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Abstract. In this reseach work, we give a new result to guarantee the exis-
tence of homoclinic solutions for the nonperiodic fractional Hamiltonian sys-
tems

�tD�
1(�1D

�
t x(t))� L(t)x(t) +rW (t; x(t)) = 0;

where � 2 (1=2; 1], x 2 H�(R;RN ), W 2 C1(R � RN ;R). We assume that
W (t; x) do not satisfy the global Ambrosetti-Rabinowitz condition and is not
necessary periodic in t. This result generalizes and improves some existing
results in the literature.

1. Introduction

Recently fractional di¤erential equations play a very important role in applied
mathematical modeling of processes in physics, mechanics, biochemistry, control
theory, bioengineering and economics. Thus, in recent decades the �eld of frac-
tional di¤erential equation theory has developed intensively, see [1, 8, 18, 26, 27,
28, 29, 30, 31]. The monographs [14, 17, 21] they rich with solving methods which
are extension of the theory of di¤erential equations.
Equations which include both left and right fractional derivatives a new and in-
teresting area in the theory of fractional di¤erential equations is also discussed.
Besides their possible applications. In this subject, several results are obtained
concerning the existence and the multiplicity of solutions of nonlinear fractional
di¤erential equations using nonlinear analysis techniques, including the theory of
the �xed point (including the nonlinear alternative [3] of Leray-Schauder), the
theory of topological degrees (including the theory of degrees of coincidence [12]),
the comparison method (including the upper and lower solutions and the monot-
onous iterative method [28]), etc.
We note that critical point theory and variational methods have also proved to
be very e¤ective tools for determining the existence of solutions for integer di¤er-
ential equations. We note that critical point theory and variational methods have
also proved to be very e¤ective tools for determining the existence of solutions
for integer di¤erential equations. During the last three decades, the critical point
theory has become a very important tool to study the existence of solutions to
di¤erential equations with variational structures (we refer the reader to [16, 22]
and the references listed there).
Motivated by the classic works mentioned above, and Jiao Zhou [13] showed
that the critical point theory is an e¤ective approach to combat the existence of
solutions for the fractional boundary-value problem
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�
tD

�
T (0D

�
t u(t)) = rW (t; u(t)); a.e. t 2 [0; T ];

u(0) = u(T );
(1.1)

where � 2 (1=2; 1), u 2 RN , W 2 C1([0; T ]�RN ;R);rW (t; u) is the gradient of
W at u, and obtained the existence of at least one nontrivial solution. Inspired
by this paper, Torres [25] studied the fractional Hamiltonian system�

�tD�1(�1D�t u(t))� L(t)u(t) +rW (t; u(t)) = 0;
u 2 H�(R;RN ); (1.2)

where � 2 (12 ; 1), t 2 R; u 2 R
N , �1D�t and tD

�
1 are left and right Liouville-

Weyl fractional derivatives of order � on the whole axis R respectively, L(t) 2
C(R;RN2

) is symmetric and positive de�nite matrix for all t 2 R and W 2
C1(R � RN ;R). The author showed that (1.2) possesses at least one nontrivial
solution via Mountain Pass Theorem, by assuming that L satis�es (H1) and W
satis�es the following hypotheses:

(�1) jrW (t; x)j = o(jxj) as jxj ! 0 uniformly in t 2 R;
(�2) there is W 2 C(RN ;R) such that

jW (t; x)j+ jrW (t; x)j � jW (x)j; 8(t; x) 2 R� RN :
(�3) there exists a constant � > 2 such that

0 < �W (t; x) � (rW (t; x); x); 8t 2 R; x 2 RNnf0g:
When � = 1, (1.2) reduces to the standard second-order Hamiltonian systems

�u(t)� L(t)u(t) +rW (t; u(t)) = 0: (1.3)

It is well known that Poincare [20] is the one who realized the existence of home-
opathic solutions for Hamilton systems and their importance in the study of the
behavior of dynamic systems, we can also say, in some circumstances, infer the
presence of close chaos or the bifurcation behavior of periodic orbits. Over the
past two decades, with the works of [19] and [23], various methods and theory of
CT have been successfully applied to search for existence. Multiple solutions of
(1.3).
Suppose that L(t) and W (t; u) are independent of t or periodic in t, several au-
thors have studied the existence of homoclinical solutions for the Hamiltonian
system (1.3) (see [2, 6, 23] and the references therein), and some more general
Hamiltonian systems are discussed in recent articles [9, 10, 11]. In this case,
the existence of homoclinical solutions can be obtained by going to the limit
of periodic solutions of approximate problems. If L(t) and W (t; u) are neither
autonomous nor periodic in t, the existence of homoclinical solutions of (1.3) is
quite di¤erent from periodic systems, due to the lack of compactness of the in-
corporation of Sobolev (see for instance [6, 19, 24] and the references therein).
We will improve the result in [25] in another direction by motivating the results
above, the article is organized as follows: in section 2, we describe the fractional
Liouville-Weyl calculus; we introduce the fractional space that we use in our work
and some lemmas and theorems are proven which will facilitate our analysis. In
section 3, we will prove the Theorem 3.1.

2. Preliminaries

We introduce some basic techniques, de�nitions, lemmas and theorems are
given below. For more details see [1, 8, 18, 26, 27, 28, 29, 30, 31].
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De�nition 2.1. The left and right Liouville-Weyl fractional integrals of order
0 < � < 1 on the whole axis R are de�ned by

�1I
�
x u(x) =

1

�(�)

Z x

�1
(x� �)��1u(�)d�;

xI
�
1u(x) =

1

�(�)

Z 1

x
(� � x)��1u(�)d� ;

respectively, where x 2 R.

De�nition 2.2. The left and right Liouville-Weyl fractional derivatives of order
0 < � < 1 on the whole axis R are de�ned by

�1D
�
xu(x) =

d

dx
�1I

1��
x u(x); (2.1)

xD
�
1u(x) = �

d

dx
xI
1��
1 u(x) ; (2.2)

respectively, where x 2 R.

Remark 2.1. De�nitions (2.1) and (2.2) may be written in the alternative forms:

�1D
�
xu(x) =

�

�(1� �)

Z 1

0

u(x)� u(x� �)
��+1

d�;

xD
�
1u(x) =

�

�(1� �)

Z 1

0

u(x)� u(x+ �)
��+1

d� :

We recall that the Fourier transform bu(w) of u(x) is de�ned by
bu(w) = Z 1

�1
e�ix:wu(x)dx:

The Fourier transform properties for the integral and fractional fraction factors
are given as follows:

\�1I�x u(x)(w) = (iw)
��bu(w);

\
xI�1u(x)(w) = (�iw)��bu(w);
\�1D�xu(x)(w) = (iw)

�bu(w);
\

xD�1u(x)(w) = (�iw)�bu(w):
Let us recall for any � > 0, the semi-norm

jujI��1 = k�1D
�
xukL2 ;

and the norm

kukI��1 =
�
kuk2L2 + juj

2
I��1

�1=2
:

Let the space I��1(R) denote the completion of C10 (R) with respect to the norm
k � kI��1 , i.e.,

I��1(R) = C10 (R)
k�kI��1 :

We de�ne the fractional Sobolev space H�(R) in terms of the Fourier transform.
For 0 < � < 1, de�ne the semi-norm

juj� = kjwj�bukL2 ;
and the norm

kuk� = (kuk2L2 + juj
2
�)
1=2;
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and let

H�(R) = C10 (R)
k�k�

:

We note that a function u 2 L2(R) belongs to I��1(R) if and only if

jwj�bu 2 L2(R):
In particular, jujI��1 = kjwj�bukL2(R). Therefore H�(R) and I��1(R) are equiva-
lent, with equivalent semi-norm and norm (see [25]). Analogous to I��1(R), we
introduce I�1(R). Let us de�ne the semi-norm

jujI�1 = kxD
�
1kL2(R);

and norm
kukI�1 = (kuk

2
L2 + juj

2
I�1
)1=2;

and let

I��1(R) = C10 (R)
k�kI��1 :

By addition I�1(R) and I��1(R) are equivalent, with equivalent semi-norm and
norm.

Lemma 2.1 ([25]). If � > 1=2, then H�(R) � C(R) and there is a constant
C = C� such that

kukL1 = sup
u2R

ju(x)j � Ckuk�; (2.3)

where C(R) denote the space of continuous functions on R.

Remark 2.2. If u 2 H�(R), then u 2 Lq(R) for all q 2 [2;1], sinceZ
R
ju(x)jqdx � kukq�2L1 kuk

2
L2 :

We introduce the fractional space in which we will build the variational frame-
work of (1.2). Let

X� =
�
u 2 H�(R;Rn) :

Z
R
j�1D�t u(t)j2 + (L(t)u(t); u(t))dt <1

	
:

The space X� is a re�exive and separable Hilbert space with the inner product

(u; v)X� =

Z
R
(�1D

�
t u(t):�1D

�
t v(t)) + (L(t)u(t); v(t))dt;

and the corresponding norm is

kuk2 = (u; u)X� :

Let E be a real Banach space. Recall that I 2 C1(E;R) is supposed to satisfy
the condition of Palais-Smale (PS) if a sequence (un) � E, for which (I(un)) is
bounded and I 0(un) ! 0 as n ! 1, has a convergent subsequence in E. We
obtain the existence of solutions to (1.2) using the well-known mountain pass
theorem following.

Lemma 2.2 ([22], Theorem2.2). Let E be a real Banach space and I 2 C1(E;R)
satis�es the Palais-Smale condition. If further I(0) = 0,

(�1) there exist constants �; � > 0 such that I=@B�(0) � �
and

(�2) there exist e 2 EnB�(0) such that I(e) � 0.



FRACTIONAL HAMILTONIAN SYSTEMS 5

Then I possesses a critical value c � � given by

c = inf
g2�

max
s2[0;1]

I(g(s));

where
� = fg 2 C([0; 1]; E) : g(0) = 0; g(1) = eg:

Lemma 2.3 (Symmetric Mountain Pass Theorem, [22], Theorem9.12). Let E
be a real Banach space I is even and I 2 C1(E;R) satis�es the Palais-Smale
condition. If further I(0) = 0,

(�3) there exist constants �; � > 0 such that I=@B�(0) � �
and

(�4) for each �nite dimensional ~E � E there is 
 = 
( ~E) such that I � 0 on
~EnB


( eE).
Then I possesses an unbounded sequence of critical values.

3. Main result

We introduce the hypotheses below before stating and proving the main results.
For the statement of our main result, the potential W (t; x) is supposed to

satisfay the following conditions:

(H1) L(t) is positive de�nite symmetric matrix for all t 2 R and there exists
an linC(R;

�
0;1)

�
such that l(t)! +1 as jtj ! 1 and�

L(t)x; x
�
� l(t)jxj2 for all t 2 R and x 2 Rn:

From this condition, we see that there is a positive constant � > 0 such
that

(L(t)x; x) � �jxj2 for all t 2 R; x 2 Rn: (3.1)

(H2) W (t; x) � 0 for all (t; x) 2 R � Rn and there exist constants M > 0 and
R1 > 0 such that

W (t; x) �M jxj2 for all (t; x) 2 R� Rn; jxj � R1;

where 2M < �, with � de�ned in (3.1);
(H3) there exist �0(t) > 0 and constants �1 > 2; R2 > 0 such that

W (t; x) � �0(t)jxj�1 for all (t; x) 2 R� Rn; jxj � R2;

(H4) there exist constants � > 2 and �2 with 0 � �2 <
��
2 � 1

�
such that

�W (t; x)� (rW (t; x); x) � �2(L(t)x; x) for all (t; x) 2 R� Rn;

(H5) jrW (t; x)j = o(jxj) as jxj ! 0 uniformly with respect to t 2 R;
(H6) There is a W 2 C(Rn;R) such that

jrW (t; x)j � jW (x)j for all t 2 R and x 2 Rn:

Our main result reads as follows.

Theorem 3.1. Suppose that (H1)� (H6) hold. Then (1.2) possesses at least one
nontrivial homoclinic solution.Moreover, if we assume that W (t; x) is even in x;
i.e.,

(H7) W (t;�x) =W (t; x) for all t 2 R and x 2 Rn;
then (1.2) has in�nitely many distinct homoclinic solutions.
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Remark 3.1. i) Note that if (�3) holds, so does (H4), however the reverse is
not true.
ii) (�3) is the so-colled global Ambrosetti-Rabinowitz condition due to Ambrosetti
and Rabinowitz [22], wich implies that W (t; x) is superquadratic as jxj ! 1.

Lemma 3.1. Suppose L satis�es (H1). Then, X� is continuously embedded in
H�(R;Rn).

Proof. Since l 2 C(R; (0;1)) and l is coercive, then � = mint2R l(t) exists, so we
have

(L(t)u(t); u(t)) � l(t) jtj2 � � jtj2 ;8t 2 R:
Then

kuk2� =

Z
R
(j�1D�t u(t)j2 + (L(t)u(t); u(t)))dt

�
Z
R
j�1D�t u(t)j2dt+

1

�

Z
R
(L(t)u(t); u(t))dt:

So
kuk2� � Kkuk2;

where K = max(1;
1

�
). �

The main di¢ culty in dealing with the existence of solutions of (1.2) is the
lack of compactness of the Sobolev embedding. To overcome this di¢ culty under
the assumptions of Theorems 3.1, we employ the following compact embedding
Lemma.

Lemma 3.2. Suppose L satis�es (H1). Then the embedding of X� in L2(R) is
compact.

Proof. We note �rst that by lemma 3.1 and Remark 2.2 we have

X� ,! L2(R) is continuous:

Now, let (uk) 2 X� be a sequence such that uk * u in X�. We will show that
uk ! u in L2(R). The Banach Steinhauss theorem implies

A = sup
k2N

kuk � uk <1:

Let � > 0, since lim
jtj!1

l(t) =1, then there is T0 > 0 such that
1

l(t)
� �;8 jtj � T0.

So Z
jtj�T0

juk(t)� u(t)j2 dt � �

Z
jtj�T0

l(t) juk(t)� u(t)j2 dt

� � kuk � uk2

� �A2: (3.2)

Besides, Sobolev�s Theorem (see [16]) implies that uk ! u uniformly on [�T0; T0],
so there is a k0 2 N such thatZ

jtj�T0
juk(t)� u(t)j2 dt � �;8k � k0: (3.3)

Combining (3.2) with (3.3) we obtain uk ! u in L2(R): �
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Remark 3.2. From remark 2.2 and Lemma 2.2, it is easy to verify that the em-
bedding of X� in Lq(R) is also continuous and compact for q 2 (2;1). Therefore,
combining this with Lemma 3.2, for any q 2 [2;1], there exists C� such that

kukq � Cqkuk: (3.4)

Lemma 3.3. Under the conditions of Theorem 3.1 , if uk * u in X� then
rW (t; uk)! rW (t; u) in L2.

Proof. Assume that uk * u in X�, then, by the Banach-Steinhauss Theorem and
(2.3), there exists a constant M1 > 0 such that

sup
k2N

kukk1 �M1:

By (H5) and (H6) there exists M2 > 0 such that

jrW (t; uk)j �M2 juk(t)j ;
for all k 2 N and t 2 R.
Hence

jrW (t; uk(t))�rW (t; u(t))j � M2 (juk(t)j+ ju(t)j)
� M2 (juk(t)� u(t)j+ 2 ju(t)j) :

Since, by Lemma3.2, uk ! u in L2, passing to a subsequence if necessary, it can
be assumed that

1X
k=1

kuk � uk2 <1;

which implies that uk(t)! u(t) for almost every t 2 R and
1X
k=1

juk(t)� u(t)j2 = &(t) 2 L
2(R;Rn):

Therefore
jrW (t; uk(t))�rW (t; u(t))j �M2 (&(t) + 2 ju(t)j) :

Then, using the Lebesgue�s Convergence Theorem, the lemma is readily proved.
�

Now we establish the corresponding variational framework to obtain the exis-
tence of solutions for (1.2). De�ne the functional I : X� ! R by

I(u) =

Z
R

h1
2
j�1D�t u(t)j2 +

1

2
(L(t)u(t); u(t))�W (t; u(t)

i
dt

=
1

2
kuk2 �

Z
R
W (t; u(t))dt: (3.5)

Lemma 3.4. Under the conditions of Theorem 3.1, we have

I 0(u)v =

Z
R
[(�1D

�
t u(t);�1D

�
t v(t)) + (L(t)u(t); v(t))� (rW (t; u(t)); v(t))]dt;

for all u; v 2 X�, which yields

I 0(u)u = kuk2 �
Z
R
(rW (t; u(t)); u(t))dt: (3.6)

Moreover, I is a continuously Fréchet- di¤erentiable functional de�ned on X�,
i.e., I 2 C1(X�;R).
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Proof. Firstly, we show that I : X� ! R. By (H2), there exists M > 0 and
R1 > 0 such that

W (t; u) �M ju(t)j2 ; 8 (t; u) 2 (R;Rn) ; juj � R1: (3.7)

Let u 2 X�, then u 2 C the space of continuous functions u on R such that
u(t) ! 0 as jtj ! +1. Therefore there is a constant R > 0 such that jtj � R
implies that ju(t)j < R1. Hence, by (3.7), we haveZ

R
W (t; u(t))dt �

Z
jtj�R

W (t; u(t))dt+

Z
jtj�R

W (t; u(t))dt >1: (3.8)

Combining (3.4) and (3.8), we show that I : X� ! R.

Next, we prove that I 2 C1(X�;R). Rewrite I as follows
I = I1 � I2;

where

I1 =
1

2

Z
R

�
j�1D�t u(t)j2 + (L(t)u(t); u(t))

�
dt; I2 =

Z
R
W (t; u(t))dt:

It is easy to check that I1 2 C1(X�;R), and we have

I 01(u)v =
1

2

Z
R
[(�1D

�
t u(t);�1D

�
t v(t)) + (L(t)u(t); v(t))] dt:

Therefore, it is su¢ cient to show that this is the case for I2. In the process, we
see that

I 02(u)v =

Z
R
(rW (t; u(t)); v(t)) dt;

which is de�ned for all u; v 2 X�. For any given u 2 X�, let us de�ne j(u) :
X� ! R as follows

J(u)v =

Z
R
(rW (t; u(t)); v(t)) dt; 8v 2 X�:

It is obvious that J(u) is linear. Now, we show that J(u) is bounded. Indeed, for
any given u 2 X�, There is a M1 > 0 such that
ju(t)j � M1 and by (2.3), kuk � CM1. So according to (H5) and (H6), there

is a constant b3 > 0such that

jrW (t; u(t)j � b3 ju(t)j ; for all t 2 R;
which yields that, by (3.4) and H�older inequality

jJ(u)vj =

����Z
R
(rW (t; u(t)); v(t)) dt

����
� b3 kuk2 kvk2 �

b3
�
kuk kvk : (3.9)

Moreover, for u and v 2 X�, by the Mean Value Theorem, we haveZ
R
W (t; u(t) + v(t))dt�

Z
R
W (t; u(t))dt =

Z
R
(rW (t; u(t) + h(t)v(t)); v(t)) dt;

where h(t) 2 (0; 1). Therefore, by Lemma3.3 and H�older inequality, we haveZ
R
(rW (t; u(t) + h(t)v(t)); v(t)) dt�

Z
R
(rW (t; u(t)); v(t)) dt

=

Z
jtj�T

(rW (t; u(t) + h(t)v(t))�rW (t; u(t)); v(t)) dt! 0 (3.10)
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as kvk ! 0 which together with (3.9), implies that (3.10) holds. It remains to
prove that I 02 is continuous. Suppose that u! u0 in X� and note that

sup
kvk=1

��I 02(u)v � I 02(u0)v��
= sup
kvk=1

����Z
R
(rW (t; u(t))�rW (t; u0(t)); v(t)) dt

����
� krW (:; u(:))�rW (:; u0(:))k2 kvk2

� kvkp
�
krW (:; u(:))�rW (:; u0(:))k2

which yields that I 02(u)v � I 02(u0)v ! 0 as u ! u0 uniformly with respect
to v, which implies that I 02 is continuous. Therefore, we have shown that I 2
C1(X�;R). �

Lemma 3.5. Under the conditions of Theorem 3.1, I satis�es the (PS) condition.

Proof. Assume that (uk)k2N 2 X� is a sequence such that (I(uk)) is bounded
and I 0(uk)! 0 as k !1. Then there exists a constant C1 > 0 such that

jI(uk)j � C1 and


I 0(uk)

 � C1

for every k 2 N. We �rst prove that (uk) is bounded in X�. By (3.6), (3.7), (H4),
we obtain

��
2
� 1
�
kujk2

= �I(uj)� I 0(uj)uj +
Z
R
(�W (t; uj(t))� (rW (t; uj(t)); uj(t))) dt

� �I(uj)� I 0(uj)uj + �2
Z
R
(L(t)uj(t); uj(t)) dt: (3.11)

Let us de�ne

�(u) =

Z
R

���
2
� 1
�
j�1D�t u(t)j2 +

�
�� 2
2

� �2
�
(L(t)u(t); u(t))

�
dt; (3.12)

then we have

�1 kuk2 � �(u) � �2 kuk2 ; (3.13)

where �1 =
��
2 � 1

�
� �2; and �2 = �

2 � 1. Thus, combining (3.11), (3.12) with
(3.13), we obtain

�1 kujk2 � �(uj) � �I(uj)� I 0(uj)uj � �C1 + C1 kujk : (3.14)

Since �1 > 0, the inequality (3.14) shows that fujgj2N is bounded in E. By
lemma3.2, the sequence fujgj2N has a subsequence, again denoted by fujgj2N,
and there exists u 2 X� such that uj * u in X� and by lemma3.2 uj ! u:
Hence �

I 0(uj)� I 0(u)
�
(uj � u)! 0;

and by Lemma3.3 and the H�older inequality, we haveZ
R
(rW (t; uj(t))�rW (t; u(t)); uj(t)� u(t)) dt! 0:
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On the other hand, an easy computation shows that�
I 0(uj)� I 0(u)

�
(uj � u)

= kuj � uk2 �
Z
R
(rW (t; uj(t))�rW (t; u(t)); uj(t)� u(t)) dt:

Consequently, kuj � uk ! 0 as j ! +1: �
Now we are in the position to give the proof of Theorem 3.1. We divide the

proof into several steps.

Proof of Theorem3.1 Step 1. It is clear that I(0) = 0 and I 2 C1(X�;R)
satis�es the (PS) condition.
Step 2. Now we show that there exist constants � and � > 0 such that I
satis�es the assumption (�1) of lemma 2.2. In fact, assume that u 2 X� and
0 < kuk1 � R1. Then, (H2), we haveZ

R
W (t; u(t))dt �M

Z
R
ju(t)j2 dt �M kuk22 �

M

�
kuk2 ;

and in consequence, combining this with (3.4), we obtain

I(u) � 1

2
kuk2 � M

�
kuk2 = 1

2

�
1� 2M

�

�
kuk2 : (3.15)

Note that (H2) implies 1� 2M
� > 0: Set

� =
R1
C
;� =

R21
2C2

�
1� 2M

�

�
> 0:

By (2.3), if kuk = �; then 0 < kuk1 � R1 and (3.15) gives that I=@B�(0) � �.

Step 3. It remains to prove that there exists e 2 X� such that kek > � and
I(e) � 0, where � is de�ned in Step 2. By (3.4), we have, for every m 2 Rn f0g
and u 2 X�n f0g,

I(�u) =
�2

2
kuk2 �

Z
R
W (t; �u(t))dt

for all �.
Take some Q 2 X� such that kQk = 1. Then ther exists a subset ! of positive
measure of R such that Q(t) 6= 0 for t 2 !. take � > 0 such that � jQ(t)j � R2
for t 2 !. Then by (H2) and (H3), we obtain that

I(�Q) � �2

2
� ��

Z
R
�0(t) jQ(t)j� dt:

Since �0(t) > 0 and � > 2, (3.15) implies that I(�Q) < 0 for some � > 0 such
that � jQ(t)j � 1 for t 2 ! and k�Qk > �, where � is de�ned in Step2. By
Lemma2.2, I possesses a critical value c � � > 0 given by

c = inf
g2�

max
s2[0;1]

I(g(s));

where
� = fg 2 C([0; 1]; E) : g(0) = 0; g(1) = eg:

Hence there is u 2 X� such that I(u) = c; I 0(u) = 0.
Step4
Now suppose that W (t; x) is even in x; i.e., (H7) holds, which implies that I
is even. Moreover, we already know that I(0) = 0, I 2 C1(E;R) and satis�es
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the (PS) condition. To apply Lemma2.3, it su¢ ces to prove that I satis�es the
condition (�4). Now we prove that (�4) holds. Let eE � E be a �nite dimensional
subspace. From Step 3 we know that, for any Q 2 eE � E such that kQk = 1,
there is �Q > 0 such that

I(�Q) < 0; for every j�j � �Q > 0:

Since eE � E is a �nite dimensional subspace, we can choose an eR = R( eE) such
that

I(u) < 0;8u 2 eEnB eR:
Hence, by Lemma 2.3, I possesses an unbounded sequence of critical values
fcjgj2N with cj ! +1. Let uj be the critical point of I corresponding to cj ;
then (1.2) has in�nitely many homoclinic solutions.

4. Example

W (t; x) = a(t) jxj2 exp(jxj
) (4.1)

where 
 > 0 is a constant and a(t) is a positive, continuous, bounded function
with inft2R a(t) > 0.
Then we have

W (t; x) � sup
t2R

a(t)exp(R
1) jxj
2 =M jxj2 ; 8(t; x) 2 R� Rn; jxj � R1;

where R1 > 0 is given constant, which implies that (H2) holds if supt2R a(t) is
small enough. Moreover, it is easy to check that

W (t; x) � a(t) jxj2+
 ;

rW (t; x) = 2a(t) jxj2 exp(jxj
)x+ 
a(t)exp(jxj
) jxj
 x; (4.2)

(rW (t; x); x) = 2a(t) jxj2 exp(jxj
) + 
a(t) jxj
+2 exp(jxj
) jxj
 :
So, for any constant � > 2, we have

�W (t; x)� (rW (t; x); x) = a(t) jxj2 exp(jxj
) (�� 2
 jxj
) ;
which yields

0 < �W (t; x)� (rW (t; x); x) � (�� 2) sup
t2R

a(t)exp(
�� 2



) jxj2 (4.3)

for all (t; x) 2 R � Rn and 0 < jxj <
�
��2



� 1


, i.e., (�3) does not hold for every

t 2 R and x 2 Rnn0; and

�W (t; x)� (rW (t; x); x) � 0

for all (t; x) 2 R � Rn; jxj �
�
��2



� 1


; which combining with (4.3), implies that,

for some � > 2; if supt2R a(t) is small enough, note that (H4) holds. On the other
hand, by (4.1), we have

lim
x!0

W (t; x)

jxj2
= a(t) � inf

t2R
a(t) > 0;
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and, by (4.2), we have

jrW (t; x)j =
���2a(t) jxj2 exp(jxj
)x+ 
a(t)exp(jxj
) jxj
 x���

� sup
t2R

a(t)exp(jxj
)(2 + 
 jxj
) jxj ;

and

2 inf
t2R
a(t) � lim

x!0

jrW (t; x)j
jxj = 2a(t) � 2 sup

t2R
a(t):
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