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Abstract 

In this work, we investigate the evolution of a Richtmyer-Meshkov (RM)-like 

instability occurring on the internal surface of particle rings impinged by divergent 

blast waves. Despite of the signature spike-bubble instability structure analogous to 

the hydrodynamic RM instability, the growth of the perturbation amplitude in granular 

media undergoes an exponential phase followed by a linear phase, markedly 

differing from the hydrodynamic RM instability, indicating a fundamentally different 

mechanism. The granular RM-like instability arises from the incipient transverse 

granular flows induced by the hydrodynamic effects upon the shock interaction. 

Whereas a substantial perturbation growth is initiated by the ensuing rarefaction 

dilation when the hydrodynamic effects are minimum. It is the interplay between the 

localized transverse and radial granular flows that sustains the persistent 

perturbation growth and drives the morphological changes of instability pattern 

alongside.  
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Introduction 

So-called jetting or fingering instabilities of dense granular media arise from the 

destabilized granular surfaces impinged by shock/blast waves, which have 

fundamental bearing on a range of natural phenomena and engineering processes, 

significantly for explosions of supernovas, volcanic eruptions, and laser-driven 

inertial confinement fusion experiments, etc1. The shocked gases thrust into the 

granular medium with the particle fingers protruding into the gases, forming a spike-

like pattern2-5, which bears a resemblance to a classic hydrodynamic instability 

known as Richtmyer-Meshkov (RM) instability occurring on shock swept corrugated 

interfaces between two materials of different densities or compressibilities6-9. Since 

granular materials are often modeled as viscoplastic fluids whereby a variety of 

dense granular flow profiles has been successfully described and predicted10-14, it is 

tempted to assume the shock driven interfacial instability of granular media is the 

counterpart of the RM instability. Actually another important interfacial instability, the 

viscous fingering of granular media invaded by fluids is regarded as the granular 

equivalent of the Saffman-Taylor instability in the zero-surface-tension limit of normal 

fluid fingering, although the friction-induced dissipation yields the distinct scaling law 

for the finger width15-17. An exception can be found in the gravity driven granular 

analog of the Rayleigh-Taylor (RT) instability, which albeit mimicking those observed 
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in conventional fluids, has different underlying mechanisms thanks to the coupling 

of dry granular dynamics and the hydrodynamics of the interstitial fluid18, 19.  

The granular medium is fundamentally a multi-phase system with intrinsic 

discreteness. The interaction between constituent grains gives rise to the 

heterogeneous force transmission and localized granular flows5, 20-22.  The 

interaction between grain skeleton and gas flows through pores, also prevalent in 

the granular RT-like instability, render a compaction wave through contact points 

between grains and an induced gas flow in the wake of a transmitted wave in the 

shocked granular media23, 24. Hence the non-Newtonian fluid approximation would 

smooth out the inter-phase physics and the discreteness underpinning the 

macroscopic behavior of shocked granular media and the resultant instabilities. 

Accordingly applying any variant of RM theory based on the continuum mechanics 

to the shock induced granular instability should be questionable. Specifically, 

besides the pressure impulse which is the dominant driving force in the RM 

instability, the particle collision, drag forces, and diffusion pressure gradient should 

be taken into account, although their relative importance is unclear. Furthermore, 

granular materials can be significantly compacted when exposed to explosion and 

subsequently undergo considerable dilation in the wake of the reflected rarefaction 

wave from the end boundary, even crossover to the dilute granular flows25-28. The 

density of granular media hence markedly changes throughout the growth of 

instabilities. Whereas in the hydrodynamic RM instability, the compressibility is 

mainly taken into account during the linear growth phase29. Thereafter the flows are 
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regarded as incompressible in most models, failing to account for the persistent 

dilation. Therefore, the hydrodynamic RM instability theories are intrinsically 

inadequate to describe the shock driven interfacial instability of granular media. In 

this work, we aim to quantitatively characterize the growth regimes of granular RM-

like instabilities which are to be compared with the classic RM instability prediction. 

Alongside the Particle Image Velocimetry (PIV) technology which provides us limited 

access to the deformation of the skeleton materials30, 31, a grain-scale numerical 

method, namely coarse-grained compressible computational fluid dynamics-discrete 

parcel method (CCFD-DPM)14, 32, 33, enables us properly account for the roles played 

by various forces alluded above. A physical understanding of granular RM-like 

instabilities is put forth to shed light on the initiation and different growth regimes of 

instabilities.  

Experimental setup 

 

Figure 1. (a) Schematic of the experiment setup consisting of a vertical detonation tube (length: 400 

mm; inner diameter: 30mm) and a radial Hele-Shaw cell (diameter: 500 mm). Inset: image of a 
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prepared particle ring (above) and schematic of the particle ring with an imposed internal surface 

(below). (b) Pressure histories at the internal surface of ring (p1 and *

1p ) and inside the ring (p2, p3 

and p4) at p0 = 1 bar. The coincidence between p1(t) and  *

1p t  which register the pressures at 

locations with the same radii but different azimuthal angles indicates the homogeneity of the shock 

loading. The propagation velocity of the transmitted wave can be calculated from the arrival time 

differences of pressure impulses at different locations, Vtr ~ 1000 m/s. Insets: the snapshots of shock 

dispersed particle rings at 0.5 (left) and 1.0 ms(right). Note that the capture of images is synchronized 

with the pressure recording. 

Our experiment setup (see Fig. 1(a)) consists of a radial Hele-Shaw cell whose 

bottom plate with a central orifice is connected with a vertical detonation tube 

(volume ~272 ml) filled with the stoichiometric methane-oxygen premixed gases with 

varied initial pressure p0. A freestanding densely packed thin particle ring (packing 

density p ~ 0.6) consisting of glass spheres (Fuji Manufacturing Japan) with a height 

of 5 beads was confined in between the bottom and top plates of the cell. A single-

mode perturbation in cylindrical geometry was imposed on the internal surface of 

ring (see the inset in Fig. 1(a)), which can be parametrized as r() = Rin,0 + a0 cos(n), 

where Rin,0 refers to the mean radius of the initial interface, a0 to the initial 

amplitude, to the azimuthal angle and n to the azimuthal mode number, here n = 

6. The deflagration inside the detonation tube issues a divergent cylindrical blast 

wave into the Hele-Shaw cell followed by the ever-expanding product gases. The 

pressure impulses recorded at the vicinities of the internal surface of ring (see Fig.1 

(b)) feature a prominent first peak and a much reduced second peak during the first 

millisecond. The much subdued second peak results from the shock reflected from 
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the close end of the detonation tube. The transmitted compressive wave inside the 

ring decays rapidly with the overpressure only a fraction of the incident shock as 

seen in Fig.1(b), indicating an attenuated gas-particle coupling effect in the bulk of 

ring which is also corroborated by our simulation results. Note that the external 

surface of ring remains stationary (see insets of Fig. 1(b)) well after the propagation 

of transmitted disturbances. Varying the initial pressure of the premixed gases, p0, 

from 0.7 to 1.5 bar can increase the peak overpressure of incident shocks from 10 

to 30 bar, with Mach number varying from 4.6 to 5.9. The hydrodynamics inside the 

detonation tube and the Hele-shaw cell was accessed by simulations as elaborated 

in Appendix I. The pressure histories inside the cell induced by the deflagration of 

premixed gases with different initial pressures are presented in Appendix II. 

 

Figure 2 (a)preprocessed high-speed image of the shock dispersed particle ring. (b) Binarized image 

of (a) where the particle ring and gases are colored black and white, respectively. (c) Superimposition 

of the extracted boundaries of particle ring from (b) onto (a). 

The optical images were obtained using a high-speed camera (Photron Fastcam SA 

5) and processed by Image Pro Plus and MATLAB. Through the light intensity 

threshold, the preprocessed images (see Fig. 2(a)) were binarized as shown in Fig. 
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2(b) in which the particle ring is black in contrast with the white background gases. 

Then boundaries in the binary images were attained by the Sobel operator which are 

superposed onto the original images (See Fig. 2(c)) to check whether the boundary 

extraction is correct.  

In order to calculate the velocity fields inside the particle ring using Particles image 

velocimetry(PIV), 10% of particles (by volume) were blacken to introduce the 

markers into the particle ring. The frame-to-frame velocity fields were obtained with 

PIVlab, a MATLAB based digital image correlation software34. The basic principle of 

PIVlab is to cross-correlate subwindows (interrogation window) of one image with an 

image taken at a later time, and then calculate the Eulerian velocity vectors of the 

assemble of particles in the subwindows. Before calculating the velocity fields of 

particles, the images first undergo pre-processing, the image contrast being 

enhanced using the algorithm called Contrast Limited Adaptive Histogram 

Equalization (CLAHE, window size=8 pixels). Different size of the PIV interrogation 

window (40×40, 24×24 and 20×20 pixels) was adopted for different experiments to 

optimize the calculated velocity fields. Once the velocities were determined, a Stdev 

filter(n=7) and local mean filter were applied to detect outliers.  

Numerical method 

The numerical simulations were conducted based on the coarse grained 

Compressible Computational Fluid Mechanics – Discrete Parcel Method (CCFD-

DPM) method14. For the gas phase, the volume-averaged governing equations (Eqs. 



 

 

8 

 

1-3) constructed in the Eulerian frame are based on a transport five-equation model, 

i.e. a simplified form of Baer-Nunziato (B-N) model 35.  
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where f is the fluid volume fraction, f is the fluid density, fu  is the fluid velocity, pf 

is the fluid pressure, 0.5f f f f f fE e u u     is the total energy of fluids. and  

denote the phase-averaged and the mass-averaged variables, respectively. ,p i  

and ,p iu  are the density and velocity of particle parcel i. Dp,i is the drag force 

coefficient of parcel i. , , ,p i i f p i fw V V   is the contribution of parcel i to the weighted 

particle volume fraction. 

The particle phase is represented by discrete particle parcels consisting of multiple 

physical particles with same physical properties and kinetic properties36. The motion 

of particle parcel is governed by the Newton’s second law (Eqs. 4 and 5).  
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where iu and ix denote the velocity and displacement of parcel i, ,C jF represents the 

collision force between parcel i and j. 

A four-way coupling strategy37 was adopted to account for the momentum and 

energy transfer between gases and particles. Specifically the particle drag force and 

the associated work were incorporated into the momentum (Eq. 2) and the energy 

(Eq. 3) equations of the gas phase as the source terms, respectively. The particle 

parcels are driven by the pressure gradient force, drag force as well as the collision 

force between parcels (Eq. 4). Here the drag force coefficient was calculated using 

the De Felice model38. A soft sphere model represented by a coupling spring and 

dashpot was employed to model the collision force between parcels 36.  

As to the algorithm solving the governing equations of gases, the weighted 

essentially nonoscillatory (WENO)39 scheme was used to reconstruct the primary 

flow variables. A Riemann solver proposed by Harten Lax and van Leer (HLL)40 was 

applied to obtain the intercell fluxes. The third-order Runge–Kutta method was 

applied for the time integration. The equations describing the parcel velocity and 

position were discretized by the Velocity-Verlet algorithm41. Bi-linear/tri-linear 

interpolation functions were adopted to calculate particle volume fraction and source 

terms in the Eulerian grids, as well as fluid quantities on Lagrangian parcels. Details 
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of the governing equations of CCFD-DPM and corresponding algorithms can be 

found in our previous studies33, 42.  

 

Figure 3 (a) Schematic of the numerical model. Note that the actual mesh width is one tenth of that 

shown in (a). (b) Pressure histories of the Eulerian gauges at the center (r = 0 mm) and the internal 

surface of ring (r = 40 mm) in simulations and the experiment in which Din.0 = 80mm, Dout,0 = 180 mm, 

p0 = 1 bar. 

The two-dimensional numerical model presented in Fig. 3(a) has the particle ring 

with the geometry and the disturbed internal surface same as in the experiment 

where Din,0 = 80 mm, Dout,0 = 180mm. The packing density and particle density were 

set to the values used in experiments. The particle diameter is set to be 100 m. The 

whole parcel assemble consists of 63220 randomly arranged parcels whose 

diameters vary from 356 to 778 m. 

The shock loading was realized by setting a high pressure central area with the 

diameter matching that of the tube exit in experiments. The pressure profile inside 
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the central region was chosen in such way that the peak overpressure and the 

impulse at the internal surface of particle ring (r = 40mm) are comparable to those 

measured in the experiments. Specifically, the pressure inside the central region 

decays exponentially from 20 to 2 bar during the first two milliseconds. The overall 

pressure field was allowed to evolve on its own afterwards. The pressure profiles 

inside the central region (r =0) and at the internal surface of ring (r = 40 mm) 

compared with the experimentally registered pressure history at r = 40 mm are 

displayed in Fig. 3 (b). The impulses at r = 40 mm attained in simulation and 

experiment are 949.16 and 1108 Pa·s. 

The restitution coefficient of parcels is 0.1 which takes into account of the energy 

dissipation inside the parcel; the normal stiffness of contacts between parcels is 2e7 

N/s. In this work time step for CCFD module was determined by the CFL number 

which was set as 0.25 considering the numerical stability. In high Mach flow the 

characteristic time of flows is about several micro-second on the same order of that 

of particle-particle collisions. Thus time step for the DPM module was set as the 

same with the time step of CCFD module.  

Results and Discussions 

Fig. 4(a) and (b) display sequences of high-speed images showing the complete 

processes of the internal surface deformation alongside the global expansion of the 

particle ring in two typical cases, namely Din,0 = 55 mm, Dout,0 = 180 mm, p0 = 1.5 bar 

in Fig. 4(a) and Din,0 = 80 mm, Dout,0 = 180 mm, p0 = 1.0 bar in Fig. 4(b). As the 
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incident cylindrical shock encounters the internal interface, a compaction wave 

represented by the front of an annular compacted band trails far behind the 

transmitted wave with an average speed of 25-35 m/s (see the first frame in Fig.4(a)). 

Prior to the reflection of the rarefaction front on the external surface, the shocked 

internal surface largely retains its sinusoidal profile. Afterwards the growth of the 

perturbation amplitude begins to accelerate and the profile of the internal surface 

increasingly loses its symmetry. Eventually the internal surface evolves into an 

unsymmetrical structure with the ridge-like “fingers” thrusting inwards and petal-like 

wide “bubbles” protruding outwards. At the late stage (see last frame in Fig. 4(b)), 

small ripples stud the internal surface manifesting high-order harmonics. The 

morphological evolution of internal surfaces can be better discerned by superposing 

a sequence of profiles as shown in Fig. 4(d), in which the gap between two sequent 

profiles is colored according to the instantaneous velocity of internal surface. The 

gradual loosing of the sinusoidal symmetry is evident in Fig. 4(d). We fit the 

instantaneous profiles of internal surfaces with sinusoidal functions and attained the 

confidence coefficient  which monotonically decreases with time. The plot of  vs. 

time (Appendix III) shows a kink defining an onset of accelerating deviation from the 

symmetric sinusoidal shape. We refer the kink time t to the stable-to-unstable 

transition of the instability pattern. Comparing the temporal variations of the internal 
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surface velocity and  (t) we find the stable-to-unstable pattern transition 

corresponds to the end of the acceleration phase of internal surface (Appendix III)). 

 

Figure 4. (a)(b) Temporal evolution of shock dispersed particles rings for two typical cases. (c) 

Closeup images of the shock dispersed particle ring before and after the stable-to-unstable pattern 

transition t (Appendix III). The bulk of ring is permeated with a large number of voids while high-

order harmonics are developing along the internal surface. (d) Superpositions of sequences of 
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internal surface profiles for four typical cases. From left to right, the times of the innermost internal 

surface profiles are 1.286, 1.571, 1.286 and 1.571 ms; the time intervals between two sequent profiles 

in each frame are 0.428, 0.428, 0.286 and 0.571ms. The gap between two sequent profiles is 

rendered in accordance with the instantaneous velocity. The profiles denoted by white dashed curves 

correspond to the rarefaction reflection from the external surface. The profiles denoted by black dotted 

curves correspond to the stable-to-unstable pattern transition t. 

Also evident from Fig. 4(d), when external boundaries expand to the same diameter, 

particle rings with the increased thickness and/or subjected to shocks with higher 

overpressures more likely remain the sinusoidal shaped internal surface, suggesting 

a retarded unstable regime. The closeup images in Fig. 4(c) show rich structural 

details inside the bulk of ring just prior to and after the stable-to-unstable pattern 

transition t. After t, the bulk of ring becomes textured, permeated by profuse tiny 

voids that first appear close to the external surface, then rapidly spread inward. The 

textured structure becomes coarser as the voids grow and coalesce with each other. 

Interestingly a compacted narrow strip along the internal surface remains intact 

throughout so as to prevent the erosion of the internal surface by the ever-growing 

voids. 

Temporal variations of the perturbation amplitude a for all cases with varying Din,0, 

Dout,0, and p0 are plotted in Fig. 5(a). The inset of Fig. 5(a) shows a crossover 

between the exponential and linear growth of the perturbation amplitude in all cases 

while both the exponential coefficient and linear slope vary from case to case. 

However, the main panel in Fig. 5(a) shows that all the data can be scaled onto a 

single master curve which can be piecewisely fitted by a first exponential segment 
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before *

c and a second linear segment after *

c . The collapse is obtained by 

normalizing the time with the reflection time of the rarefaction front upon the external 

surface, tref, and the amplitude of perturbation by = k (a – a0), where k is the 

wavenumber. This way we can normalize out the overall pressure impulse effect 

since t ref incorporates the effects of the overpressure of incident shock, the mass 

and thickness of ring, and the initial packing fraction as well. With the growth of 

perturbation amplitude transitioning from exponential to linear, the instability pattern 

progressively transitions from stable to unstable (see Appendix III), indicating a 

concurrence between the perturbation growth regime crossover and the pattern 

transition. Analogous to RM instability, here the “fingers” protruding inwards are 

referred to as spikes while the petal-like edges pushed outwards by the gases are 

referred to as bubbles. Fig. 5(b) shows the scaled amplitude histories for the spike 

and bubble, s= k(as – a0/2) and b= k(ab – a0/2), where as and ab refer to the 

amplitudes of the spike and bubble with respective to the reference undisturbed 

interface surface (see insets in Fig. 5(b)). Before *

c , the symmetry of s() andb() 

suggests a symmetric stable pattern. Thereafter b() progressively lags behind the 

absolute value ofs(), breaking the symmetry of the internal surface. Clearly the 

growth law of the perturbation amplitude shown in Fig. 5(a) and (b) contradicts the 

conventional RM nonlinear theory appropriate for  > 1 which forecasts asymptotic 

behaviors for s andb
43. 
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Figure 5. (a) Scaled master curve of the overall amplitude  = n/Rin (a – a0 ) (a is defined in the inset 

below) verse time = t /tref . Perturbation growth is characterized by an exponential regime (= exp 

(1.5  -1.82)) before *

c and a linear regime (= 5.06 -6.86) after *

c . The fitted piecewise function 

is plotted by the yellow dashed curve. Inset: overall amplitude a versus time for experiments with 

different ring thickness and initial pressure of premixed gases. (b) scaled amplitudes of the bubble 

and spike, s and b, versus scaled time. Inset: snapshots of a reference particle ring with smooth 

internal surface (left) and a particle ring with perturbed internal surface (right). (c) Comparison 

between the temporal variations of scaled packing density and scaled overall amplitude fitted by the 

piecewise function. 

The comparison between the temporal variations of the scaled perturbation 

amplitude and the scaled packing density *=(p-p,0)/p,0 (see Fig. 5(c)) reveals an 
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explicit correlation between the bulk deformation of granular rings and the growth of 

interfacial perturbation amplitude. After peaking at , *  undergoes first a rapid 

and then a relatively slow decline (see Fig. 5(c)). The onset of the decline of * () 

coincides with the onset of the noticeable growth of a*. The transition between rapid 

and slow decline of * remarkably coincides with *

ct , the time demarcating the 

exponential and linear growth regimes of a*. Hence the interfacial perturbation 

growth is closely associated with the bulk granular flows characterized by the 

dramatic changes of packing density caused by the compaction and the subsequent 

rarefaction waves. On the contrary, the compressible RM instability usually assume 

a constant uniform compression of shocked fluids only taking place during the early 

linear stage43. Therefore the granular RM-like instability invokes a mechanism 

fundamentally different from the RM instability. 

The first rapid decrease of * is initiated by the inward traveling rarefaction fans when 

the compacted particles dilate into a random loose packing (RLP). Due to the lack 

of cohesion * would continue to decrease below the density of RLP, commencing 

an over-dilation. Lower than the threshold of RLP, the over-dilation cannot be 

sustained only by the re-arrangement of particles. Instead the emergence and 

growth of voids throughout the bulk as seen in Fig. 4(c) dominate the over-dilation, 

which is also found in our simulations (Fig.6). It is worth noting that the over-dilation 

is characterized by particle clustering rather than homogeneous dispersal of grains , 

which may well be attributed to the grain-scale heterogeneous compaction intrinsic 

to the granular media21, 22. Particle clusters percolated by strong force chains 
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experience exceedingly high compression during the shock compaction5. 

Accordingly, they remain intact for a longer time during the bulk dilation while 

particles in other areas loose contact with each other sooner. The growth and 

coalescence of voids decrease the global packing density not as effectively as the 

prior rarefaction waves as suggested by the slower decline rate of * after *

ct .  

The dynamics of particles subject to shock waves is closely associated with the 

pressure diffusion and the gas filtration which in turn are affected by the compression 

and dilation of the material skeleton. The CCFD-DPM simulations provide us insights 

on how the pressure gradient forces and drag forces evolve and meanwhile initiate 

the heterogeneous localized granular flows. The simulations successfully reproduce 

the growth of perturbation amplitude consistent with the experimental results as 

shown in Fig. 5(b). Fig. 6(a-e) present the fields of diffusion pressure, drag forces, 

particle velocities, circumferential particle velocities and packing densities during the 

shock dispersal. Once the incident divergent shock wave head on impinges the 

internal surface of particle ring, the shock focusing and reflection upon the convex 

edges (bubble edges) of the internal surface generate high pressure areas inside 

bubbles (Fig. 6(a-i)), invoking herein higher fluid velocity and resultant higher drag 

forces in the vicinity (Fig. 6(b-i)). Accordingly the isobaric lines and the envelop of 

the drag force field resemble an orthohexagnal shape whose symmetric axis are 

aligned with those of the sinusoidal internal surface (Fig. 6(a-ii) and (b-ii)). The 

particles in the vicinity of bubble edges thereby are driven by stronger pressure 

gradient forces and drag forces as well, and move faster than other areas (Fig. 6(c-
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i)-(c-v)). Faster moving particle clusters tend to bifurcate transversely due to the 

weaker lateral collision forces, giving rise to the transverse granular flows from the 

bubble edges to the spike edges (Fig. 6(d-i)-(d-v)). Notably the packing density 

undergoes compression and ensuing dilation (Fig. 6 (e-i) to (e-v)) as observed in 

experiments. Specifically the over-dilation stage (Fig. 6 (e-iv) and (e-v)) in which the 

overall packing density is below that of RLP sees the permeating tiny voids as seen 

in experiments. As shown in Fig. 6(g) and (h) the hydrodynamic effects in terms of 

the pressure gradient forces and drag forces quickly attenuate and become 

negligible during the most part of the perturbation growth regime thanks to the short-

lived shock loadings and the divergent configuration.  
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Figure 6. Numerical simulation generated fields of pressure (a-i)-(a-v), drag forces (b-i)-(b-v), particle 

velocity (c-i)-(c-v), particle circumferential velocity (d-i)-(d-v), and packing density (e-i)-(e-v) for the 

particle ring with Din,0 = 80mm, Dout,0 = 180mm. (f) and (g) represent the pressure gradient forces 

pre parcelF p V   (f), where Vparcel is the volume of parcel, and drag forces (g) along the symmetrical 

axis of bubble edge Rbuble  and spike edge Rspike, respectively. The symmetrical axis of bubble edge 

Rbuble  and spike edge Rspike. are denoted in (a-iii). 

 

Figure 7.  (a) Instantaneous PIV velocity field of the particle ring. (b) and (c) are superimpositions of 

a sequence of coarse grained PIV radial (b) and circumferential velocity fields (c). (d) Schematic of 
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the innermost layer with the thickness of h = 8 mm the azimuthal variations of whose radial and 

circumferential velocities are plotted in (e) and (f). The shades of symbols in (e) and (f) which 

represent PIV grids inside the innermost layer (d) are in accordance with the scaled radial distance 

of PIV grid with respective to Rref + h, [r – (Rref + h)]/a, where Rref is the radius of the reference 

unperturbed internal surface of particle ring. (g) Temporal variations in radial velocities along the 

symmetrical axis of the bubble edges and spike edges, Vr,b and Vr,s. Note that the experiment data 

displayed in (a-c), (e-g) is from the case with Din,0 = 80mm, Dout,0 = 180mm, p0 = 1.5 bar. (h) Profiles 

of Vr,b(r) and Vr,s(r) for four typical cases at the same scaled time  = 1.64. 

The velocity fields attained by the PIV are presented in Fig. 7 (a-c) which retain the 

characteristics of velocity fields produced by simulations (Fig. 6(c-v) and (d-v)). 

Specifically the transvers flows from bubble edges to spike edges despite being 

weak are apparent from the very beginning of shock loading (Fig. 7(c)). To 

characterize the localized granular flows in the innermost layers as schematized in 

Fig. 7(d), we plot the azimuthal variations of radial and tangential velocities herein, 

Vr() = Vr() - Vr,in and V() (see Fig. 7(e) and (f)), where Vr,in is the radial velocity 

of the reference internal surface. Regardless of times, Vr()  and V() both exhibit 

a sinusoidal shape with one quarter of phase shift in between. The maxima and 

minima of Vr() occur at the bubble cusps and spike apexes of internal surface, 

while the transverse flows are most pronounced at the midway between peaks and 

troughs of internal surface as happens in simulations. The amplitude of the 

sinusoidal shaped Vr() is indicative of how fast the perturbation grows, while the 

transverse granular flows are responsible for the widening of bubbles and the 

narrowing of spikes shown in Fig. 4 and Fig. 6. The amplitudes of Vr() shoots up 
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upon the onset of the rarefaction dilation (comparing  = 0.91 and = 1.64 in Fig. 

7(e)), signifying the acceleration of the perturbation growth. After the over-dilation 

sets in ( = 2), little changes in the profiles of Vr() and V() can be detected 

(comparing  = 2.27 and  = 2.64 in Fig 7(e) and (f)), corresponding to the linear 

growth stage of the perturbation amplitude. 

Fig. 7(g) shows the radial variations of Vr along the radii cutting through the peaks 

and troughs of the internal surface, namely Vr,b(r) and Vr,s(r) (see inset in Fig.7(g)). 

The distinct evolution of Vr,b(r) and Vr,s(r) shed more light on the differences of 

localized granular flows beyond the bubble and spike edges of internal surface. The 

Vr,b(r) and Vr,s(r)  both display an exponential decay in the wake of the compaction 

wave and a plateau after the compaction wave almost compasses all particles, no 

significant differences between them discernable. Immediate after the onset of the 

rarefaction dilation (= 1), the Vr,b(r) jumps above the Vr,s(r) while both are gradually 

elevated throughout the dilation stage. Contrasting with the linear positive gradient 

of Vr,s(r) towards the external boundary, the profiles of Vr,b(r) features a plateau or 

even negative slope. Similar radial profiles of Vr,s(r) and Vr,b(r) can be found in the 

simulated dilating ring (Fig.6 (c-v)).  The characteristics of the profiles of Vr,b(r) and 

Vr,s(r) evident in Fig. 7(g) are universal cross all the cases studied here as shown in 

Fig. 7(h). 

Since neither the diffusion pressure nor drag forces have substantial effects for the 

most part of the dilation phase, the evolution of Vr,s(r) and Vr,b(r) predominately result 
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from the rarefaction effects on the dry particles without cohesion. As illustrated in the 

left inset of Fig. 8, in the wake of the inward traveling rarefaction wave, the elastic 

energies stored inside the contact points between particles would be transmitted 

outward from pair to pair and transformed to kinetic energies of particles all the way 

down to the outmost layers. Thereby closer to the external boundary the particles, 

faster they move outwards. The rarefaction dilation effect leads to a positive gradient 

of Vr(r) towards the external surface. The energy transmission and transformation 

proceed until the particles begin to loose contact with each other which commences 

from the external boundary. At the end of the dilation, all elastic energies are 

transformed to the kinetic energies of particles so that the profiles of Vr,s(r) and Vr,b(r) 

remain consistent thereafter.  

 

Figure 8. Schematic of the rarefaction effect (left inset), the flow-out and flow-in mass effects (right 

inset) during the rarefaction dilation stage of particle ring. Left inset: Inward traveling rarefaction 
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wave releases the elastic energy stored in the contact points of particle pairs. Particle pairs closer to 

the internal surface store larger elastic energy. Alongside the propagation of the rarefaction wave, 

the energy is transmitted outwards through the contact points and meanwhile transferred into the 

kinetic energy. Particles further away from the internal surface gain more energy and move faster. 

Right inset: two representative control volumes aligned with the symmetrical axis of the bubble edge 

and spike edge, b and s. b and s have the same radii. b squeezes out particles transversely 

at a flow rate of  outm r while s entrains particles from lateral edges at a flow rate of  inm r . 

 outm r and  inm r  attenuate with the increasing r. 

But why the particles beyond the bubble edges move faster than those beyond the 

spike edges as shown in Fig. 5(e)? The following simple analysis can illustrate how 

the transverse granular flows from bubbles to spikes conduce to the distinct profiles 

of Vr,b(r) and Vr,s(r). As schematized in the right inset of Fig. 6, the control volumes 

with the same radius but aligned with the central axis of bubble and spike edges, b 

and s, experience a net mass flow out and flow in, respectively. Thus the dynamics 

inside the b and s are described by force balance: 

           ,b out b out b ext bm r m r t V r m r V r F       (6) 

           ,s in s in s ext sm r m r t V r m r V r F        (7) 

where mb(r) and ms(r) are the mass in b and s with the velocities of Vb(r) and Vs(r), 

 outm r and  inm r are the net mass flow rates out of b and into s Fext,b and Fext,s 

represent the external forces exerting on the  b and s. The external forces mainly 

consist of the pressure gradient forces, Fpre, the drag forces, Fdrag, and the net 
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particle collision forces, Fcol. Fpre and Fdrag are only relevant during the very early 

times of dilation (see Fig. 6(g) and (h)). Since Fcol mainly depends on the velocities 

of compacted particles and particle friction (Appendix IV), we have Fcol,s ≈Fcol,b. 

According to Eqs. (1) and (2), b with diminishing mass gains larger acceleration 

than s with added mass, namely    s bV r V r . As a result, particles ahead of 

bubble edges move faster than those ahead of spike edges. The transverse flows 

attenuate towards the external surface so that the flow-out and flow-in mass effect 

decays alongside. For particles pushed by spike edges, the flow-in mass effect 

augments the rarefaction dilation effect, particles closer to the internal surface further 

slowing down. On the contrary, the flow-out mass effect offsets the rarefaction 

dilation effect for particles pushed by bubble edges, leading to a plateau or even 

slightly slope down shape of Vr,b(r) as seen in Fig. 7(g). 

 The opposite radial variations in Vr,s (r) and Vr,b (r) suggest stronger dilation beyond 

the spike edges than that beyond the bubble edges. Particles ahead of bubble edges 

tend to migrate into adjacent spike areas where voids are more abundant, sustaining 

the transverse particle flows. Therefore the distinct profiles of Vr,s (r) and Vr,b (r) and 

the transverse particle flows are strongly interdependent and feed into each other. 

Larger the difference between Vr,s (r) and Vr,b (r), stronger the transverse particle 

flows and vice versa. This self-feedback propels the growth of perturbation and the 

pattern evolution as well. The smaller difference between Vr,s (r) and Vr,b (r) for 

thicker particle rings (Din = 55 mm, Dout = 180 mm, see Fig. 7(h)) implies small growth 

rate and slower pattern changes. The first and foremost element in the mechanism 
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is the hydrodynamic initiation of the incipient transverse particle flows which is 

amplified by the rarefaction dilation.  

Conclusion 

In contrast with the linear growth followed by the nonlinear asymptotic growth of 

perturbation amplitude in RM instability, the granular RM-like instability displays an 

exponential growth regime followed by a linear growth regime. The drastic difference 

of perturbation growth law arises from the fundamentally different physics. RM 

instability originates from the induction of baroclinic vorticity along the interface while 

the granular RM-like instability heavily involves the bulk deformation which 

dramatically changes during the shock compaction, the rarefaction dilation and the 

inertial over-dilation stages. During the shock compaction, the global deformation is 

overwhelmingly characterized by uniform divergent flows when the perturbation 

amplitude barely grows. Whereas the hydrodynamic effects at the very early instants 

introduce weak but critical transverse granular flows from bubble edges to spike 

edges which are significantly amplified upon the rarefaction dilation. It is the 

transverse granular flows that conduce to the emergence of heterogeneous flows. 

Specifically, particles beyond the bubble edges increasingly move faster than those 

beyond the spike edges, resulting in the exponential growth of perturbation 

amplitude. Meanwhile the azimuthal variations in radial velocity in turn sustain and 

reinforce the transverse granular flows so as to break the symmetry of the sinusoidal 

shape of internal surface. The coupling between the heterogeneous radial flows and 

transverse flows cannot survive during the over-dilation stage when the granular 
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medium disintegrates into a large number of particle clusters. From then on both 

radial and transverse velocity fields remain unvaried, bringing about the linear growth 

of perturbation amplitude. 
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