors of the system
(54) is shown in Figure 3(b):
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Example 16. Let � = 8:4; � = 2:2; " = 3:8; � = 7:6 and ! = 1:9 then system can
be written as

xn+1 =
8:4 + 2:2e�xn + 3:8e�yn

7:6 + 1:9yn
; yn+1 =

8:4 + 2:2e�yn + 3:8e�zn

7:6 + 1:9zn
; zn+1 =

8:4 + 2:2e�zn + 3:8e�xn

7:6 + 1:9xn
(55)

with initial condition xo = 2:3; yo = 3:1 and zo = 1:5:
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(a) Plot of xn; yn & zn for system (55) (b) Attractors of system (55)

Figure 4: Plots for the system (55)

In this case, the unique positive equilibrium point of the system (55) is given
by (x; y; z) = (1:08099; 1:08099; 1:08099): Moreover, in Figure 4; the plot of
xn; yn & zn are shown in Figure 4(a), and XY, YZ & ZX attractors of the system
(55) is shown in Figure 4(b):

5.1. Conclusion. This work is associated with qualitative conduct of a system of
exponential di¤erence equations. We have investigated the existence and uniqueness
of positive steady state of system (8). The boundedness character and persistence
of positive solutions are veri�ed. Moreover, we have got proven that unique positive
equilibrium point of system (8) is locally in addition to globally asymptotically sta-
ble under certain parametric conditions. The primary goal of dynamical structures
theory is to explore the global conduct of a system based on the knowledge of its
present state. An approach to this problem consists of determining the possible
global conduct of the system and determining which parametric conditions lead to
these long-term behaviors. Furthermore, the rate of convergence of positive solu-
tions of (8) which converges to its unique positive equilibrium point is established.
In the end, a few illustrative numerical examples are furnished to help our theortical
discussion.
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