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ABSTRACT. We study the existence of global bounded smooth solutions to the one-dimensional
nonisentropic Euler system with large initial data. We find a sufficient condition on the initial data to
obtain the existence of global bounded classical solution to the Cauchy problem.

1. Introduction

We consider the one-dimensional Euler system

(1.1)


ρt + (ρu)x = 0,

(ρu)t + (ρu2 + p)x = 0,

(ρE)t + (ρuE + up)x = 0,

where the variables u, ρ, p, E = u2

2 +e, and e are the velocity, the density, the pressure, the specific
total energy, and the specific inner energy, respectively. For polytropic gases, we have the equations
of state

p = esργ and e =
p

(γ − 1)ρ
,

where the variable s represents the specific entropy and γ is a constant between 1 and 5/3.
It is well known that the solutions of the Cauchy problem for system (1.1) may blow up in finite

time, no matter how smooth and small the initial data are, see [1, 3, 4, 5, 20, 21]. It is natural to
consider what type of initial data are possible to guarantee the existence of global classical solution.
If the flow is isentropic, i.e., s ≡ Const., then the system (1.1) can be reduced to a 2× 2 reducible
system, and the existence of global bounded classical solutions to the Cauchy problem was obtained
in [15]. For the nonisentropic Euler system, Zhao [22] and Liu [19] studied the existence of global
classical solutions. Zhu [23] obtained the existence of global classical solution to the nonisentropic
Euler system with a special equation of state. Lin and Liu and Yang [17] obtained the existence
of global bounded continuous solutions, provided that the initial data satisfy a set of conditions.
In a recent paper, Chen [2] studied the structure of shock-free solutions of the compressible Euler
equations with large data. In [18], the authors pointed out that it is difficult to impose general
conditions on the initial data to obtain globally bounded classical solution for the nonisentropic
compressible Euler system.
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In this paper, we find a sufficient condition on the initial data to obtain the existence of global
bounded classical solution. We consider system (1.1) with the initial data

(1.2) (c, u, s)(0, x) =

{
(c̄, ū, s̄)(x), x ∈ [a, b];

vacuum, otherwise.

where c =
√

pρ(ρ, s) =
√

γesργ−1 is the speed of sound, (c̄, ū, s̄)(x) ∈ C1[a, b], c̄(a) = c̄(b) = 0,
and c̄(x) > 0 as x ∈ (a, b). The main result of the paper can be stated as the following theorem.

THEOREM 1.1. (Main theorem) Assume the initial data (1.2) satisfies

(1.3) sup
x∈(a,b)

∣∣∣∣ s̄′

c̄
2

γ−1

∣∣∣∣ < 2γ(γ − 1)

γ + 1
· inf
x∈(a,b)

{
1

c̄
γ+1
γ−1

(
(γ − 1)

2
ū′ −

∣∣∣c̄′ − c̄s̄′

2γ

∣∣∣)} .

Then the Cauchy problem (1.1), (1.2) admits a global in time bounded classical solution.

REMARK 1.1. Actually, we can find a bounded initial data (c̄, ū, s̄)(x) (−∞ < x < +∞) with
lim
x→∞

c̄ = 0, such that for any d > 0,

sup
x∈(−d,d)

∣∣∣∣ s̄′

c̄
2

γ−1

∣∣∣∣ < 2γ(γ − 1)

γ + 1
· inf
x∈(−d,d)

{
1

c̄
γ+1
γ−1

(
(γ − 1)

2
ū′ −

∣∣∣c̄′ − c̄s̄′

2γ

∣∣∣)} ;

see Figure 1. When the initial data satisfy this condition, we can still construct a global bounded
smooth solution of the nonisentropic Euler system (1.1).

c x

s

u

FIGURE 1. Initial data without vacuum.

We will use the method of characteristic decomposition to prove the main theorem. This method
was introduced by Li and Zhang and Zheng [11] in investigating interactions of two-dimensional
rarefaction simple waves of the compressible Euler equations; see also [6, 7, 8, 9, 10, 12, 13]. The
rest of the paper is organized as follows. In Section 2, we derive a group of first order and second
order characteristic equations of (1.1). Using these characteristic equations, we can establish the
C1 norm estimates of the solution. The existence of global classical solution to the problem (1.1),
(1.2) is obtained in Section 3.

2. Characteristics equations and decompositions

By the relation de = Tds− pdτ , we know that for smooth flow, system (1.1) can be written as

(2.1)


ρt + ρux + uρx = 0,

ut + uux + τpx = 0,

st + usx = 0.
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The eigenvalues of system (1.1) are

λ+ = u+ c, λ− = u− c.

The left eigenvectors corresponding to λ± are l± = (c,±ρ, 1√
γesρ

γ+1
2 ). Multiplying (2.1) on the

left by l± we get the characteristic equations

(2.2) c∂±ρ± ρ∂±u± ργessx = 0,

where
∂± = ∂t + (u± c)∂x.

LEMMA 2.1. We have the commutator relation

(2.3) ∂+∂− − ∂−∂+ = − 1

2cµ2
(∂+c+ ∂−c)(∂+ − ∂−).

PROOF. From c2 = γesργ−1 we have

∂±ρ =
2c∂±c− γργ−1∂±es

γ(γ − 1)esργ−2
.

Combining this with ∂±s = ±csx, we get

c∂±ρ =
2ρ∂±c

γ − 1
∓ γργes

γ − 1
sx.

Inserting this into (2.2), we get

(2.4)


∂+u = − 2

γ − 1
∂+c+

c2

γ(γ − 1)
sx,

∂−u =
2

γ − 1
∂−c+

c2

γ(γ − 1)
sx.

Therefore, using (2.4) and ∂x = ∂+−∂−
2c , we have

∂+∂− − ∂−∂+

= (∂t + λ+∂x)(∂t + λ−∂x)− (∂t + λ−∂x)(∂t + λ+∂x)

= (∂+λ− − ∂−λ+)∂x

= (∂+u− ∂+c− ∂−u− ∂−c)∂x = − γ + 1

2c(γ − 1)
(∂+c+ ∂−c)(∂+ − ∂−).

We then complete the proof of this lemma. �
LEMMA 2.2. For smooth flows, we have

(2.5) ∂0

(
sx

c
2

γ−1

)
= 0,

where ∂0 = ∂t + u∂x.

PROOF. By (2.4), we have

(2.6)
∂0∂xs = (∂0∂x − ∂x∂0)s

= (∂t + u∂x)∂xs− ∂x(∂t + u∂x)s = −∂xu∂xs =
(∂+c+ ∂−c)sx

(γ − 1)c
.
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Thus, by ∂0 =
∂++∂−

2 we have

∂0

(
sx

c
2

γ−1

)
=

∂0∂xs

c
2

γ−1

− 2

γ − 1

sx

c
γ+1
γ−1

∂0c = 0.

We then get this lemma. �
PROPOSITION 2.1.

(2.7)


c∂−

(
∂+c−

c2

2γ
sx

)
=

1

2µ2
(∂+c+ ∂−c)∂+c−

c2

2(γ − 1)
(∂+c+ ∂−c)sx,

c∂+

(
∂−c+

c2

2γ
sx

)
=

1

2µ2
(∂+c+ ∂−c)∂−c+

c2

2(γ − 1)
(∂+c+ ∂−c)sx,

where µ2 = γ−1
γ+1 .

PROOF. From (2.3) and (2.4) we have

∂+∂−u− ∂−∂+u = − 1

2cµ2
(∂+c+ ∂−c)(∂+u− ∂−u) =

γ + 1

(γ − 1)2c
(∂+c+ ∂−c)

2.

Inserting (2.4) into this, we get

(2.8)
2∂+∂−c

γ − 1
+ ∂+

[ c2sx
γ(γ − 1)

]
+

2∂−∂+c

γ − 1
− ∂−

[ c2sx
γ(γ − 1)

]
=

γ + 1

(γ − 1)2c
(∂+c+ ∂−c)

2.

Using the commutator relation for the variable c, we have

(2.9) ∂+∂−c− ∂−∂+c = − 1

2cµ2
(∂+c+ ∂−c)(∂+c− ∂−c).

Combining with (2.8) and (2.9), we get

(2.10) c∂−

(
∂+c−

c2

2γ
sx

)
=

1

2µ2
(∂+c+ ∂−c)∂+c−

c

4

[
∂+
(c2sx

γ

)
+ ∂−

(c2sx
γ

)]
.

By a direction computation and using (2.6), we have

∂+
(c2sx

γ

)
+ ∂−

(c2sx
γ

)
=

2c

γ
(∂+c+ ∂−c)sx +

2c2

γ
∂0sx =

2c

(γ − 1)
(∂+c+ ∂−c)sx.

Inserting this into (2.10) we can get the first equation of (2.7).
The second equation of (2.7) can be proved similarly. We then have this proposition. �
Let

R+ = ∂+c−
c2

2γ
sx, R− = ∂−c+

c2

2γ
sx.

Then (2.7) can be written as

(2.11)


c∂−R+ =

1

2µ2
(R+ +R−)R+ − c2

4γ
(R+ +R−)sx,

c∂+R− =
1

2µ2
(R+ +R−)R− +

c2

4γ
(R+ +R−)sx.

Let
R̃+ =

R+

c
2γ
γ−1

, R̃− =
R−

c
2γ
γ−1

, and S̃ =
sx

c
2

γ−1

.
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Then we have

(2.12)


c∂−R+ = c

4γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃+ − 1

4γ
(R̃+ + R̃−)S̃

}
,

c∂+R− = c
4γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃− +

1

4γ
(R̃+ + R̃−)S̃

}
and

(2.13)


c∂−R̃+ = c

2γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃+ − 2γR̃+R̃−

γ − 1
+

R̃+S̃

γ − 1
− 1

4γ
(R̃+ + R̃−)S̃

}
,

c∂+R̃− = c
2γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃+ − 2γR̃+R̃−

γ − 1
− R̃−S̃

γ − 1
+

1

4γ
(R̃+ + R̃−)S̃

}
.

REMARK 2.1. From (2.4) we can see R+ = −γ−1
2 ∂+u and R− = γ−1

2 ∂−u.

3. Global bounded classical solutions to the Cauchy problem (1.1), (1.2)

We first consider system (1.1) with the data

(3.1) (c, u, s)(0, x) = (c̄, ū, s̄)(x), x ∈ [a+ δ, b− δ],

where δ > 0 is an arbitrary small number.
The problem (1.1), (3.1) is a standard initial value problem. Existence and uniqueness of a local

C1 solution is known by the method of characteristics, see for example [16]. In order to extend the
local solution to a whole domain of determinacy, we need to establish a priori C1 norm estimate of
the solution.

It follows from c2 = γesργ−1 and st = −usx that

ρt =
2cct + γuργ−1essx
γ(γ − 1)esργ−2

, ρx =
2ccx − γργ−1essx
γ(γ − 1)esργ−2

.

Inserting these into the first equation of (2.1), we get

ct = −ucx −
γ − 1

2
cux.

Thus, on t = 0 we have

(3.2) ∂±c = c̄
[
± c̄′ − γ − 1

2
ū′
]
, R̃+ = − 1

c̄
γ+1
γ−1

(
(γ − 1)

2
ū′ ∓

(
c̄′ − c̄s̄′

2γ

))
.

Let

mδ := min
x∈[a+δ,b−δ]

{
1

c̄
γ+1
γ−1

(
(γ − 1)

2
ū′ −

∣∣∣c̄′ − c̄s̄′

2γ

∣∣∣)}
and

nδ := max
x∈[a+δ,b−δ]

∣∣∣∣ s̄′

c̄
2

γ−1

∣∣∣∣ .
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Then by assumption (1.3) we have

(3.3) nδ <
2γ(γ − 1)

γ + 1
mδ.

LEMMA 3.1. The classical solution of the problem (1.1), (3.1) satisfies

(3.4) c > 0 and R̃± ≤ −mδ.

PROOF. The proof for this lemma proceeds in three steps.
Step 1. From Lemma 2.2 we have

(3.5) |S̃| ≤ nδ.

Step 2. In this step we shall show that if vacuum does not appear then R̃± ≤ −mδ.
If there exists a point such that R̃+ = −mδ and R̃− ≤ −mδ at this point. Then by the first

equation of (2.13) we have

c∂−R̃+ = c
2γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃+ − 2γR̃+R̃−

γ − 1
+

R̃+S̃

γ − 1
− 1

4γ
(R̃+ + R̃−)S̃

}

< c
2γ
γ−1

{
−R̃+R̃− +

R̃+S̃

γ − 1
− 1

4γ
(R̃+ + R̃−)S̃

}
< 0

at this point. That is because if S̃ ≤ 0 then

c∂−R̃+ < c
2γ
γ−1

{
−R̃+R̃− +

( 1

γ − 1
− 1

2γ

)
R̃+S̃

}
< c

2γ
γ−1

{
−m2

δ +
( 1

γ − 1
− 1

2γ

)
mδnδ

}
< 0;

if S̃ > 0 then

c∂−R̃+ < c
2γ
γ−1

{
−R̃+R̃− − 1

2γ
R̃−S̃

}
< c

2γ
γ−1 R̃−

{
mδ −

1

2γ
nδ

}
< 0.

Similarly, if there exists a point such that R̃− = −mδ and R̃+ ≤ −mδ at this point then we have
c∂+R̃− < 0 at this point.

By the definition of mδ we get

R̃± ≤ −mδ on {(x, y) | t = 0, a+ δ < x < b− δ}.

Therefore, by an argument of continuity we can get R̃± ≤ −mδ if vacuum does not appear.
Step 3. In this step, we shall show that vacuum will not appear.
By (3.5) and R̃+ ≤ −mδ we know that if c > 0 then

(3.6)

∂+λ+ = c
2γ
γ−1

(
(γ − 3)R̃+

γ − 1
+

S̃

2γ

)
≥ c

2γ
γ−1

(
(3− γ)mδ

γ − 1
− nδ

2γ

)

≥
c

2γ
γ−1mδ

(
(3− γ)(1 + γ)− (γ − 1)2

)
(γ − 1)(γ + 1)

> 0,

as 1 < γ < 5/3. Similarly, if we have that if c > 0 then

(3.7) ∂−λ− < 0.
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FIGURE 2. Convex characteristic curves.

Suppose there is a (x0, t0) such that c(x0, t0) = 0 and c(x, t) > 0 as t < t0. Denote the
backward C+ (C−, resp.) characteristic curve through (x0, t0) by x = x+(t) (x = x−(t), resp.).
Therefore, by (3.6) and (3.7) we have x+(t) > x−(t) as t < t0. Through (x−(0), 0)

(
(x+(0), 0),

resp.
)

draw a C0 characteristic curve x = x−0 (t)
(
x = x+0 (t), resp.

)
. Obviously, by λ+ > λ0 > λ−

we have x−0 (t) > x−(t) and x+(t) > x+0 (t) as 0 < t < t0. Therefore, there exists a t1 ∈ (0, t0]
such that x+0 (t1) = x−0 (t1), which leads to a contradiction by the conservation of mass. So, vacuum
will not appear.

Therefore, by an argument of continuity we can get this lemma. �
LEMMA 3.2. Let

kδ := max
x∈[a+δ,b−δ]

{
c̄
((γ − 1)

2
ū′ −

∣∣∣c̄′ − c̄s̄′

2γ

∣∣∣)} .

Then the classical solution of the problem (1.1), (3.1) satisfies

R± ≥ −kδ.

PROOF. From (3.2) we have

R± ≥ −kδ on {(x, y) | t = 0, a+ δ < x < b− δ}.
By Lemma 3.1, (3.3), and (3.5) we have

c∂−R+ = c
4γ
γ−1 (R̃+ + R̃−)

{
1

2µ2
R̃+ − 1

4γ
S̃

}
> c

4γ
γ−1 (R̃+ + R̃−)

{
−mδ

2µ2
+

nδ

4γ

}
> 0

and

c∂+R− = c
4γ
γ−1

{
1

2µ2
(R̃+ + R̃−)R̃− +

1

4γ
(R̃+ + R̃−)S̃

}
> 0.

We then complete the proof of this lemma. �
LEMMA 3.3. Let

cM := max
x∈[a+δ,b−δ]

c̄, uM := max
x∈[a+δ,b−δ]

|ū|, and sM := max
x∈[a+δ,b−δ]

s̄.

Then the classical solution of the problem (1.1), (3.1) satisfies

0 < c ≤ cM , −kδ −
nδ

2γ
c

2γ
γ−1
M < ∂±c < 0, |u| ≤ uM +

3cM sM

γ(γ − 1)
+

2cM
γ − 1

.
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PROOF. By (3.3), (3.4), and (3.5) we have

∂±c

c
2γ
γ−1

< −mδ +

∣∣∣∣∣ sx

2γc
2

γ−1

∣∣∣∣∣ < −mδ +
γ − 1

γ + 1
mδ < 0.

By Lemma 3.2 we have

∂±c > −kδ −

∣∣∣∣∣ c
2γ
γ−1 sx

2γc
2

γ−1

∣∣∣∣∣ > −kδ −
nδ

2γ
c

2γ
γ−1
M .

From (2.4) we know that

(3.8) ∂+u = − 2

γ − 1
∂+c+

c∂+s

γ(γ − 1)
= − 2

γ − 1
∂+c+

∂+(cs)

γ(γ − 1)
− s∂+c

γ(γ − 1)
.

Integrating this along the C+ characteristic curves and noticing ∂−c < 0, we get

|u| ≤ uM +
3cM sM

γ(γ − 1)
+

2cM
γ − 1

.

We then complete the proof of this lemma. �

From Lemmas 3.1–3.3 and Remark 2.1 we get uniform a priori C1 norm estimates of the clas-
sical solution of the problem (1.1), (3.1). Therefore, by the local existence result and the standard
continuity extension method, we can obtain the global existence of a classical solution; see for
example [15].

LEMMA 3.4. The initial value problem (1.1), (3.1) admits a global classical solution in a domain
Ω(δ) bounded by Cδ

+, Cδ
−, and {(x, t) | t = 0, a+δ < x < b−δ}, where Cδ

+ is a C+ characteristic
curve through (a+ δ, 0) and Cδ

− is a C− characteristic curve through (b− δ, 0); see Figure 3.

Ω(δ)

x

t

a b

vacuumvacuum

C −

a+δ δb−

C +
δ

δ

FIGURE 3. Domain Ω(δ).

In what follows we are going to show that

Ω(δ) → Ω :=
{
(x, t) | t ≥ 0, a+ ū(a)t < x < b+ ū(b)t

}
as δ → 0.

From (3.8) and ∂+c < 0 we know that along Cδ
+,

(3.9) |u− ū(a+ δ)| < 3c̄(a+ δ)sM

γ(γ − 1)
+

2c̄(a+ δ)

γ − 1
.
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Assume that Cδ
+ can be represented by x = xδ+(t), t > 0. Hence, by (3.9) and ∂±c < 0 we have

∣∣∣dxδ+
dt

− (ū+ c̄)(a+ δ)
∣∣∣ < 3c̄(a+ δ)sM

γ(γ − 1)
+

2c̄(a+ δ)

γ − 1
+ c̄(a+ δ)

as t > 0. Therefore, we get xδ+(t) → a+ ū(a)t as δ → 0, since c̄(a+ δ) → 0 as δ → 0.
Assume that Cδ

− can be represented by x = xδ−(t), t > 0. Similarly, we can get xδ−(t) →
b+ ū(b)t as δ → 0.

We then construct a global classical solution to the Cauchy problem (1.1), (1.2) by letting
δ → 0. The solution is vacuum outside the domain Ω.

References
[1] G. CHEN, Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler

equations, J. Hyperbolic Differ. Equ. 8 (2011), 671–690.
[2] G. CHEN AND R. YOUNG, Shock-free solutions of the compressible Euler equations, Arch. Rational Mech.

Anal. 217 (2015) 1265–1293
[3] G. CHEN, R. H. PAN, AND S. G. ZHU, Singularity formation for the compressible Euler equations, SIAM J.

Math. Anal. 49 (2017), 2591–2614.
[4] F. JOHN, Formation of singularities in one-dimensional nonlinear waves propagation, Comm. Pure Appl.

Math. 27 (1974), 377–405.
[5] P. LAX, Development of singularities of solutions on nonlinear hyperbolic partial differential equations, J.

Math. Phys. 5 (1964), 611–613.
[6] G. LAI, On the expansion of a wedge of van der Waals gas into a vacuum, J. Differential Equations 259 (2015)

1181–1202.
[7] G. LAI, On the expansion of a wedge of van der Waals gas into a vacuum II, J. Differential Equations 260

(2016) 3538–3575.
[8] G. LAI, Interaction of composite waves of the two-dimensional full Euler equations for van der Waals gases,

SIAM J. Math. Anal. 50 (2018) 3535–3597.
[9] G. LAI, Global solutions to a class of two-dimensional Riemann problems for the isentropic Euler equations

with general equations of state, Indian. Univ. Math. J. 68 (2019) 1409–1464.
[10] J. Q. LI, Z. C. YANG, AND Y. X. ZHENG, Characteristic decompositions and interactions of rarefaction

waves of 2-D Euler equations, J. Differential Equations 250 (2011), 782–798.
[11] J. Q. LI, T. ZHANG, AND Y. X. ZHENG, Simple waves and a characteristic decomposition of the two dimen-

sional compressible Euler equations, Comm. Math. Phys. 267 (2006), 1–12.
[12] J. Q. LI AND Y. X. ZHENG, Interaction of rarefaction waves of the two-dimensional self-similar Euler equa-

tions, Arch. Ration. Mech. Anal. 193 (2009), 623–657.
[13] J. Q. LI AND Y. X. ZHENG, Interaction of Four Rarefaction Waves in the Bi-Symmetric Class of the Two-

Dimensional Euler Equations, Comm. Math. Phys. 296 (2010), 303–321.
[14] C. Z. LI AND J. H. WANG, Global smooth solutions resolvability for non-diagonalizable qusi-linear hyper-

bolic system, Math. Acta Sci. 9 (1989), 297–306.
[15] T. T. LI, Global classical solutions for quasilinear hyperbolic system, John Wiley and Sons, 1994.
[16] T. T. LI AND W. C. YU, Boundary value problem for quasilinear hyperbolic systems, Duke University (1985).
[17] L. W. LIN AND H. X. LIU AND T. YANG, Existence of globally bounded continuous solutions for nonisen-

tropic gas dynamics equations, Journal of Mathematical Analysis and Applications 209 (1997), 492–506.
[18] L. W. LIN AND S. VONG, A note on the existence and nonexistence of globally bounded classical solutions

for nonisentropic gas dynamics. Acta Mathematica Scientia, 26 (2006), 537–540
[19] F. G. LIU, Global smooth resolvability for one-dimensional gas dynamics systems, Nonlinear Analysis 36

(1999), 25–34.



10 LAI AND ZHAO

[20] T. P. LI, Development of singularities of solutions on nonlinear hyperbolic partial differential equations, J.
Differential Equations 30 (1979), 92–111.

[21] T. C. SIDERIS, Formation of singularities in three-dimensional compressible fluids, Comm. Math. Phys. 101
(1985), 475–485.

[22] Y. C. ZHAO, A class of global smooth solutions of the one dimensional gas dynamics system, IMA Series No.
545. June (1989).

[23] C. J. ZHU, Global smooth solution of the nonisentropic gas dynamics system, Proceedings of the Royal Society
of Edinburgh 126A (1996), 768–775.

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY, SHANGHAI 200444, CHINA

E-mail address: laigeng@shu.edu.cn, 2724726167@qq.com


