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Abstract

In this paper, we investigate the decay properties of suspension bridge with mem-
ories in one dimension. To prove our results, we use the energy method to build some
very delicate Lyapunov functionals that give the desired results.
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1 Introduction

Many suspension bridges manifested aerodynamic instability and uncontrolled oscilla-
tions leading to collapses, see ([2], [8], [21], [26], [27], [31]). These accidents are due to
several di¤erent causes like the one mentioned in caused [4] by torsional oscillations.
The instability of suspension bridges raised some fundamental questions for both engi-

neers and mathematicians. To explain such instability issues in the suspension bridges many
models were introduced in the literature see ([3], [16], [6], [4], [19]). Our objective in this pa-
per is to get the stability of the suspension bridge model by introducing a memory damping.

�Email: ma�lal@hotmail.com
yEmail: bwfeng@swufe.edu.cn
zBaowei Feng has been supported by the National Natural Science Foundation of China, grant #11701465.
xCorresponding Author, Email: asoufyane@sharjah.ac.ae
{Abdelaziz Soufyane has been supported by University of Sharjah, grant # 1802144069.

1



Mainly, our interest is the get the behavior of the solution of the following coupled nonlinear
system with memories in one dimensional space:8<: utt + uxxxx �

R t
0
g1 (t� s)uxxxx (s) ds+

�R l
0

�
u2 + �2

�
dx
�
u+ 2

�R l
0
u�dx

�
� = 0; in (0; l)� R+;

�tt � �xx +
R t
0
g2 (t� s) �xx (s) ds+ 2

�R l
0
u�dx

�
u+

�R l
0

�
u2 + �2

�
dx
�
� = 0; in (0; l)� R+;

(1.1)
with the initial data

(u; ut; �; �t) (x; 0) = (u0; u1; �0; �1) ; (1.2)

Since the plate is hinged between the two towers and the cross sections between the towers
cannot rotate, the boundary conditions to be associated

u(0; t) = u(l; t) = uxx(0; t) = uxx(l; t) = �(0; t) = �(l; t) = 0; 8t � 0: (1.3)

The given system models a one-dimensional suspension bridge, where u is the vertical
displacement; � is the torsional angle, The integral term represents a history terms with
kernel gi, for i = 1; 2 and satisfying the following hypotheses:
(A1) gi : R+ �! R+ is a nonincreasing C1 function satisfying.

gi (0) > 0; 1�
Z 1

0

gi (s) ds = li > 0:

(A2) There exists a C1 function Hi : R+ �! R+; which is linear or it is an strictly
increasing and strictly convex function of class C2 on (0; r], r � gi (0),with Hi (0) = H 0

i (0) =
0 such that,�

g0i (t) � ��i (t) Hi (gi (t)) ; 8t � 0;
where �i (t) is a C

1 function satisfying: �i (t) > 0 and �
0
i (t) � 0; 8t � 0:

The analysis and the stability of various nonlinear suspension bridge models has been at-
tracted many researchers (see: [1], [13], [9], [10], [18], [22]) and the references therein. For
the suspension bridge models with viscoelastic or with memory, we can mention the works
of [11] where the authors proved the asymptotic behavior of the solutions of the viscoelas-
tic suspension bridge model, Kang in [23] where he proved the long-time behavior to the
suspension bridge equation under the memory term. Also, Kang in [24] provide a result on
the global attractor to a thermoelastic suspension bridge equation with past history, and
recently Mukiawa in [28] proved the asymptotic behavior of the solutions of the suspension
bridges with viscoelastic damping.
In this paper, we establish a general decay result under the conditions (A1�A2) on the

relaxation functions g1 and g2. Our proof is based on the multipliers techniques and the
construction of the appropriate Lyapunov functional.
We point out here that our argument is close to the one in ([14]), with the necessary

modi�cations required by the nature of our model.
The outline of this paper is as follow: In Section 2, we state and prove the general stability

result for system (1.1). In Section 3, we give conclusion and open question.
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2 General stability result

In this section, we state and prove a general stability result for (1.1) with boundary and
initial conditions given by (1.3) and (1.2).
We state without proof a global existence result. Throughout this paper, c is used to

denote a generic positive constant.
The well-posedness of (1.1) is stated in the following proposition.

Theorem 2.1. Supposing that (A1)-(A2) hold and that ((u0; u1); (�0; �1)) 2 ((H2
0 (0; l) �

H1
0 (0; l)) � (H1

0 (0; l) � L2(0; l)), then there exits T > 0 and a unique solution (u; �) (t) of
problem (1.1) such that

(u; �) (t) 2 C
�
[0; T ] ; H2

0 (0; l)�H1
0 (0; l)

�
\ C1

�
[0; T ] ; H1

0 (0; l)� L2(0; l)
�
:

Proof. This theorem can be established using standard method such as Galerkin method.

The �rst-order energy associated with (1.1) is given by:

E (t) =
1

2

0@ R l
0

�
u2t + �

2
t +

�
1�

R t
0
g1 (s) ds

�
u2xx +

�
1�

R t
0
g2 (s) ds

�
�2x

�
dx

+g1 � uxx (t) + g2 � �x (t) +
�R l

0

�
u2 + �2

�
dx
�2
+ 2

�R l
0
u� dx

�2
1A ; (2.1)

where

g � ' (t) =
Z t

0

g (t� s) k' (t)� ' (s)k2L2(0;l) ds :

Our objective is to prove the general decay using the energy method.

Theorem 2.2. Let ((u0; u1); (�0; �1)) 2 ((H2
0 (0; 1)�H1

0 (0; 1))� (H1
0 (0; l)�L2(0; l)) be given

and assume that (A1) and (A2) are satis�ed. Then, there exist two positive constants C0
and C1 � 1 such that

E (t) � C0H�1
4

�
C1

Z t

t0

� (s) ds

�
; 8t � t0; (2.2)

where

H4 (t) =

Z r

t

1

sH0 (s)
ds; H0(t) = minfH 0

1(t); H
0
2(t)g;

and �(t) = minf�1(t); �2(t)g, t0 = max (t1; t2) with g1 (t1) = r and g2 (t2) = r:

The proof of this Theorem will be established through several lemmas.
Here, we will deduce some remarks.
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Remark 2.1. 1. From (A1) we infer that lim
t!+1

gi (t) = 0; i 2 f1; 2g. Then there exists
some ti � 0 large enough such that

gi (ti) � r =) gi (t) � r, 8t � ti: (2.3)

Since Hi is a positive continuous function and gi, �i are positive nonincreasing contin-
uous functions, with t0 = max (t1; t2), we can get for every t 2 [0; t0]

0 < gi (t0) � gi (t) � gi (0) and 0 < �i (t0) � �i (t) � �i (0) ;

which implies for some positive constants ai and bi,

ai � �i (t) Hi (gi (t)) � bi;

this shows that for every t 2 [0; t0],

g0i (t) � ��i (t) Hi (gi (t)) � �
ai
gi (0)

gi (0) � �
ai
gi (0)

gi (t) : (2.4)

2. If (2.2) is given

g0i (t) � ��i (t) g
p
i (t) ; 1 � p < 12 i = 1; 2:

Then there exist positive constants k, k1 and k2 such that

E (t) �

8>><>>:
k exp

�
�k1

R t
0
� (s) �2 (s) ds

�
, if p = 1;

k2

�
1 +

R t
0
� (s) ds

�� 1

p� 1 , if 1 < p < 2:

Lemma 2.3. Let (u; �) be the solution of (1.1), then the energy functional E, de�ned by
(2.1) satis�es

E 0 (t) = �1
2
g1 (t) kuxxk2L2(0;l) �

1

2
g2 (t) k�xk2L2(0;l) +

1

2
g01 � uxx (t) +

1

2
g02 � �x (t) : (2.5)

Proof. Multiplying the �rst equation of (1.1) by ut , the second by �t, integrating by parts
over (0; l) and using the boundary conditions (1.3), then summing up, we obtain the result.

Lemma 2.4. Let (u; �) be the solution of (1.1). Then the functional

I1 (t) =

Z l

0

uut dx+

Z l

0

� �t dx;
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satis�es, for all "1 > 0, the following estimate

I 01 (t) � kut k2L2(0;l) + k�tk
2
L2(0;l) � (1� "1) kuxx k

2
L2(0;l) � (1� "1) k�xk

2
L2(0;l) (2.6)

�
�Z l

0

�
u2 + �2

�
dx

�2
� 4

�Z l

0

u�dx

�2
+
C�1
"1
(h1 � uxx (t)) +

C�2
"1
(h2 � �x (t)) ;

for any 0 < �1 < 1 and 0 < �2 < 1 where

C�1 =
R1
0

g21 (s)

�1g1 (s)� g01 (s)
ds;

C�2 =
R1
0

g22 (s)

�2g2 (s)� g02 (s)
ds;

and
h1 (t) = (�1g1 (t)� g01 (t)) ;
h2 (t) = (�2g2 (t)� g02 (t)) :

Proof. Using (1:1)1 , (1:1)2, integrating by parts over (0; l) and using the boundary conditions
(1.3) , we obtain

I 01 (t) = kut k2L2(0;l) + k�tk
2
L2(0;l) � kuxx k

2
L2(0;l) � k�xk

2
L2(0;l) (2.7)

�
�Z l

0

�
u2 + �2

�
dx

�2
� 4

�Z l

0

u�dx

�2
+

Z l

0

uxx (t)

Z t

0

g1 (t� s) (uxx (t)� uxx (s)) ds

+

Z l

0

�x (t)

Z t

0

g2 (t� s) (�x (t)� �x (s)) ds :

First by Hölder�s inequality, we getZ l

0

�Z t

0

g1 (t� s) juxx (t)� uxx (s)j ds
�2
dx (2.8)

=

Z l

0

 Z t

0

g1 (t� s)p
�1g1 (s)� g01 (s)

p
�1g1 (s)� g01 (s) juxx (t)� uxx (s)j ds

!2
dx

�
Z t

0

g21 (s)

�1g1 (s)� g01 (s)

Z l

0

Z t

0

[�1g1 (s)� g01 (s)] juxx (t)� uxx (s)j
2 dsdx

= C�1 (h1 � uxx (t)) ;

also, with the same approach, we getZ l

0

�Z t

0

g2 (t� s) j�x (t)� �x (s)j ds
�2
dx � C�2 (h2 � �x (t)) : (2.9)

By exploiting the properties of gi, and using Cauchy�Schwarz and Young�s inequalities and
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(2.8), we obtain, for any "1 > 0Z l

0

uxx (t)

Z t

0

g1 (t� s) (uxx (t)� uxx (s)) ds (2.10)

� "1 kuxx k2L2(0;l) +
1

4"1

Z l

0

�Z t

0

g1 (t� s) juxx (t)� uxx (s)j ds
�2

� "1 kuxx k2L2(0;l) +
C�1
"1
(h1 � uxx (t)) ;

also, with the same approach and by using (2.9), we getZ l

0

�x (t)

Z t

0

g2 (t� s) (�x (t)� �x (s)) dsdx � "1 k�x k2L2(0;l) +
C�2
"1
(h2 � �x (t)) ; (2.11)

by (2.7), (2.10) and (2.11), we deduce the result.

Lemma 2.5. Let (u; �) be the solution of (1.1). Then the functional

I2 = �
Z l

0

ut (t)

Z t

0

g1 (t� s) (u (t)� u (s)) dsdx

�
Z l

0

�t (t)

Z t

0

g2 (t� s) (� (t)� � (s)) dsdx:

satis�es, for all "3; "5; "7; "9 > 0, the following estimate

I 02 (t) � �
�Z t

0

g1 (s) ds� "9
�
kut k2L2(0;l) �

�Z t

0

g2 (s) ds� "9
�
k�t k2L2(0;l) (2.12)

+"7
p
E (0)

�Z l

0

u�dx

�2
+ "7

p
E (0)

�Z l

0

�
u2 + �2

�
dx

�2
+

  
1 +

2Cp
"7

+
[1� l1]2

"5
+
1

"3

!
C�1 +

Cp
2"9

�
�1 (1� l1) + g1 (0) + �21C�1

�!
(h1 � uxx (t))

+

  
1 +

2Cp
"7

+
[1� l2]2

"5
+
1

"3

!
C�2 +

Cp
2"9

�
�2 (1� l2) + g2 (0) + �22C�2

�!
(h2 � �x (t))

+ ("3 + "5) kuxx k2L2(0;l) + ("3 + "5) k�x k
2
L2(0;l) :

Proof. We have

I 02 (t) = �
Z l

0

utt (t)

Z t

0

g1 (t� s) (u (t)� u (s)) dsdx�
Z l

0

ut (t)

Z t

0

g01 (t� s) (u (t)� u (s)) dsdx

�
�Z t

0

g1 (s) ds

�
kut k2L2(0;l) �

�Z t

0

g2 (s) ds

�
k�t k2L2(0;l) (2.13)

�
Z l

0

�tt (t)

Z t

0

g2 (t� s) (� (t)� � (s)) dsdx�
Z l

0

�t (t)

Z t

0

g02 (t� s) (� (t)� � (s)) dsdx:
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By using (1:1)1, (1:1)2, integrating by parts over (0; l) and using the boundary conditions
(1.3) , we deduce from (2.13)

I 02 (t) =

Z l

0

uxx (t)

Z t

0

g1 (t� s) (uxx (t)� uxx (s)) dsdx (2.14)

�
Z l

0

Z t

0

g1 (t� s)uxx (s) ds
Z t

0

g1 (t� s) (uxx (t)� uxx (s)) dsdx

+

Z l

0

��Z l

0

�
u2 + �2

�
dx

�
u (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx

+

Z l

0

�
2

�Z l

0

u�dx

�
� (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx

�
Z l

0

ut (t)

Z t

0

g01 (t� s) (u (t)� u (s)) dsdx�
�Z t

0

g1 (s) ds

�
kut k2L2(0;l)

+

Z l

0

�x (t)

Z t

0

g2 (t� s) (�x (t)� �x (s)) dsdx

�
Z l

0

Z t

0

g2 (t� s) �x (s) ds
Z t

0

g2 (t� s) (�x (t)� �x (s)) dsdx

+

Z l

0

��Z l

0

�
u2 + �2

�
dx

�
� (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx

+

Z l

0

�
2

�Z l

0

u�dx

�
u (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx

�
Z l

0

�t (t)

Z t

0

g02 (t� s) (� (t)� � (s)) dsdx�
�Z t

0

g2 (s) ds

�
k�t k2L2(0;l)

1. As in (2.10) and (2.11), we have for any "3 > 0Z l

0

uxx (t)

Z t

0

g1 (t� s) (uxx (t)� uxx (s)) dsdx � "3 kuxx k2L2(0;l) +
C�1
"3
(h1 � uxx (t)) ;

(2.15)
andZ l

0

�x (t)

Z t

0

g2 (t� s) (�x (t)� �x (s)) dsdx � "3 k�x k2L2(0;l)+
C�2
"3
(h2 � �x (t)) : (2.16)

By exploiting the properties of gi, and using Cauchy�Schwarz and Young�s inequalities
and the fact that

�
1�

R1
0
gi (s) ds

�
= li; i 2 f1; 2g and (2.8) and (2.15), we obtain, for
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any "5 > 0

�
Z l

0

Z t

0

g1 (t� s)uxx (s) ds
Z t

0

g1 (t� s) (uxx (t)� uxx (s)) dsdx (2.17)

=

Z l

0

�Z t

0

g1 (t� s) (uxx (t)� uxx (s))
�2
dsdx

�
�Z t

0

g1 (t� s) ds
� Z l

0

uxx (t)

Z t

0

g1 (t� s) (uxx (t)� uxx (s)) dsdx

� "5 kuxx k2L2(0;l) +
 
[1� l1]2C�1

"5
+ C�1

!
(h1 � uxx (t)) ;

and with the same approach and (2.9) and (2.16), we have

�
Z l

0

Z t

0

g2 (t� s) �x (s) ds
Z t

0

g2 (t� s) (�x (t)� �x (s)) dsdx (2.18)

� "5 k�x k2L2(0;l) +
 
[1� l2]2C�2

"5
+ C�2

!
(h2 � �x (t)) :

Using Cauchy�Schwarz, Young and Poincaré�s inequalities and (2.8), for any "7 > 0Z l

0

��Z l

0

�
u2 + �2

�
dx

�
u (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx (2.19)

� "7

�Z l

0

�
u2 + �2

�
dx

�2
ku k2L2(0;l) +

C�1
"7
(h1 � u (t))

� "7

�Z l

0

�
u2 + �2

�
dx

�2
ku k2L2(0;l) +

CpC�1
"7

(h1 � uxx (t)) ;

and with the same approach and (2.9), we haveZ l

0

��Z l

0

�
u2 + �2

�
dx

�
� (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx (2.20)

� "7

�Z l

0

�
u2 + �2

�
dx

�2
k� k2L2(0;l) +

CpC�2
"7

(h2 � �x (t)) ;

where Cp is the Poincaré constant. From (2.19) and (2.20), we deduceZ l

0

��Z l

0

�
u2 + �2

�
dx

�
u (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx (2.21)

+

Z l

0

��Z l

0

�
u2 + �2

�
dx

�
� (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx

� "7

�Z l

0

�
u2 + �2

�
dx

�3
+
CpC�1
"7

(h1 � uxx (t)) +
CpC�2
"7

(h2 � �x (t)) ;
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also, by using (2.1) and (2.5), we have�Z l

0

�
u2 + �2

�
dx

�2
+ 2

�Z l

0

u�dx

�2
� E (0) ; (2.22)

using (2.22) in (2.21), we getZ l

0

��Z l

0

�
u2 + �2

�
dx

�
u (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx (2.23)

+

Z l

0

��Z l

0

�
u2 + �2

�
dx

�
� (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx

� "7
p
E (0)

�Z l

0

�
u2 + �2

�
dx

�2
+
CpC�1
"7

(h1 � uxx (t)) +
CpC�2
"7

(h2 � �x (t)) :

Using Cauchy�Schwarz, Young and Poincaré�s inequalities, we have, for any "7 > 0Z l

0

�
2

�Z l

0

u�dx

�
� (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx (2.24)

� "7

�Z l

0

u�dx

�2
k� k2L2(0;l) +

CpC�1
"7

(h1 � uxx (t)) ;

and Z l

0

��Z l

0

u�dx

�
u (t)

�Z t

0

2g2 (t� s) (� (t)� � (s)) dsdx (2.25)

� "7

�Z l

0

u�dx

�2
ku k2L2(0;l) +

CpC�2
"7

(h2 � �x (t)) ;

then by adding (2.24) and (2.25) and using (2.22), we obtainZ l

0

�
2

�Z l

0

u�dx

�
� (t)

�Z t

0

g1 (t� s) (u (t)� u (s)) dsdx (2.26)

+

Z l

0

�
2

�Z l

0

u�dx

�
u (t)

�Z t

0

g2 (t� s) (� (t)� � (s)) dsdx

� "7
p
E (0)

�Z l

0

u�dx

�2
+
CpC�1
"7

(h1 � uxx (t)) +
CpC�2
"7

(h2 � �x (t)) :

Using Cauchy�Schwarz, Young and Poincaré�s inequalities and by using h1 (t) = (�1g1 (t)� g01 (t))
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and 0 < �1 < 1, we have, for any "9 > 0

�
Z l

0

ut (t)

Z t

0

g01 (t� s) (u (t)� u (s)) dsdx (2.27)

= �
Z l

0

ut (t)

Z t

0

h1 (t� s) (u (t)� u (s)) dsdx+
Z l

0

ut (t)

Z t

0

�1g1 (t� s) (u (t)� u (s)) dsdx

� "9 kut k2L2(0;l) +
1

2"9

Z l

0

�Z t

0

h1 (t� s) (u (t)� u (s)) ds
�2
dx

+
�21
2"9

Z l

0

�Z t

0

g1 (t� s) (u (t)� u (s)) ds
�2
dx

� "9 kut k2L2(0;l) +
R1
0
h1 (t� s) ds
2"9

h1 � u (t) +
�21C�1
2"9

h1 � u (t)

� "9 kut k2L2(0;l) +
Cp
2"9

((1� l1) + g1 (0) + C�1)h1 � uxx (t) ;

and also, we have

�
Z l

0

�t (t)

Z t

0

g02 (t� s) (� (t)� � (s)) dsdx � "9 k�t k
2
L2(0;l)+

Cp
2"9

((1� l2) + g2 (0) + C�2)h2��x (t) :
(2.28)

Using (2.15), (2.16), (2.17), (2.18), (2.23), (2.26), (2.27), (2.28), in (2.25), then, we get
the result.

Applying the same arguments as in [14], we can get the following lemma.

Lemma 2.6. Assume (A1) and (A1) hold, the function � (t) de�ned by

� (t) =

Z l

0

Z t

0

�1 (t� s) juxx (s)j2 dsdx+
Z l

0

Z t

0

�2 (t� s) j�x (s)j2 dsdx;

where �1 (t) =
1R
t

g1 (s) ds and �2 (t) =
1R
t

g2 (s) ds, satis�es

�0 (t) � �1
2
g1�uxx (t)�

1

2
g2��x (t)+3 (1� l1) kuxx (t)k2L2(0;l)+3 (1� l2) k�x (t)k

2
L2(0;l) : (2.29)

To complete the proof of our main result, we will introduce the following Lyapunov
functional L

L (t) = N E (t) +N1I1 (t) +N2I2 (t) ; (2.30)

where N , N1 and N2 are positive constants to be �xed later.
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Lemma 2.7. For N large enough, there exist two positive constants �1 and �2 such that

�1E (t) � L (t) � �2E (t) : (2.31)

Proof. Let�s de�ne the following functional

L1 (t) = N1I1 (t) +N2I2 (t) :

Using Cauchy�Schwarz,Young�s and Poincaré�s inequalities, we obtain

jL1 (t)j �
N1
2
ku k2L2(0;l) +

1

2
[N1 +N2] kut k2L2(0;l)

+
N1
2
k� k2L2(0;l) +

1

2
[N1 +N2] k�t k2L2(0;l)

+
N2Cp
2

(1� l1) g1 � uxx (t) +
N2Cp
2

(1� l2) g2 � �x (t) :

Then by (2.1) and the properties of the functions g1 and g2, we get

jL1 (t)j � cE (t) :

Consequently
jL (t)�N E (t)j � cE (t) ;

which implies that
(N � c)E (t) � L (t) � (N + c)E (t) :

Choosing N large enough, then we have (2.31).

Proof of Theorem 2.2: Let g0;1 =
R t
0
g1 (s) ds and g0;2 =

R t
0
g2 (s) ds, di¤erentiating (2.30),

exploiting (2.6) and (2.12), and applying Poincaré�s inequality and by using g0i = �igi � hi;
i 2 f1; 2g, we obtain the following estimates:

L0 (t) � �N
2
g1 (t) kuxxk2L2(0;l) �

N

2
g2 (t) k�xk2L2(0;l) +

N�1
2
g1 � uxx (t) +

N�2
2
g2 � �x (t)

�

0@ N
2
�
h
N1
"1
+
�
1 + 2Cp

"7
+ [1�l1]2

"5
+ 1

"3
+ Cp

2"9

�
N2

i
C�1

�N2Cp
2"9

((1� l1) + g1 (0))

1A (h1 � uxx (t))
�

0@ N
2
�
h
N1
"1
+
�
1 + 2Cp

"7
+ [1�l2]2

"5
+ 1

"3
+ Cp

2"9

�
N2

i
C�2

�N2Cp
2"9

((1� l2) + g2 (0))

1A (h2 � �x (t))
� ((g0;1 � "9)N2 �N1) kut k2L2(0;l) � ((g0;2 � "9)N2 �N1) k�tk

2
L2(0;l)

� ((1� "1)N1 � ("3 + "5)N2) kuxx k2L2(0;l) � ((1� "1)N1 � ("3 + "5)N2) k�x k
2
L2(0;l)

�
�
N1 � "7N2

p
E (0)

��Z l

0

�
u2 + �2

�
dx

�2
�
�
4N1 � "7N2

p
E (0)

��Z l

0

u�dx

�2
:
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Now, we will choose carefully the constants, �rst we choose

"3 = "5 =
"1
2
; "1 =

N1
2 (N1 +N2)

and "7 =
N1

2N2
p
E (0)

.

Clearly 0 <
�ig

2
i (s)

�igi (s)� g0i (s)
<
�ig

2
i (s)

�g0i (s)
; i 2 f1; 2g. Then for every s 2 [0;1)

lim
�i!0

�ig
2
i (s)

�igi (s)� g0i (s)
= 0;

which, noting
�ig

2
i (s)

�igi (s)� g0i (s)
< gi (s) and using the Lebesque dominated convergence the-

orem, gives us

lim
�i!0

�iC�i = lim
�i!0

Z 1

0

�ig
2
i (s)

�igi (s)� g0i (s)
ds = 0:

Hence there exists some �0 (0 < �0 < 1) such that if �i < �0 then

�iC�i <
1

8

�
N1
"1
+

�
1 +

2Cp
"7

+
1

"5
+
1

"3
+
Cp
2"9

�
N2

� :
At last, we take N large enough and choose N1; N2; "9; �1 and �2 satisfying

1

4
N � N2Cp

2"9
(1 + max(l1; l2) + max(g1 (0) ; g2 (0))) > 0; �1 = �2 =

1

2N
< �0

N1 = 10 (1� l3) ; N2 =
2N1
g0
; "9 =

1
4
g0 where

�
g0 = min (g0;1; g0;2)
l3 = min (l1; l2)

;

((g0;1 � "9)N2 �N1) >
1

2
N1 and ((g0;2 � "9)N2 �N1) >

1

2
N1:

Consequently, using inequality and (2.1), we get, 8t � t0

L0 (t) � �5 (1� l3)
�Z l

0

�
u2 + �2

�
dx

�2
� 5 (1� l3)

�Z l

0

u�dx

�2
�5 (1� l3) kuxx k2L2(0;l) � 5 (1� l3) k�x k

2
L2(0;l) � 5 (1� l3) kut k

2
L2(0;l) (2.32)

�5 (1� l3) k�tk2L2(0;l) +
1

4
g1 � uxx (t) +

1

4
g2 � �x (t) ;

using (2.5) and (2.4) to conclude that for any t � t0Z t

0

g1 (s)

Z l

0

juxx (t)� uxx (t� s)j2 dxds+
Z t

0

g2 (s)

Z l

0

j�x (t)� �x (t� s)j2 dxds

� �g1 (0)
a1

Z t

0

g01 (s)

Z l

0

juxx (t)� uxx (t� s)j2 dxds�
g2 (0)

a2

Z t

0

g02 (s)

Z l

0

j�x (t)� �x (t� s)j2 dxds

� �cE 0 (t) ;

12



which can be used in (2.32) and then take F (t) = L (t)+cE (t), which is clearly equivalent
to E (t), to get, for some constant m > 0 and for all t � t0

L0 (t) � �mE (t) + c g1 � uxx (t) + c g2 � �x (t)

� �mE (t)� cE 0 (t) + c
Z t

t0

g1 (s) kuxx (t)� uxx (t� s)k2 ds

+c

Z t

t0

g2 (s) k�x (t)� �x (t� s)k2 ds:

Then

F 0 (t) � �mE (t) + c
Z t

t0

g1 (s) kuxx (t)� uxx (t� s)k2 ds

+c

Z t

t0

g2 (s) k�x (t)� �x (t� s)k2 ds: (2.33)

At this stage, we consider two cases.
(I) H (t) is linear:

By multiplying (2.33) by �(t) = minf�1(t); �2(t)g, and using (A2) and (2.5), we obtain

�(t)F 0 (t) � �m�(t)E (t) + c�(t)
Z t

t0

g1 (s) kuxx (t)� uxx (t� s)k2 ds

+c�(t)

Z t

t0

g2 (s) k�x (t)� �x (t� s)k2 ds;

� �m�(t)E (t) + c
Z t

t0

�1(s)g1 (s) kuxx (t)� uxx (t� s)k
2 ds

+c

Z t

t0

�2(s)g2 (s) k�x (t)� �x (t� s)k
2 ds;

� �m�(t)E (t)� c
Z t

t0

g01 (s) kuxx (t)� uxx (t� s)k
2 ds

�c
Z t

t0

g02 (s) k�x (t)� �x (t� s)k
2 ds;

� �m�(t)E (t)� cE 0 (t) ;

which gives, as �(t) is positive and nonincreasing

d

dt
(�(t)F (t) + cE (t)) � �m�(t)E (t) ; 8t � t0:

Hence, using the fact that �F + cE � E, we easily obtain

E (t) � C0 e�C1
R t
t0
�(s) ds

; 8t � t0: (2.34)

Finally we get (2.2).
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(II) H (t) is nonlinear : First, by using (2.29), (2.8) and (2.9) we deduce that

L (t) = L (t) + � (t) ;

is nonnegative and satis�es, for all t � t0

L0 (t) � � (1� l1) kuxxk2L2(0;l) � (1� l2) k�xk
2
L2(0;l) � 5 (1� l3)

�Z l

0

�
u2 + �2

�
dx

�2
�5 (1� l3)

�Z l

0

u�dx

�2
� 5 (1� l3) kut k2L2(0;l) � 5 (1� l3) k�tk

2
L2(0;l)

�1
4
g1 � uxx (t)�

1

4
g2 � �x (t) ;

� �b3E (t) ;

where b3 is some positive constant. Therefore

b3

Z t

t0

E (s) ds � L (t0)� L (t) � L (t0) ;

this implies that
1Z
0

E (s) ds <1: (2.35)

De�ne K1(t) and K2(t) by

K1(t) = q
R t
t0

R l
0
juxx (t)� uxx (t� s)j2 dxds;

K2(t) = q
R t
t0

R l
0
j�x (t)� �x (t� s)j2 dxds;

where (2.35) allows for a constant 0 < q < 1 chosen so that, for all t � t0

K1 (t) < 1 and K2 (t) < 1: (2.36)

Also, we de�ne �1(t) and �2(t) by

�1(t) = �
R t
t0
g01 (s)

R l
0
juxx (t)� uxx (t� s)j2 dxds;

�2(t) = �
R t
t0
g02 (s)

R l
0
j�x (t)� �x (t� s)j2 dxds:

It is easy to verify that �1(t) � �cE 0 (t) and �2(t) � �cE 0 (t). Noting that Hi (t); i 2 f1; 2g;
is strictly convex on (0; r] and Hi (t) = 0, we can infer that

Hi (�x) � �Hi (x) ;

provided 0 < � < 1 and x 2 (0; r]. We denote an extension of Hi by Hi; i 2 f1; 2g; such that
Hi is strictly increasing and strictly convex C2 function on (0;1). By using Assumption
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(A2), (2.36) and Jensen�s inequality, we can obtain, in the case where K1(t); K2(t) > 0 for
all t � t0

�1(t) =
1

qK1 (t)

Z t

t0

K1 (t) [�g01 (s)]
Z l

0

q juxx (t)� uxx (t� s)j2 dxds

� 1

qK1 (t)

Z t

t0

K1 (t) �1 (s)H1 (g1 (s))

Z l

0

q juxx (t)� uxx (t� s)j2 dxds

� �1 (t)

qK1 (t)

Z t

t0

H1 (K1 (t) g1 (s))

Z l

0

q juxx (t)� uxx (t� s)j2 dxds

� �1 (t)

q
H1

�
q

Z t

t0

g1 (s)

Z l

0

juxx (t)� uxx (t� s)j2 dxds
�

=
�1 (t)

q
H1

�
q

Z t

t0

g1 (s)

Z l

0

juxx (t)� uxx (t� s)j2 dxds
�
;

this implies thatZ t

t0

g1 (s)

Z l

0

juxx (t)� uxx (t� s)j2 dxds �
1

q
H1

�1
�
q�1(t)

�1 (t)

�
; (2.37)

and with the same approach, we haveZ t

t0

g2 (s)

Z l

0

j�x (t)� �x (t� s)j2 dxds �
1

q
H2

�1
�
q�2(t)

�2 (t)

�
: (2.38)

We notice that (2.37) is veri�ed if K1(t) = 0 and that (2.38) is veri�ed if K2(t) = 0:
Then (2.33) becomes

F 0 (t) � �mE (t) + 1
q
H1

�1
�
q�1(t)

�1 (t)

�
+
1

q
H2

�1
�
q�2(t)

�2 (t)

�
; 8t � t0: (2.39)

Denote
H0(t) = minfH

0
1; H

0
2g:

For "0 < r, using (2.39), and the fact that E 0 (t) � 0, Hi
0
> 0, Hi

00
> 0, i 2 f1; 2g; we

�nd that the functional F1 de�ned by

F1 (t) = H0

�
"0
E (t)

E (0)

�
F (t) + E (t) ;

is equivalent to E and

F 01 (t) = "0
E 0(t)

E(0)
H 0
0

�
"0
E(t)

E(0)

�
F (t) +H0

�
"0
E(t)

E(0)

�
F 0(t) + E 0(t)

� �mE(t)H0
�
"0
E(t)

E(0)

�
+ cH0

�
"0
E(t)

E(0)

�
H
�1
1

�
q�1(t)

�1(t)

�
+cH0

�
"0
E(t)

E(0)

�
H
�1
2

�
q�2(t)

�2(t)

�
: (2.40)
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Let Hi
�
be the convex conjugate of Hi, i 2 f1; 2g in the sense of Young (see [[7] , pp.61-64])

then

Hi
�
(s) = s

�
Hi

0
��1

(s)�Hi
��
Hi

0
��1

(s)

�
; (2.41)

and Hi
�
satis�ed the following Young�s inequality

ABi � Hi
�
(Ai) +Hi (Bi) : (2.42)

With A = H0
�
"0

E(t)
E(0)

�
and Bi = H1

�1
�
q�i(t)

�i (t)

�
, using (2.40), (2.41) and (2.42), we arrive

at

F 01 (t) � �mE(t)H0
�
"0
E(t)

E(0)

�
+ cH

�
1

�
H0

�
"0
E(t)

E(0)

��
+ c

q�1(t)

�1(t)

+cH
�
2

�
H0

�
"0
E(t)

E(0)

��
+ c

q�2(t)

�2(t)

� �mE(t)H0
�
"0
E(t)

E(0)

�
+ cH0

�
"0
E(t)

E(0)

�
(H

0
1)
�1
�
H0

�
"0
E(t)

E(0)

��
+c
q�1(t)

�1(t)
+ cH0

�
"0
E(t)

E(0)

�
(H

0
2)
�1
�
H0

�
"0
E(t)

E(0)

��
+ c

q�2(t)

�2(t)

� �mE(t)H0
�
"0
E(t)

E(0)

�
+ cH0

�
"0
E(t)

E(0)

�
(H

0
1)
�1
�
H
0
1

�
"0
E(t)

E(0)

��
+c
q�1(t)

�1(t)
+ cH0

�
"0
E(t)

E(0)

�
(H

0
2)
�1
�
H
0
2

�
"0
E(t)

E(0)

��
+ c

q�2(t)

�2(t)

� �(mE(0)� c"0)
E(t)

E(0)
H0

�
"0
E(t)

E(0)

�
+ cq

�
�1(t)

�1(t)
+
�2(t)

�2(t)

�
: (2.43)

Then, we multiply (2.43) by �(t) = minf�1; �2(t)g to get

�(t)F 01 (t) � �(mE(0)� c"0)�(t)
E(t)

E(0)
H0

�
"0
E(t)

E(0)

�
+ cq (�1(t) + �2(t))

� �(mE(0)� c"0)�(t)
E(t)

E(0)
H0

�
"0
E(t)

E(0)

�
� cE 0(t):

Consequently, with F2 = �F1 + cE, which satis�es, for some �1, �2 > 0

�1F2 (t) � E (t) � �2F2 (t) (2.44)

and with a suitable choice of "0, we obtain, for some constant k > 0 and for all t � t0,

F 02 (t) � �k�(t)
E(t)

E(0)
H0

�
"0
E(t)

E(0)

�
:= �k�(t)H3

�
E(t)

E(0)

�
(2.45)

where
H3 (t) = tH0 ("0t) :
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We know that, if 0 � "0 E(t)E(0)
< r, for any t > 0

H0

�
"0
E(t)

E(0)

�
= min

�
H
0
1

�
"0
E(t)

E(0)

�
; H

0
2

�
"0
E(t)

E(0)

��
= min

�
H 0
1

�
"0
E(t)

E(0)

�
; H 0

2

�
"0
E(t)

E(0)

��
:

Since H 0
3(t) = H0("0t) + "0tH

0
0("0t), then, using the strict convexity of H0 on (0; r], we

know that H 0
3(t); H3(t) > 0 on (0; 1]. Then

R (t) =
�1F2 (t)

E (0)
;

taking in account (2.44) and (2.45), satis�es

R (t) � E (t) ; (2.46)

and, for some k1 > 0,

R0 (t) � �k1� (t) H3 (R (t)) , 8t � t0:

Then, the integration over (t0; t) yieldsZ t

0

�R0(s)
H3(R(s))

ds � k1
Z t

0

�(s)ds)
Z "0R(0)

"0R(t)

1

sH0(s)
ds � k1

Z t

0

�(s)ds:

=) R (t) � 1

"0
H�1
4

�
k1

Z t

t0

� (s) ds

�
; (2.47)

where H4 (t) =
Z r

t

1

sH0 (s)
ds. Here, we have used, based on the properties of H1 and

H2; "0
E(t)
E(0)

< r, 2.44, the fact that H4 is strictly decreasing function on (0; r] and lim
t!0
H4 (t) =

+1. By using (2.46) and (2.47) , estimate (2.2) is established.

3 Conclusion and open question

In this paper we established a general decay for the nonlocal nonlinear suspension bridges
model in one dimensional space under two memories, our method of proof is mainly based on
multipliers techniques. It will be interesting to check the decay rates for both components
of the solutions if one of the memory terms gi(t) is completely zero.
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