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Abstract—The esterification in polymerization process is the most important step in polyester fiber production. In this 

paper, first, a new first-principle model is built by including extra formation of acetaldehyde, which has been largely 

neglected in the literature. Second, there exist four objectives to optimize in the process of esterification, including rate of 

esterification, average molecular weight, degree of polymerization and diethylene glycol content percentage. However, 

most researchers have considered only one or two of the four performance indicators which may not completely reflect the 

actual state of PET polymerization process. In this work, an improved RVEA algorithm, called PARVEA, is proposed to 

deal with a four-objective optimization problem combining with a new first-principle model in esterification process. Then, 

PARVEA is further compared with other four algorithms on the test problems of seven widely used benchmarks, and the 

four-objective optimization problem in esterification process. Experimental results indicate that PARVEA not only 

outperforms the four algorithms in terms of both IGD and HV metrics, but also optimizes the esterification process. 

Finally, companies can choose more suitable solutions and process parameters according to user preferences, which can 

meet the requirements for differentiated production of high-quality polyester fiber polymers. 

 

Index Terms—Multi-objective evolutionary algorithm, Polyester, Esterification process, RVEA  

 

I. INTRODUCTION 

Polyester is the raw material for manufacturing polyester fiber, coating, film and engineering plastics1. Polyester is also called 

terri black silk ribbon. Polyester fiber production process mainly consists of three stages, which are accordingly polymerization 

process, melt transport process and spinning process. The polymerization process plays an important role in polyester fiber 
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production. It is composed of three stages, namely, esterification process, pre-condensation stage and final-condensation stage2.  

The esterification process is mainly determined by four physical properties of the material, including the rate of esterification, the 

percentage of diethylene glycol, the degree of polymerization and the average molecular weight3.It is commonly known that the 

average molecular weight of polymer determines several important physical properties of the material4-6, such as strength and 

impact resistance. The content of diethylene glycol in polyester chips is a strictly controlled index. In theory, due to the existence of 

diethylene glycol, the ether bond in diethylene glycol when being added to the polyester macromolecular segment, will destroy the 

polymer to a certain extent. The regularity of the arrangement of the ester macromolecular chains reduces the strength of the chains. 

In addition, the increase of diethylene glycol content also slightly reduces the melting point of the slices. All aspects have caused 

the reduction of the fiber-forming performance of the chip. As a result, a high rate of broken heads will occur which leads to a poor 

quality of polymer product7. 

Because the esterification reaction is a solid phase, liquid phase and gas phase naphthalene system, the actual reflection system is 

more complicated. Liu8 et al. built the mathematical model of esterification reactor and gave the model parameters. Wu9 et al. built 

the direct esterification model of polyester based on the reaction mechanism of polyester esterification and the actual process 

conditions. However, this paper only considers some of the chemical reactions that generate by-products acetaldehyde. The 

production of acetaldehyde will affect the quality of the polymer, so in the production process of polyester fibers, we want to 

minimize the generation of acetaldehyde10. 

Meanwhile, almost all the formation of diethylene glycol occurs in the esterification stage. The content of terminal carboxyl group 

in the pre-condensation stage is closely related to the esterification rate of the esterification reaction. Therefore, the optimization of 

esterification process is of great importance11. 

With increase of temperature, pressure, radio of slurry and resident time, the percentage of diethylene glycol is increased which 

will result in failure of products to meet the quality specifications. Thus, among the four performance indexes in esterification 

process, we want to maximize the rate of esterification, the degree of polymerization and the average molecular weight while 

minimizing the percentage of diethylene glycol. In summary, among the four objectives for optimization of esterification process, 

there is a conflict12. 

The average molecular mass 𝑀𝑛, the degree of polymerization 𝑃𝑛, the esterification rate 𝐸𝑠  and the percentage of diethylene 

glycol 𝑊𝑡  play equally important roles in the process of polyester fiber polymerization esterification for production. Therefore, 

taking account of additional factors from the actual esterification process is necessary, and implementing high-dimensional 

multi-objective optimization of esterification process is imperative13. 

With the development of multi-objective evolutionary algorithms (MOEA), it is possible to consider multiple objectives at once 

without significantly increasing computation time in industrial process14-19. For this reason, multi-objective EAs (MOEAs) have 
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been well developed since the past two decades. Generally, these algorithms can be classified into two categories. 

The first category includes the Pareto dominance method combined with preference information. The second category is the 

algorithm based on decomposition, which decomposes an MOP into several sub-problems, and the best candidate of each 

sub-problem forms the final solution set. For example, a multi-objective evolutionary algorithm based on decomposition 

(MOEA/D)20decomposes an MOP into a number of sub-problems using a set of predefined reference vectors and optimizes the 

sub-problems simultaneously. Then a reference vector guided evolutionary algorithm (RVEA) is proposed by Cheng21 et al. RVEA 

is superior to other algorithms when solving the multi-objective optimization problems in a high-dimensional space. Because the 

angle-penalized distance (APD) is introduced to balance not only diversity but also convergence with adaptive reference vectors. 

Nevertheless, RVEA has some deficiencies in dealing with the multi-objective optimization of the esterification process. For 

example, RVEA cannot update the weight vector in real time according to the distribution of solutions21. 

The main contributions of this paper are as follows: 

①An improved first principle model of esterification stage is developed which incorporates the extra reaction of acetaldehyde. 

Through considering more comprehensive chemical side reactions, we will simulate the actual polymerization and esterification 

process better, thereby minimizing the content of diethylene glycol as a side reaction product, and effectively improving product 

quality; 

②A four-objective optimization method PARVEA in esterification process is proposed based on the improved RVEA algorithm; 

③The distribution between the upper and lower solutions is compared, and then the reference vector is updated adaptively by 

using Pearson correlation coefficient in PARVEA algorithm; 

④ The formula of particle environment selection based on Angle-Penalized Distance (APD) is improved to accelerate the 

population convergence by introducing projection distance; 

⑤ PARVEA is compared with other four algorithms on seven widely used benchmark test problems and the four-objective 

optimization problem in esterification process. 

The rest of this paper is organized as follows: Section II briefly presents the improved first-principle model and the four-objective 

optimization problem of esterification process. Section III presents reference vector guided evolutionary algorithm and its 

improvement PARVEA. Section IV optimizes the four-objective esterification process and compares effectiveness with other four 

algorithms on seven widely used benchmark test problems by PARVEA. Finally, conclusions and future work are presented in 

Section V.  
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II. PROBLEM DESCRIPTION 

A. Improved First principle Model of Esterification Process 

Commercially, the polymerization process of PET consists of three stages using continuous reactors. These are esterification 

stage, pre-condensation stage and final-condensation stage, respectively. The raw materials commonly used are one molar excess 

of ethylene glycol (EG) and either purified terephthalic acid (PTA) or dimethyl terephthalate (DMT) with ethylene glycol antimony 

as catalyst.  

Our study is based on the current popular PTA route. The process involves mixing terephthalic acid with ethylene glycol in a 

certain proportion in the slurry tank, and then the prepared slurry is pumped to the buffer tank and continuously sent into the 

esterification reactor. The esterification process is then carried out under certain pressure, temperature and material 

self-circulation. Then the product is sent to pre-polycondensation reactor. Finally, the high polymer enters the final 

polycondensation reactor and completes the formation of the final polymer through mass transfer. Each polycondensation reactor 

unit is equipped with an ethylene glycol spray condensation system for absorption of ethylene glycol from the condensation 

reaction, and also equipped with a vacuum generation system (vacuum pump) to provide vacuum power for the condensation 

reaction22.The polymerization process is shown in Fig.1. 

Esterification process is the first and most important stage of polymerization process. The process of polyester esterification 

includes esterification reaction apparatus and process tower, etc. EG and PTA are pre-mixed in the mixing tank and pumped into 

the esterification reactor. The gas phase in the esterification reactor mainly consists of ethylene glycol and water. After separating 

from the process tower connected to the esterification reactor, the liquid phase mixture containing 95% ethylene glycol and 5% 

water in the process tower kettle is returned to the esterification reactor, and the products containing most of the water on the top of 

  

Fig.1. Polymerization process 
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                                                                    TABLE I. 

Kinetic scheme and kinetic parameters 

Kinetic Scheme 

(1) Ester interchange reaction (main polycondensation) ( replaces benzene ring ) 

∼ 𝔽 ∼ 𝐶𝑂𝑂𝐻
𝑐1

+ 𝐶2𝐻4(𝑂𝐻)2
𝑐2

 𝑘1/𝑘2 
⇄ ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻

𝑐3

+ 𝐻2𝑂
𝑐5

           

∼ 𝔽 ∼ 𝐶𝑂𝑂𝐻
𝑐1

+ 𝐻𝑂(𝐶𝐻2)2𝑂𝑂𝐶 ∼ 𝔽 ∼
𝑐3

 𝑘3/𝑘4 
⇄ ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝑂𝐶 ∼ 𝔽 ∼ +𝐻2𝑂

𝑐5
𝑐4

 

 (2) Poly-merization recation 

2(∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻)
𝑐3

 𝑘5/𝑘6 
⇄ ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝑂𝐶 ∼ 𝔽

𝑐4

+ 𝐶2𝐻4(𝑂𝐻)2
𝑐2

 

(3)Diethylene glycol side reaction 

2(∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻)
𝑐3

 𝑘7 
→    ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂(𝐶𝐻2)2𝑂𝑂𝐶 ∼ 𝔽 ∼

𝑐6

+ 𝐻2𝑂
𝑐5

 

(∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻)
𝑐3

+ 𝐶2𝐻4(𝑂𝐻)2
𝑐2

 𝑘8 
→    ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂(𝐶𝐻2)2𝑂𝐻

𝑐7

+ 𝐻2𝑂
𝑐5

 

2𝐶2𝐻4(𝑂𝐻)2
𝑐2

 𝑘9 
→    𝐻𝑂(𝐶𝐻2)2𝑂(𝐶𝐻2)2𝑂𝐻

𝑐8

+ 𝐻2𝑂
𝑐5

 

∼ 𝔽 ∼ 𝐶𝑂𝑂𝐻
𝑐1

+ 𝐻𝑂(𝐶𝐻2)2𝑂(𝐶𝐻2)2𝑂𝐻
𝑐8

 𝑘1/𝑘2 
⇄ ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂(𝐶𝐻2)2𝑂𝐻

𝑐7

 + 𝐻2𝑂
𝑐5

 

(4)Acetaldehyde side reaction 

∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻
𝑐3

 𝑘10 
→    ∼ 𝔽 ∼ 𝐶𝑂𝑂𝐻

𝑐1

+ 𝐶𝐻3𝐶𝐻𝑂
𝑐9

 

Kinetic parameters in esterification reaction     T=536.15K 

     𝐴𝑖 𝐸𝑖 𝑘𝑖  

1 1.80E+09 19640 17.73934 

2 1.85E+08 18140 7.435587 

3 4.57E+09 22310 3.673931 

4 7.98E+07 18380 2.56604 

5 9.09E+00 2810 0.650474 

6 6.82E+06 14960 5.436844 

7 2.49E+15 42520 0.011548 

8   0.023096 

9   0.046192 

10 8.32E+7 117982 6.66E-41 

 

the process tower are further processed in other equipment. During the esterification process of PTA and EG, water is continuously 

released, and the system is transformed from heterogeneous phase to homogeneous phase, and from turbidity transparency to the 

point of clarity. In the process of transition from esterification to polycondensation, the system gradually thickens and breaks out 

EG, finally producing a high viscosity PET melt23-24. 
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TABLE II 

The first principle model of esterification process 

Balance equations for the liquid phase 
𝑑𝑐1

𝑑𝑧
=
(𝐹0𝑏10 − 𝐹𝑐1)

𝑊
+ 𝑅1 

 
𝑑𝑐2

𝑑𝑧
=
(𝐹0𝑏20 − 𝐹𝑐2)

𝑊
+ 𝑅2 −

𝑄𝐸𝐺ℎ𝐸𝐺

𝑊
+
𝑞𝐸𝐺ℎ𝐸𝐺

𝑊
 

 
𝑑𝑐3

𝑑𝑧
=
(𝐹0𝑏30 − 𝐹𝑐3)

𝑊
+ 𝑅3 

 
𝑑𝑐4

𝑑𝑧
=
(𝐹0𝑏40 − 𝐹𝑐4)

𝑊
+ 𝑅4 

 
𝑑𝑐5

𝑑𝑧
=
(𝐹0𝑏50 − 𝐹𝑐5)

𝑊
+ 𝑅5 −

𝑄𝐻2𝑂ℎ𝐻2𝑂

𝑊
 

 
𝑑𝑐6

𝑑𝑧
=
(𝐹0𝑏60 − 𝐹𝑐6)

𝑊
+ 𝑅6 

 
𝑑𝑐7

𝑑𝑧
=
(𝐹0𝑏70 − 𝐹𝑐7)

𝑊
+ 𝑅7 

 
𝑑𝑐8

𝑑𝑧
=
(𝐹0𝑏80 − 𝐹𝑐8)

𝑊
+ 𝑅8 

 
𝑑𝑐9

𝑑𝑧
=
(𝐹0𝑏90 − 𝐹𝑐9)

𝑊
+ 𝑅9  

 
𝑑𝑐10

𝑑𝑧
=
(𝐹0𝑏100 − 𝐹𝑐10)

𝑊
+ 𝑅10  

   𝑅1 = −𝑘1𝑐1𝑐2 + 𝑘2𝑐3𝑐5 − 𝑘3𝑐1𝑐3 + 𝑘4𝑐4𝑐5 − 𝑘1𝑐1𝑐8 + 𝑘2𝑐5𝑐7 + 𝑘10𝑐3 
 

   𝑅2 = −𝑘1𝑐1𝑐2 + 𝑘2𝑐3𝑐5 + 𝑘5𝑐3
2 − 𝑘6𝑐2𝑐4 − 𝑘8𝑐2𝑐3 − 2𝑘9𝑐2

2 
 

   𝑅3 = 𝑘1𝑐1𝑐2 − 𝑘2𝑐3𝑐5 − 2𝑘5𝑐3
2 − 𝑘3𝑐1𝑐3 + 𝑘4𝑐4𝑐5 + 𝑘6𝑐2𝑐4 − 2𝑘7𝑐3

2 − 𝑘8𝑐2𝑐3 − 𝑘10𝑐3 − 𝑘5𝑐10𝑐3 
 

   𝑅4 = 𝑘3𝑐1𝑐3 − 𝑘4𝑐4𝑐5 + 𝑘5𝑐3
2 − 𝑘6𝑐2𝑐4 + 𝑘5𝑐10𝑐3  

 

   𝑅5 = 𝑘1𝑐1𝑐2 − 𝑘2𝑐3𝑐5 + 𝑘3𝑐1𝑐3 − 𝑘4𝑐4𝑐5 + 𝑘7𝑐3
2  + 𝑘8𝑐2𝑐3 + 𝑘9𝑐2

2 + 𝑘1𝑐1𝑐8 − 𝑘2𝑐5𝑐7 
 

   𝑅6 = 𝑘7𝑐3
2 

 

          𝑅7 = 𝑘8𝑐2𝑐3 + 𝑘1𝑐1𝑐8 − 𝑘2𝑐5𝑐7 

 

   𝑅8 = 𝑘9𝑐2
2 − 𝑘1𝑐1𝑐8 + 𝑘2𝑐5𝑐7  

 
   𝑅9 = 𝑘10𝑐3 + 𝑘5𝑐10𝑐3 

 
𝑅10 = −𝑘5𝑐10𝑐3  

Gas-liquid equilibrium equation  

          𝑥𝐸𝐺𝑟𝐸𝐺𝑃𝐸𝐺
𝑠 = 𝑃𝑦𝐸𝐺                   

 

  𝑥𝐻2𝑂 𝑟𝐻2𝑂𝑃𝐻2𝑂
𝑠 = 𝑃𝑦𝐻2𝑂 

 
𝑄𝐸𝐺 = 𝐾𝐸𝐺𝛼(𝑃𝐸𝐺

𝑠 − 𝑃𝑦𝐸𝐺)       
 

𝑞𝐸𝐺 = 𝑄𝐸𝐺 − 𝑄𝐻2𝑂 ∗ 0.004 

 
𝑄𝐻2𝑂 = 𝐾𝐻2𝑂𝛼(𝑃𝐻2𝑂

𝑠 − 𝑃𝑦𝐻2𝑂)  

 

       𝑘𝑖 = 𝐴𝑖 ∗ 𝑒𝑥𝑝 (
−𝐸𝑖

𝑅 ∗ 𝑇
) 

 
𝑙𝑜𝑔 𝑃𝐸𝐺

𝑠 = 7.8808 − 1957/(𝑇 + 193.8) 
 

𝑙𝑜𝑔 𝑃𝐻2𝑂
𝑠 = 7.9668 − 1668.2/(𝑇 + 228) 
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The first stage takes place in an esterification reactor, where various reactions occurring are given in TABLE I in [3]. However, 

from [5], it can be seen that the formation of side reactions to acetaldehyde is more than one. Specifically, there is extra reaction 

shown as follows in Eq (1). 

∼ 𝔽 ∼ 𝐶𝑂𝑂𝐶𝐻 = 𝐶𝐻2
𝑐10

+∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝐻
𝑐3

𝑘5
→ ∼ 𝔽 ∼ 𝐶𝑂𝑂(𝐶𝐻2)2𝑂𝑂𝐶 ∼ 𝔽 ∼

𝑐4

+ 𝐶𝐻3𝐶𝐻𝑂
𝑐9

            (1) 

Thus, the first-principle model of esterification process has been improved by adding Eq. (2). 

                                                                  
𝑑𝑐10

𝑑𝑧
=
(𝐹0 𝑏100 −𝐹𝑐10)

𝑊
+ 𝑅10                                                              (2) 

The first principle model for the present study is based on the general step-growth polymerization kinetic scheme with some  

reasonable assumptions3 shown in TABLE II, where 𝑐𝑖 represents the concentration of component 𝑖  with the unit 𝑚𝑜𝑙/𝑘𝑔. 

Specifically, 𝑐1  represents carboxyl-terminated (terephthalic acid), 𝑐2  represents ethylene glycol, 𝑐3 is hydroxyl terminated 

(dihydroxyethyl terephthalate), 𝑐4  is ester group (PET polymer), 𝑐5  represents the water, 𝑐6 ,𝑐7  and 𝑐8  represent various forms of 

diethylene glycol respectively, 𝑐9  represents the acetaldehyde, and 𝑐10  represents polymer formed in the esterification process. 

Similarly, 𝑏10 − 𝑏100  represent the initial concentration from component 𝑐1  to 𝑐10  respectively,  𝑘1~𝑘10 represent chemical 

reaction rate constants with units of 𝑘1~𝑘9 and 𝑘10 being 𝑚𝑜𝑙/𝑘𝑔 ⋅ ℎ and 1/h, respectively. Scalar 𝑧 varies from 0 to 1. T is the 

temperature of esterification process. 𝑊 is the total mass of the reaction mixture in the reactor with unit kg, 𝐹0 is the incoming flow 

with unit 𝑘𝑔/ℎ, F is the outgoing flow with unit 𝑘𝑔/ℎ. 𝑃𝐸𝐺
𝑠   and 𝑃𝐻2𝑂

𝑠  are the saturated vapor pressure of 𝐸𝐺 and 𝐻2𝑂 with unit 

𝑚𝑚𝐻𝑔 respectively. ℎ𝐸𝐺   and ℎ𝐻2𝑂 represent equilibrium concentration of 𝐸𝐺 and 𝐻2𝑂 respectively. 𝑄𝐸𝐺 and 𝑄𝐻2𝑂 represent the 

amount of ethylene glycol transferred from the liquid phase to the gas phase, that is, the evaporation of EG in the reactor, and the 

amount of water transferred from the liquid phase to the gas phase, that is, the evaporation of water in the reactor. 𝑞𝐸𝐺  is the flow 

rate of EG from the separation tower back to the reactor with unit 𝑘𝑔/ℎ. 𝐾𝐸𝐺𝛼,𝐾𝐻2𝑂𝛼 are the mass transfer coefficient of 𝐸𝐺 and 

𝐻2𝑂 respectively. 𝐴𝑖  is the frequency factor. 𝐸𝑖 is the reaction activation energy in units of 𝑐𝑎𝑙/𝑚𝑜𝑙. R is the gas constant in unit 

of 𝑐𝑎𝑙/(𝑚𝑜𝑙 ∗ 𝐾). Last, 𝑦𝐸𝐺 and 𝑦𝐻2𝑂 are the gas phase molar fraction of 𝐸𝐺 and 𝐻2𝑂 respectively, 𝑥𝐸𝐺 and 𝑥𝐻2𝑂 are the liquid 

phase molar fraction of 𝐸𝐺 and 𝐻2𝑂, and P is the total pressure in the reactor with unit 𝑚𝑚𝐻𝑔.Various parameters take values 

consistent with values of [5] in this paper.  

B. Four-objective Optimization of Esterification Process 

The improved first principle model of esterification process is shown in TABLE II. 

The esterification rate 𝐸𝑠(the unit is %): 

                       𝐸𝑠 = (𝑏10 − 𝑐1 )/𝑏10                                   (3) 

The percentage of diethylene glycol 𝑊𝑡(the unit is %): 

                  𝑊𝑡 = (𝑐𝐷𝐸𝐺 ∗𝑊𝐷𝐸𝐺)/1000 ∗ 100%                 (4) 
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The average molecular mass 𝑀𝑛 (the unit is 1): 

                      𝑀𝑛 = 2000/(𝑐1 + 𝑐3 + 𝑐8)                          (5) 

The degree of polymerization 𝑃𝑛 (the unit is 1): 

                         𝑃𝑛 = (𝑀𝑛 + 26.03 + 𝑏100 − 88.1 × (𝑐3 − 𝑏30)/(𝑏10 + 𝑏30))/192.17         (6) 

As mentioned, 𝑏100 , 𝑏30  and 𝑏10  represent the initial concentrations of three components shown in TABLE I respectively. 

𝑊𝐷𝐸𝐺  represents the mass of diethylene glycol. Similarly, 𝑐𝐷𝐸𝐺 represents the concentration of diethylene glycol. 

To the best of our knowledge, the higher the esterification rate  𝐸𝑠 , the average molecular weight 𝑀𝑛  and the degree of 

polymerization 𝑃𝑛, the lower the percentage of by-product diethylene glycol 𝑊𝑡 , quality and performance of the polymer during the 

esterification stage will be better. 

Expressed mathematically, this optimization problem can be written as: 

Minimize         𝐽1 =𝑊𝑡                                        (7) 

Maximize        𝐽2 = 𝐸𝑠                                   (8) 

                        𝐽3 = 𝑀𝑛                                     (9) 

𝐽4 = 𝑃𝑛                                      (10) 

TABLE III 

Effect of an increase in the decision variable (DV) on the objective functions 

 

Objective function Effect of increase in DV 

T P 𝜏 r 

𝑀𝑛 ↑↓ ↑↓ ↑↓ ↑↓ 

𝐸𝑠 ↑↓ ↑↓ ↑↓ ↑↓ 

𝑃𝑛  ↑↓ ↑↓ ↑↓ ↑↓ 

𝑊𝑡  ↑ ↑ ↑ ↑ 

As shown in TABLE III, we can conclude that with the increase of reaction conditions within a reasonable range 𝑀𝑛 , 𝐸𝑠 , 𝑃𝑛 and 

 𝑊𝑡  will increase. However, as seen from Eq. (7)-Eq. (10), we want to maximize 𝑀𝑛 , 𝐸𝑠 , 𝑃𝑛 while minimizing 𝑊𝑡 . Thus, there are 

conflicts among the effects of the decision variables in the four objective functions. As a result, the optimum will be a 

Pareto-optimal set rather than a single optimum. Furthermore, since optimization algorithms usually deal with either the 

maximization or minimization problem, a four-objective function is then formulated through the following minimization problem: 

               𝑚𝑖𝑛 𝐼 (𝑇, 𝑃, 𝜏, 𝑟) = [1/𝑀𝑛, 1/𝑃𝑛 , 1/ 𝐸𝑠 ,𝑊𝑡]
𝑇        (11) 

Where 𝑇, 𝑃, 𝜏, 𝑟 represent four different decision variables. They represent the temperature, pressure, the ratio of slurry and the 

residence time of esterification process respectively. 1/𝑀𝑛, 1/𝑃𝑛, 1/ 𝐸𝑠 ,𝑊𝑡  are different objective functions. 

The following bounds are used for the decision variables based on industrial requirements: 

                          270 ≤ 𝑇 ≤ 290 𝐶0                                     (12) 

                    755 ≤ 𝑃 ≤ 770𝑚𝑚𝐻𝑔                                     (13) 
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                          1.1 ≤ r ≤ 1.4                                                (14) 

The residence time is not disclosed in this article for proprietary reasons. Meaningful bounds have been chosen on the four 

decision variables 𝑢 based on industrial requirements.  

III. REFERENCE VECTOR GUIDED EVOLUTIONARY ALGORITHM AND ITS IMPROVEMENT 

A. Definition of Multi-objective Optimization 

Multi-objective optimization problems (MOPs), can be mathematically formulated as follows: 

𝑚𝑖𝑛 𝐹(𝑥) = (𝑓1(𝑥), 𝑓2(𝑥), . . . , 𝑓𝑚(𝑥))
𝑇

 

                             𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 𝑔𝑖(𝑥) ≤ 0, 𝑖 = 1, …𝑝                   (15) 

              ℎ𝑗(𝑥) = 0, 𝑗 = 1, …𝑞 

𝑥 ∈ 𝛺𝑥 

where 𝑥 = (𝑥1, 𝑥2, . . . 𝑥𝑛)
𝑇 ∈ 𝑋 ⊂ 𝑅𝑛  are decision variables in the search space 𝑋  of 𝑛  dimensions. 𝐹 = (𝑓1 , 𝑓2, . . . , 𝑓𝑚)

𝑇 is 

𝑚-dimension target space of objective vectors. 𝑔𝑖(𝑥) ≤ 0and ℎ𝑗(𝑥) = 0 are 𝑖th inequality constraint and 𝑗th equality constraint, 

respectively. 𝑝 represents the number of inequality constraints; 𝑞 represents the number of equality constraints. 

In multi-objective optimization, just as its name implies, there are several objectives to be optimized. Commonly, it has two 

conditions. First, the optimization consists of conflicting objectives. Second, a solution set that can balance all optimization 

objectives should exist. 

B. RVEA and PARVEA 

RVEA25decomposes original optimization problems into different subproblems by generating adaptive reference vectors. The 

angle-penalized distance (APD) is employed to balance between diversity and convergence in high-dimensional space. The 

proposed algorithm PARVEA is based on RVEA. 

The result of RVEA shows that it is superior to other algorithms in dealing with problems in higher dimensional space with many 

objective functions. In practical terms, RVEA has also achieved a better result in esterification process. However, RVEA has 

deficiencies in some respects. For example, although parameter 𝑓𝑟 can control the frequency of employing reference vectors to 

ensure convergence and diversity of solutions obtained in iteration process, it is a constant which may miss the best opportunity to 

update reference vectors. That is to say, when the value of 𝑓𝑟 is set to 50, the reference vectors will be updated every 50 iterations. 

In fact, for some problems, starting from the 40th iteration, for example, the distribution of the solutions may already become 

similar. This indicates that we should choose to update the reference vector in an earlier iteration, such as 41 instead of iteration 50 

in this example. This will not only reduce the computation time, but also enable us to search more solutions in a larger space. 

Therefore, the RVEA algorithm loses its adaptability. 

To solve this problem, a comparison of the distribution of solutions between current generation and next generation in the 
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optimization process is necessary by calculating Pearson correlation coefficient. Specifically, the Hadamard product is used when 

the number of current solutions is the same as that of next generation. As it is known, every reference vector replaces the proportion 

of different sub problems in objective functions. Inspired by the nature of the reference vectors, the solution should associate the 

Hadamard product with the corresponding vector. The detail process description is shown in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 In Algorithm 1, m is the number of solutions in the 𝑡 th iteration, and n is the number of solutions in the 𝑡 − 1 th iteration. In 

summary, when the value of m is equal to n, we make a Hadamard product between solutions and the reference vector which is 

associated with the solutions. The matrixes obtained are respectively denoted as c and d. Then we calculate the column sum of the 

matrices c and d, and the matrixes C and D will be respectively obtained. Last, we calculate the Pearson correlation coefficient 

between C and D.  

When the value of Pearson correlation coefficient is more than 0.98, it indicates that the distribution of current and past moment is 

the same. Thus, we can update the reference vectors. If not, we will not update the reference vectors. The value of 0.98 is selected 

because it yields the optimal experiment results in esterification process. Through the method in Algorithm 1, the adaptability of 

RVEA algorithm can be increased. 

The key point of RVEA algorithm is its scalarization approach, termed APD, which indicates that convergence and diversity of 

solutions are considered in all iteration process. 

Algorithm 1: The distribution of solution 

1: Input: generation index 𝑡; current population set 𝑃𝑡 = {𝑝𝑡,1, 𝑝𝑡,2. . . , 𝑝𝑡,𝑚}, the next population set𝑃𝑡+1 = {𝑝𝑡+1,1, 𝑝𝑡+1,2. . . , 𝑝𝑡+1,𝑛}; 

current unit reference vector set 𝑉𝑡 = {𝑣𝑡,1, 𝑣𝑡,2. . . , 𝑣𝑡,𝑁} the next unit reference vector set   𝑉𝑡 = {𝑣𝑡+1,1, 𝑣𝑡+1,2. . . , 𝑣𝑡+1,𝑁}; the reference 

vector, which current population associates with, is denoted as matrix 𝐵 ; the reference vector, which next population associates with, is 

denoted as matrix 𝑃6   

2： Output：reference vector set 𝑉𝑡+2 

3： m← the number of current population 

4： n ← the number of next population  

5：While m==n do 

6：𝑐 ←temp.objs*V(B)   % .*replaces Hadamard product 

7：𝑑 ←Population2.objs*V(𝑃6) 

8：Calculate the sum of the matrices c and d in terms of columns 

9：Calculate the Pearson correlation coefficient 𝑞 between 𝐶 and 𝐷 

10：   if 𝑞 ≥ 0.98 do update the reference vector 

11：   break; end 

12： break ; end 
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Specifically, 

                   𝑓𝑡,𝑖
′ = 𝑓𝑡,𝑖 − 𝑧𝑡

𝑚𝑖𝑛                                                 (16) 

                         𝑑𝑡,𝑖,𝑗 = (1 +𝑀 ⋅ (
𝑡

𝑡𝑚𝑎𝑥
)
𝛼 𝜃𝑡,𝑖,𝑗

𝛾𝑣𝑡,𝑗
)‖𝑓𝑡,𝑖

′ ‖                  (17) 

                    𝑟𝑣𝑡,𝑖,𝑗 =
𝑓𝑡,𝑖
′ .𝑣𝑡,𝑗

‖𝑓𝑡,𝑖
′ ‖
     𝛾𝑣𝑡,𝑖,𝑗 = min arg 𝑐𝑜𝑠 ⟨𝑣𝑡,𝑖 , 𝑣𝑡,𝑗⟩

𝑖,𝑗=1,2……𝑁,𝑖≠𝑗

                (18) 

As recommended in [25], M and N denote the number of objectives and reference vectors. Respectively 𝑣𝑡,𝑖 and 𝑣𝑡,𝑗, is the 𝑖th and 

the 𝑗th reference vector, and 𝑡 replaces current number of iterations. 𝑡𝑚𝑎𝑥 is the maximum number of iterations which will be 

defined before employing RVEA algorithm. Then 𝛾𝑣𝑡,𝑗replaces the smallest angle value formed by reference vector 𝑣𝑡,𝑗 and other 

reference vectors in the current iteration, and 𝛼  is a predefined parameter which is set to 2 to control the frequency of 

convergence.‖𝑓𝑡,𝑖
′ ‖is the Euclidean distance calculated by population and ideal point. Specially, at the early stage of the search 

process (i.e.,𝑡 ≪ 𝑡𝑚𝑎𝑥), 𝑀 ⋅ (
𝑡

𝑡𝑚𝑎𝑥
)
𝛼 𝜃𝑡,𝑖,𝑗

𝛾𝑣𝑡,𝑗
≈ 0 and thus 𝑑𝑡,𝑖,𝑗 ≈ ‖𝑓𝑡,𝑖

′ ‖ can be satisfied, which means that the value of 𝑑𝑡,𝑖,𝑗is mainly 

determined by the convergence criterion‖𝑓𝑡,𝑖
′ ‖; at the last stage of the search process, with the value of 𝑡 approaching 𝑡𝑚𝑎𝑥, 𝑑𝑡,𝑖,𝑗 ≈

(1 + 𝑀 ⋅
𝜃𝑡,𝑖,𝑗

𝛾𝑣𝑡,𝑗
)‖𝑓𝑡,𝑖

′ ‖,the algorithm not only concentrates on the diversity but also on the convergence, where 𝜃𝑡,𝑖,𝑗  represents the 

angle between objective vector 𝑓𝑡,𝑖
′  and reference vector 𝑣𝑡,𝑗 . Then the following improved methods are proposed. 

𝑑𝑡,𝑖,𝑗 = (1 + √𝑀 ⋅ (
𝑡

𝑡𝑚𝑎𝑥
)
𝛼 𝜃𝑡,𝑖,𝑗

𝛾𝑣𝑡,𝑗
)‖𝑓𝑡,𝑖

′ ‖ + √𝑀 ⋅  (
𝑡

𝑡𝑚𝑎𝑥
)
𝛼

‖𝑓𝑡,𝑖
′ ‖ 𝑐𝑜𝑠 𝜃𝑡,𝑖,𝑗          (19) 

The selection of the best solution through improved APD method is to find the solution on each reference vector that is the closest 

to the ideal point. In PARVEA, the projection distance ‖𝑓𝑡,𝑖
′ ‖ 𝑐𝑜𝑠 𝜃𝑡,𝑖,𝑗  and the corresponding angles 𝜃𝑡,𝑖,𝑗  are incorporated to 

balance between the convergence and diversity. Additionally, 𝑀 is changed to √𝑀 to reduce the effect of dimensions on the 

objective function. All of what we have done is to strengthen the convergence and diversity in the last stage of the search process. 

The principle of improvement in Eq.(19) for PARVEA is displayed in Fig.2. This is an example in two-dimension space. 

Specially, 𝑜 represents the ideal point. 𝑓1 represents the first objective function. Similarly, 𝑓2 is the second objective function. 𝑓′ 

denotes the vector of population minus ideal point as shown in Eq.(16). 𝑑1 represents the Euclidean distance of each population 

member from each of the reference lines in original RVEA, and 𝑑2 represents the added projection distance of each population 

member from each of the reference lines in PARVEA. The core idea of Eq.(19) is that small 𝜃𝑡,𝑖,𝑗 does not imply these solutions are 

closer to the ideal point. Aiming at resolving this problem, projection distances of the solution vectors onto the associated reference 

vectors are considered. 
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Fig. 2. (a) 𝑑1 represents the Euclidean distance of each population member from each of the reference lines in original RVEA. (b) 𝑑2 represents the added 

projection distance of each population member from each of the reference lines in PARVEA. 

The reason for adding (
𝑡

𝑡𝑚𝑎𝑥
)
𝛼

 is that the improvement of the projection distance can play adaptively an increasing role with the 

increased iterations. The details of PARVEA applied in the esterification process are described as follows: 

Step 1: Initialization: 

Step 1.1: Generate an initial population P with size N according to the constraints of the problem. 

Step 1.2: Initialize N uniformly distributed reference vectors V by Das and Dennis’s systematic approach26.  

Step 2: Reproduction: generate offspring population Q with size N by using binary crossover and polynomial mutation on parent 

population P. 

Step 3: Combine parent and offspring population P=P∪Q. 

Step 4: Associate each individual in P with a reference vector that has the smallest angle with itself. 

Step 5: For each vector that has at least one individual associated with it, calculate the improved APD of every individual associate 

with it by Eq. (19) and select the one with the minimum improved APD. All selected individuals constitute the population Ps. 

Step 6: Determine if the reference vectors need to be updated by Algorithm 1. If an update is required, update the reference vectors: 

Step 6.1: Calculate the minimal and maximal objective values 𝑧𝑚𝑖𝑛  and 𝑧𝑚𝑎𝑥, respectively. 

Step 6.2: For each reference vector 𝑉𝑖, calculate the new reference vector 𝑉𝑖' by 𝑉𝑖 ' = 𝑉𝑖 ⋅ (𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛)/‖𝑉𝑖 ⋅ (𝑧𝑚𝑎𝑥 −

𝑧𝑚𝑖𝑛)‖. 

Step 7: Stopping Criteria: If stopping criteria is satisfied, then stop and output P=Ps. Otherwise, go to Step 2. 

Step 8: The best operating conditions of esterification process are selected by the user’s preference. 

IV. PERFORMANCE EVALUATION  

A. Evaluation Results on Esterification Process  

Four decision variables are used for optimization of the esterification process. These are the reactor pressure 𝑃(mmHg), 

𝑜 𝑜𝑓1

𝑓2

𝑓 ′ 𝑓 ′

𝑓1

𝑓2

𝑑2

𝑑1

(a) (b)

𝜃𝜃

𝑉1𝑉1
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temperature 𝑇 (iso-thermal), and residence time 𝜏(𝑚𝑖𝑛) of the polymeric reaction mass inside the reactor and the ratio 𝑟 (the unit 

is 1) of slurry EG/PTA. Then the objectives are the esterification rate 𝐸𝑠(%), the percentage of diethylene glycol 𝑊𝑡(%), the 

average molecular mass 𝑀𝑛(the unit is 1) and the degree of polymerization 𝑃𝑛(the unit is 1). The solution of the multi-objective 

optimization problem described in Eq. (12) is obtained using PARVEA and RVEA with same process parameters and initial 

concentration of each substance as that of paper[5]. 

 
                                       (a)                                                                                                                     (b) 

                                           
                                    (c)                                                                                                                         (d)        

Fig. 3. Optimization results of drawing process obtained after and before improving the first principle model by PARVEA and RVEA  

 

This is a minimization four-objective optimization problem with an unknown Pareto front. In Fig. 3, x-axis represents four 

different objectives. Because we want to maximize 𝑀𝑛, 𝑃𝑛  and 𝐸𝑠 . The first objective is reformulated as 1/𝑀𝑛; the second 

objective is reformulated as 1/𝑃𝑛; the third objective is reformulated as 1/𝐸𝑠  . The fourth objective is the percentage of diethylene 

glycol 𝑊𝑡 . The ordinate represents different results of four objective functions. We can see if the temperature is kept in the range 

from 275 to 285 degree centigrade, pressure at about standard atmosphere, the operating variables in reasonable limits, and the ratio 

of slurry set at about 1.1, using the improved model, then according to Fig. 3 (a) and (b), the maximized esterification rate can reach 
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about 95%, the average molecular mass can reach about 600, the degree of polymerization can reach about 5, and the minimized 

percentage of diethylene is about 0.3% to maintain the product quality. The specific range of residence time is not provided here, 

but it is kept in a reasonable range. 

Nevertheless, from Fig. 3 (c) and (d), when the model has not been improved, that is to say, the first principle model does not 

consider the formation of acetaldehyde, it has lower performance than that of the improved model shown in Fig. 3(a) and (b) in 

esterification rate 𝐸𝑠, the average molecular mass 𝑀𝑛 and the degree of polymerization 𝑃𝑛. Therefore, the comparison between Fig. 

3 (a) (b) and (c) (d) shows that it is necessary to take the production of side reaction acetaldehyde into account in the 

high-dimensional and multi-objective optimization of the mechanism model of polyester fiber polymerization esterification 

process. The performance of RVEA and PARVEA is compared. The size of population of two algorithms is set as 100. The 

simulation results are shown in Fig. 3 (a) and (b). It shows also that objective function values obtained from PARVEA are smaller 

than those from RVEA. Especially, in terms of the first objective, the solutions obtained from PARVEA are mostly around 0.7, 

compared with that of RVEA which varies from 0.7 to 0.8. For the third objective, the solutions vary from 0.05 to 0.3 in PARVEA, 

compared with RVEA which varies from 0.05 to 0.4. The solutions of the fourth objective in PARVEA vary from 0.25 to 0.8, 

compared with RVEA which varies from 0.25 to 0.95. 

Fig. 4 is a plot of the decision variables corresponding to each of the points on the Pareto set. It shows that the ratio of slurry 

EG/PTA is near its bound, which implies the relations between esterification rate 𝐸𝑠, the percentage of by-product diethylene glycol 

𝑊𝑡  and the ratio of slurry EG/PTA are approximately monotonic. Meanwhile, this phenomenon is also confirmed by the process 

operators, according to whom, compared with other process variable, reactor temperature and reactor pressure are most sensitive in 

the reaction process.  

In conclusion, PARVEA can obtain solutions with smaller objective function values compared to RVEA. The IGD27 values may 

heavily depend on the real Pareto set. Thus, we calculate HV28additionally for further comparison. The HV values obtained by 

RVEA and PARVEA algorithms in 20 independent runs are shown in TABLE IV. The reference point in HV is set as [1 1 1 2] which 

is dominated by all Pareto solutions obtained from PARVEA and RVEA. TABLE IV shows the mean and standard deviation of HV 

values over 20 independent runs. The Wilcoxon rank sum test is also used to compare the results at a significance level of 0.05. 

 
 

Fig. 4 Decision variables corresponding to each of the Pareto optimal solutions shown in Fig. 3 (a) (b). 
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Symbol ‘-’ means the result of PARVEA is significantly better than that of RVEA.  

TABLE IV 

The mean and standard deviation results of HV values calculated by RVEA and PARVEA 

 

Problem M RVEA PARVEA 

Esterification 4 1.2872e-2 (1.37e-4) - 1.3070e-2 (9.00e-5) 

+/-/= 0/1/0  

Furthermore, the standard deviations are listed in parentheses in TABLE IV. One can see that the proposed algorithm not only 

has better convergence and diversity, but also has better stability. The stability of the solutions is what is needed in actual industrial 

production process. In the actual industrial production, each adjustment of the process parameters can bring large losses. 

In summary, the aim of proposed PARVEA is to find the optimal operating conditions to optimize product performance in 

production process of polyester fiber polymerization esterification. It shows that PARVEA can choose better optimal operating 

conditions under the same objective function value in these simulations. 

B. Experimental Settings in the Test Problems  

The algorithms are implemented in MATLAB R2016a and run on a PLATEMO29.We adopt DTLZ1-DTLZ730taken from the 

DTLZ test suites that are widely used benchmark test problems to compare PARVEA with other algorithms of multi-objective 

optimization. The number of decision variables is set to n=M+K-1, where M is the number of optimization objectives. K=5 is used 

for DTLZ1, and K=10 is used for test problems from DTLZ2 to DTLZ7. For each test problem, objective function values varying 

from 4 to 10, i.e. 𝑀 ∈ {4,6,8,10}are considered. HV and IGD are used as the performance indicators in empirical experiment 

comparisons between the results obtained by PARVEA and other algorithms. Because the IGD value depends on not only the 

number of the obtained solutions but also the true Pareto Front, the suitable IGD value can be obtained to balance the convergence. 

The results are shown in TABLE IV. Similarly, the HV value is used as the performance indicator to balance diversity by all 

Pareto-optimal solutions. The results are shown in TABLE V. Each algorithm is run for 20 times on each test problem 

independently. 

C. IGD Results on the Test Suits 

The IGD is calculated as follows: 

𝐼𝐺𝐷(𝐵, 𝑍𝑒𝑓𝑓) =
1

|𝑍𝑒𝑓𝑓|
∑ 𝑚𝑖𝑛 𝑑 (𝑧𝑖 , 𝑏𝑗)

𝑗=1

|𝐵|
|𝑍𝑒𝑓𝑓|

𝑖=1
         (20) 

Where  𝐵 = [𝑏1,𝑏2. . . . ] is the nondominated individuals obtained by an MOEA in the objective space. 𝑍𝑒𝑓𝑓 = [𝑧1, 𝑧2, … ] is a set 

of solutions sampled from the known Pareto front. 𝑑(𝑧𝑖 , 𝑏𝑗) = ‖𝑧𝑖 − 𝑏𝑗‖2
 represents the Euclidean distance from 𝑧𝑖 to 𝑏𝑗. The IGD 

metric is able to measure both diversity and convergence of B, when the |𝑍𝑒𝑓𝑓| is large enough. 
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   These parameter settings are the same as recommended in RVEA for test problems from DTLZ1 to DTLZ7.TABLE V presents 

IGD results of PARVEA, RVEA, SPEAR31, DMOEAeC32and MOEADPaS33 from 4-objective to 10-objective in test problems of 

from DTLZ1 to DTLZ7. The statistical results of the IGD values obtained by the five algorithms are summarized in TABLE V, 

where the best results are highlighted. TABLE V for 4 to 10-objective normalized DTLZ test problems shows that (i) PARVEA 

performs best in DTLZ2, DTLZ4, DTLZ5 and DTLZ6 test suites, and performs best in DTLZ7 on 4 to 10-objective except 

6-objective in terms of IGD value. (ii) DMOEAeC algorithm performs better on 6-objective in a non-uniformly distributed 

Pareto-optimal front (like in the DTLZ7 problem) than other algorithms, but PARVEA performs better on other objectives than 

other algorithms. (iii) PARVEA approaches are overperformed by RVEA in DTLZ3 problem on 4 to 8-objective, but performs 

better on other objectives than other algorithms. Overall, PARVEA obtains the best results on twenty-two out of twenty-eight test 

instances, so it can be seen that PARVEA shows better capability in approximating true Pareto fronts compared to the 

state-of-the-art algorithms. 

D. HV Results on the Test Suites 

The hypervolume index (HV) measures the volume of the dimensional region in the target space surrounded by the 

non-dominating solution set and the reference point obtained by the MOEAs. The detail is shown as follows: 

              𝐻𝑉 = 𝛿(∪𝑖=1
|𝑆|
𝑣𝑖)                                         (21) 

where 𝛿 represents the Lebesgue measure which is used to measure volume. |𝑆| represents the number of nondominated sets. 𝑣𝑖 

represents the supercube formed by the reference point 𝑧∗ and the i th solution in the solution set. Above all, it indicates, first, the 

larger the value of HV, the better performance the algorithm has. Second, the value of HV is determined by the reference point. 

The reference points used in the HV calculation are set as (𝑧1
𝑚𝑎𝑥 + 0.1, 𝑧2

𝑚𝑎𝑥 + 0.1, . . . . . 𝑧M
𝑚𝑎𝑥 + 0.1), where 𝑧1

𝑚𝑎𝑥to 𝑧𝑀
𝑚𝑎𝑥are the 

maximum objective values calculated from the five algorithms. Except the 10-objective problem of DTLZ5 and DTLZ6, the rest 

TABLE V 

The statistical rank results (mean) of IGD values on DTLZ problems calculated by RVEA, MOEADPaS, SPEAR, DMOEAeC and PARVEA 

 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

M 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 

RVEA 1 2 1 2 2 2 2 2 1 1 1 2 2 2 2 2 5 3 3 3 5 2 2 2 4 3 4 3 

SPEAR 5 4 4 4 4 3 3 3 4 4 4 4 4 3 3 3 4 5 5 5 4 5 5 4 2 4 3 4 

MOEADPaS 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 4 3 4 4 4 2 4 3 5 5 5 5 5 

DMOEAeC 2 3 3 3 3 4 4 4 2 3 3 3 3 4 4 5 2 2 2 2 3 3 4 3 3 1 2 2 

PARVEA 3 1 2 1 1 1 1 1 3 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 

 

TABLE VI 

The statistical rank results (mean) of HV values on DTLZ problems calculated by RVEA, MOEADPaS, SPEAR, DMOEAeC and PARVEA 

 DTLZ1 DTLZ2 DTLZ3 DTLZ4 DTLZ5 DTLZ6 DTLZ7 

M 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 4 6 8 10 

RVEA 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 5 3 3 2 3 2 2 3 4 4 4 2 

SPEAR 5 4 3 4 3 3 3 3 5 4 4 5 3 4 4 3 4 5 5 4 5 5 5 4 3 3 3 3 

MOEADPaS 3 5 5 5 5 5 5 5 4 5 5 4 5 5 5 4 3 4 4 5 2 3 4 5 5 5 2 4 

DMOEAeC 2 2 2 2 4 4 4 4 2 3 3 3 4 3 3 5 2 2 2 1 4 4 3 1 2 1 1 1 

PARVEA 4 3 4 3 1 1 1 1 3 2 2 2 1 1 1 1 1 1 1 3 1 1 1 2 1 2 5 5 
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HV values are normalized to [0, 1]. Based on the results shown in the TABLE VI on 4 to 10-objective normalized DTLZ test 

problems, it can be concluded that (i) RVEA performs best in DTLZ3 on 4 to 10-objective in terms of HV value. (ii) PARVEA 

performs best in DTLZ2, DTLZ4, DTLZ5 and DTLZ6 on 4 to 10-objective except the 10-objective on DTLZ5 and DTLZ6. (iii) 

Meanwhile, in a non-uniformly distributed Pareto-optimal front (like in the DTLZ7 problem), DMOEAeC performs best on 6 to 

10-objective. Especially, DMOEAeC outperforms other algorithms in DTLZ5 and DTLZ6 problems on 10-objective. In summary, 

PARVEA obtains the best results on fifteen out of twenty-eight test instances. 

V. CONCLUSION  

To the best of our knowledge, this work is the first to obtain a four-objective optimization of the esterification process in PET 

polymerization through the RVEA algorithm. The PARVEA algorithm is proposed based on original RVEA algorithm. The main 

idea is that not only the projection distance is incorporated into the Angle-Penalized Distance, but reference vector is updated 

adaptively according to the distribution of the solution. Meanwhile, PARVEA is applied to optimize the esterification process. The 

simulation results are consistent with the operation of the factory, which indicates the effectiveness of PARVEA. In addition, the 

proposed PARVEA algorithm is compared with other four different algorithms on DTLZ1 to DTLZ7 test problems. The 

experimental results verify the effectiveness of PARVEA.  

Then companies can choose more suitable solutions and process parameters obtained by PARVEA algorithm according to user 

preferences, which can meet the requirements for differentiated production of high-quality polyester fiber polymers. 

Our future work includes improving the solutions diversity of PARVEA and extending it to solving more practical problems, such 

as the dynamic multi-objective optimization of polymerization process. 
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