loading page

Existence of homoclinic solutions for the non-autonomous fractional Hamiltonian systems
  • Hamid Boulares,
  • Fathi Khelifi
Hamid Boulares
Université 8 Mai 1945 Guelma Faculté des Mathématiques et de l'Informatique et des Sciences de la Matière
Author Profile
Fathi Khelifi
University of Hail College of Sciences
Author Profile

Abstract

In this reseach work, we give a new result to guarantee the existence of homoclinic solutions for the nonperiodic fractional Hamiltonian systems -_{t}D_{∞}^{α}(_{-∞}D_{t}^{α}x(t))-L(t)x(t)+∇W(t,x(t))=0, where α∈(1/2,1], x∈H^{α}(R,R^{N}), W∈C¹(R×R^{N},R). We assume that W(t,x) do not satisfy the global Ambrosetti-Rabinowitz condition and is not necessary periodic in t. This result generalizes and improves some existing results in the literature.