References
1. World Health Organization. Global Report on Diabetes. 2016.
2. Jeon CY, Murray MB. Diabetes mellitus increases the risk of active
tuberculosis: a systematic review of 13 observational studies. PLoS Med.
2008;5(7):e152.
3. World Health Organisation. Global Tuberculosis Report. 2019.
4. Restrepo BI. Diabetes and Tuberculosis. Microbiol Spectr. 2016;4(6).
5. Dooley KE, Tang T, Golub JE, Dorman SE, Cronin W. Impact of diabetes
mellitus on treatment outcomes of patients with active tuberculosis. Am
J Trop Med Hyg. 2009;80(4):634-9.
6. Cohen A, Mathiasen VD, Schon T, Wejse C. The global prevalence of
latent tuberculosis: a systematic review and meta-analysis. Eur Respir
J. 2019;54(3).
7. Lee MR, Huang YP, Kuo YT, Luo CH, Shih YJ, Shu CC, et al. Diabetes
Mellitus and Latent Tuberculosis Infection: A Systematic Review and
Metaanalysis. Clin Infect Dis. 2017;64(6):719-27.
8. Tully G, Kortsik C, Hohn H, Zehbe I, Hitzler WE, Neukirch C, et al.
Highly focused T cell responses in latent human pulmonary Mycobacterium
tuberculosis infection. J Immunol. 2005;174(4):2174-84.
9. Pai M, Denkinger CM, Kik SV, Rangaka MX, Zwerling A, Oxlade O, et al.
Gamma interferon release assays for detection of Mycobacterium
tuberculosis infection. Clin Microbiol Rev. 2014;27(1):3-20.
10. Jeong YH, Hur YG, Lee H, Kim S, Cho JE, Chang J, et al.
Discrimination between active and latent tuberculosis based on ratio of
antigen-specific to mitogen-induced IP-10 production. J Clin Microbiol.
2015;53(2):504-10.
11. Sampath P, Moideen K, Ranganathan UD, Bethunaickan R. Monocyte
Subsets: Phenotypes and Function in Tuberculosis Infection. Front
Immunol. 2018;9:1726.
12. Jacobsen M, Repsilber D, Gutschmidt A, Neher A, Feldmann K,
Mollenkopf HJ, et al. Candidate biomarkers for discrimination between
infection and disease caused by Mycobacterium tuberculosis. J Mol Med
(Berl). 2007;85(6):613-21.
13. Barry CE, 3rd, Boshoff HI, Dartois V, Dick T, Ehrt S, Flynn J, et
al. The spectrum of latent tuberculosis: rethinking the biology and
intervention strategies. Nat Rev Microbiol. 2009;7(12):845-55.
14. O’Garra A, Redford PS, McNab FW, Bloom CI, Wilkinson RJ, Berry MP.
The immune response in tuberculosis. Annu Rev Immunol. 2013;31:475-527.
15. Hodgson K, Morris J, Bridson T, Govan B, Rush C, Ketheesan N.
Immunological mechanisms contributing to the double burden of diabetes
and intracellular bacterial infections. Immunology. 2015;144(2):171-85.
16. Casqueiro J, Casqueiro J, Alves C. Infections in patients with
diabetes mellitus: A review of pathogenesis. Indian J Endocrinol Metab.
2012;16 Suppl 1:S27-36.
17. Kwon H, Pessin JE. Adipokines mediate inflammation and insulin
resistance. Front Endocrinol (Lausanne). 2013;4:71.
18. Kumar NP, Moideen K, George PJ, Dolla C, Kumaran P, Babu S.
Coincident diabetes mellitus modulates Th1-, Th2-, and Th17-cell
responses in latent tuberculosis in an IL-10- and TGF-beta-dependent
manner. Eur J Immunol. 2016;46(2):390-9.
19. Carow B, Rottenberg ME. SOCS3, a Major Regulator of Infection and
Inflammation. Front Immunol. 2014;5:58.
20. Suchy D, Labuzek K, Machnik G, Kozlowski M, Okopien B. SOCS and
diabetes–ups and downs of a turbulent relationship. Cell Biochem
Funct. 2013;31(3):181-95.
21. Ronn SG, Billestrup N, Mandrup-Poulsen T. Diabetes and suppressors
of cytokine signaling proteins. Diabetes. 2007;56(2):541-8.
22. Masood KI, Pervez S, Rottenberg ME, Umar B, Hasan Z. Suppressor of
cytokine signaling-1 and chemokine (C-X-C Motif) receptor 3 expressions
are associated with caseous necrosis in granulomas from patients with
tuberculous lymphadenitis. J Microbiol Immunol Infect. 2016;49(6):984-7.
23. Rottenberg ME, Carow B. SOCS3 and STAT3, major controllers of the
outcome of infection with Mycobacterium tuberculosis. Semin Immunol.
2014;26(6):518-32.
24. Rui L, Yuan M, Frantz D, Shoelson S, White MF. SOCS-1 and SOCS-3
block insulin signaling by ubiquitin-mediated degradation of IRS1 and
IRS2. J Biol Chem. 2002;277(44):42394-8.
25. World Health Organization. Guidelines for treatment of tuberculosis.
2010. WHO/HTM/TB/2009.420.
26. Masood KI, Rottenberg ME, Carow B, Rao N, Ashraf M, Hussain R, et
al. SOCS1 Gene Expression is Increased in Severe Pulmonary Tuberculosis.
Scand J Immunol. 2012;76(4):398-404.
27. Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A.
Validation of housekeeping genes for normalizing RNA expression in
real-time PCR. Biotechniques. 2004;37(1):112-4, 6, 8-9.
28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data
using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.
Methods. 2001;25(4):402-8.
29. Pan SC, Ku CC, Kao D, Ezzati M, Fang CT, Lin HH. Effect of diabetes
on tuberculosis control in 13 countries with high tuberculosis: a
modelling study. Lancet Diabetes Endocrinol. 2015;3(5):323-30.
30. Martinez L, Zhu L, Castellanos ME, Liu Q, Chen C, Hallowell BD, et
al. Glycemic Control and the Prevalence of Tuberculosis Infection: A
Population-based Observational Study. Clin Infect Dis.
2017;65(12):2060-8.
31. Nathella PK, Babu S. Influence of diabetes mellitus on immunity to
human tuberculosis. Immunology. 2017;152(1):13-24.
32. Lee PH, Lin HC, Huang AS, Wei SH, Lai MS, Lin HH. Diabetes and risk
of tuberculosis relapse: nationwide nested case-control study. PLoS One.
2014;9(3):e92623.
33. Cooper AM. Cell-mediated immune responses in tuberculosis. Annu Rev
Immunol. 2009;27:393-422.
34. O’Garra A. Systems approach to understand the immune response in
tuberculosis: an iterative process between mouse models and human
disease. Cold Spring Harb Symp Quant Biol. 2013;78:173-7.
35. Martens GW, Arikan MC, Lee J, Ren F, Greiner D, Kornfeld H.
Tuberculosis susceptibility of diabetic mice. Am J Respir Cell Mol Biol.
2007;37(5):518-24.
36. Vallerskog T, Martens GW, Kornfeld H. Diabetic mice display a
delayed adaptive immune response to Mycobacterium tuberculosis. J
Immunol. 2010;184(11):6275-82.
37. Shaler CR, Horvath C, Lai R, Xing Z. Understanding delayed T-cell
priming, lung recruitment, and airway luminal T-cell responses in host
defense against pulmonary tuberculosis. Clin Dev Immunol.
2012;2012:628293.
38. Filley EA, Bull HA, Dowd PM, Rook GA. The effect of Mycobacterium
tuberculosis on the susceptibility of human cells to the stimulatory and
toxic effects of tumour necrosis factor. Immunology. 1992;77(4):505-9.
39. Mirza S, Hossain M, Mathews C, Martinez P, Pino P, Gay JL, et al.
Type 2-diabetes is associated with elevated levels of TNF-alpha, IL-6
and adiponectin and low levels of leptin in a population of Mexican
Americans: a cross-sectional study. Cytokine. 2012;57(1):136-42.
40. Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Nutman TB, Babu S.
Expansion of pathogen-specific T-helper 1 and T-helper 17 cells in
pulmonary tuberculosis with coincident type 2 diabetes mellitus. J
Infect Dis. 2013;208(5):739-48.
41. Surendar J, Mohan V, Pavankumar N, Babu S, Aravindhan V. Increased
levels of serum granulocyte-macrophage colony-stimulating factor is
associated with activated peripheral dendritic cells in type 2 diabetes
subjects (CURES-99). Diabetes Technol Ther. 2012;14(4):344-9.
42. Sell H, Habich C, Eckel J. Adaptive immunity in obesity and insulin
resistance. Nat Rev Endocrinol. 2012;8(12):709-16.
43. Qu D, Liu J, Lau CW, Huang Y. IL-6 in diabetes and cardiovascular
complications. Br J Pharmacol. 2014;171(15):3595-603.
44. Van Snick J. Interleukin-6: an overview. Annu Rev Immunol.
1990;8:253-78.
45. Ladel CH, Blum C, Dreher A, Reifenberg K, Kopf M, Kaufmann SH.
Lethal tuberculosis in interleukin-6-deficient mutant mice. Infect
Immun. 1997;65(11):4843-9.
46. Kumar NP, Sridhar R, Banurekha VV, Jawahar MS, Fay MP, Nutman TB, et
al. Type 2 diabetes mellitus coincident with pulmonary tuberculosis is
associated with heightened systemic type 1, type 17, and other
proinflammatory cytokines. Ann Am Thorac Soc. 2013;10(5):441-9.
47. Hasan Z, Irfan M, Masood Q, Ahmed O, Moosajee US, Rao S, et al.
Raised levels of IFN-gamma and IL-13 are associated with pre-diabetes
amongst newly diagnosed patients with Tuberculosis. J Pak Med Assoc.
2019;69(4):468-73.
48. Stanya KJ, Jacobi D, Liu S, Bhargava P, Dai L, Gangl MR, et al.
Direct control of hepatic glucose production by interleukin-13 in mice.
J Clin Invest. 2013;123(1):261-71.
49. Masood KI, Rottenberg ME, Carow B, Rao N, Ashraf M, Hussain R, et
al. SOCS1 gene expression is increased in severe pulmonary tuberculosis.
Scand J Immunol. 2012.
50. Mizuno S, Soma S, Inada H, Kanuma T, Matsuo K, Yasutomi Y. SOCS1
Antagonist-Expressing Recombinant Bacillus Calmette-Guerin Enhances
Antituberculosis Protection in a Mouse Model. J Immunol.
2019;203(1):188-97.
51. Masood KI, Rottenberg ME, Carow B, Rao N, Ashraf M, Hussain R, et
al. SOCS1 gene expression is increased in severe pulmonary tuberculosis.
Scand J Immunol. 2012;76(4):398-404.
52. Dumpati R, Ramatenki V, Vadija R, Vellanki S, Vuruputuri U.
Structural insights into suppressor of cytokine signaling 1 protein-
identification of new leads for type 2 diabetes mellitus. J Mol
Recognit. 2018;31(7).
53. Schmok E, Abad Dar M, Behrends J, Erdmann H, Ruckerl D, Endermann T,
et al. Suppressor of Cytokine Signaling 3 in Macrophages Prevents
Exacerbated Interleukin-6-Dependent Arginase-1 Activity and Early
Permissiveness to Experimental Tuberculosis. Front Immunol. 2017;8:1537.
54. Masood KI, Rottenberg ME, Salahuddin N, Irfan M, Rao N, Carow B, et
al. Expression of M. tuberculosis-induced suppressor of cytokine
signaling (SOCS) 1, SOCS3, FoxP3 and secretion of IL-6 associates with
differing clinical severity of tuberculosis. BMC Infect Dis. 2013;13:13.