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Abstract
In order to accurately predict the complex chromatographic behaviors of the components to be separated, by the combination of the Langmuir adsorption formula and the back propagation-artificial neural network (BP-ANN), Langmuir-BP-ANN adsorption model was established. Herein, based on a series of different traditional adsorption isotherms such as with or without competition, one or two kinds of adsorbed sites, monomolecular or multilmolecular adsorption, and so on, the Langmuir adsorption formula was deduced, where the major adsorption parameter Ci was the function of the component concentration, expressed as matrix forms constructed by BP-ANN and obtained by solving the equilibrium dispersive (ED) chromatography model with the inverse method and genetic algorithm (GA). The Langmuir-BP-ANN model was applied to study chromatographic behaviors of m-cresol and p-cresol on MIL-53 (Al) stationary phase. 
Key words: Langmuir adsorption isotherm, BP neural network (BPNN), Model establishment, Genetic algorithm
1 Introduction
As a typical adsorption separation method, liquid chromatography has been widely used in the separation of food, biomedicine, chemical industry and other fields [1-4]. As a mathematical model based on mass transfer process of the components to be separated in chromatographic column, chromatographic model has general guiding significance for chromatographic separation [5-6]. When the chromatographic model is used to design the separation of the target components, it is necessary to determine the adsorption and mass transfer relationship of the related components between the liquid and solid phases in the chromatographic column. Due to the clear physical meaning, the adsorption relationship of the components to be separated is usually described by the mechanism adsorption equation represented by Langmuir [7-8]. In recent years, MOFs materials are often used as stationary phase for separation of some substances because of their abundant specific surface area, adjustable pore structure and good chemical stability [9-13]. When MOFs adsorb guest molecule, there are some forces such as Van der Waals forces, hydrogen bond, π-π bond and so on, and "breathing effect" often occurs in them [14-18], which pose a serious challenge to determine the adsorption relationship of guest molecules on MOFs [19].
Artificial neural network (ANN) is a data modeling method with excellent curve fitting ability, which has been used to describe the adsorption relationship of substances in recent years [20-21]. Different from traditional mechanism adsorption equations, ANN is a data-based modeling method. The ANN network is constructed by mapping relationship between input and output data without knowing the prior mechanism knowledge of them. It is widely used in modeling [22-23], and predictionprocesses [24-26]. When using artificial neural network to model the adsorption process, the published literature had no physical significance and was incapable of deducing adsorption mechanisms .
In order to take into account the clear physical meaning of the mechanism adsorption equation and the wide range of applications of the data model, based on the Langmuir adsorption formula deduced by different adsorption isotherms and back propagation-artificial neural network (BP-ANN), the Langmuir-BP-ANN adsorption models for single-component adsorption and two-component competitive adsorption were established to describe the adsorption relationships between m-cresol and p-cresol on MIL-53 (Al) stationary phase. Using this established model, the chromatographic elution curves of mixed solution of m-cresol and p-cresol were predicted. This method can be used to calculate and predict the elution curve under complicated or unknown adsorption mechanism.
2 Theory

2.1 Establishment of Langmuir-BP-ANN adsorption model
There are a series of different traditional Langmuir adsorption isotherms, such as with or without competition, one or two kinds of adsorbed sites, monomolecular or multilmolecular adsorption, and so on, which are listed in Table 1. As far as a single component is concerned, when there is one type of adsorption site on adsorbent, Langmuir isotherm (1) is used for monomolecular adsorption and Sips isotherm (2) for multimolecular adsorption [27]; when there are two types of adsorption site on adsorbent, isotherms (3) and (4) are used for monomolecular and multimolecular adsorption, respectively [28]. As far as competitive components are concerned, when 
there is one type of adsorption site on adsorbent, isotherm (5) is used for monomolecular and isotherm (6) for multimolecular adsorption; when there are two types of adsorption site on adsorbent, isotherms (7) and (8) are used for monomolecular and multimolecular adsorption, respectively. 

These isotherms can be written in general forms also listed in Table 1.
The general forms in Table 1 of deduced Langmuir formula for single component:
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The deduced Langmuir formula for two-component competitive adsorption equation: 
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Where, ci is the concentration of component i, Ci, Bi, Be and Gei are all functions of ci, as shown in Table 1. When there is only one type of adsorption site, 
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Therefore, under different adsorption mechanisms, the above equation has various forms, especially the different relationship between formal concentration Ci and real concentration ci. Neural network has a wide range of data fitting ability without considering the specific equation form between data. The functional relationship between Ci-ci can be constructed by BP-ANN. In order to simplify calculation and take full use of the fitting ability of BP-ANN, we only seek for the function between Ci-ci and consider Bi, Be and Gei as the corresponding parameters. Therefore, combing the deduced Langmuir adsorption formula and BP-ANN, the Langmuir-BP-ANN adsorption models can be established as follows:
Adsorption model for single component: 
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Two-component competitive adsorption model: 


[image: image7.wmf]N

N

N

e

N

N

N

N

N

N

N

ei

N

i

N

i

i

C

C

B

C

B

C

B

C

C

G

C

G

q

2

1

2

2

1

1

2

1

1

+

+

+

+

=

                      (13)
Where, 
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A typical BP-ANN consists of input layer, hidden layer and output layer, and has excellent curve fitting ability. Its structure is shown in Fig. 1. Here, the input layer and the output layer represent the concentration of components in the mobile phase and the formal concentration in formula (12), respectively.
According to Fig. 1, the input layer, hidden layer and output layer are connected with each other, and the data transmission process is as follows:

Input from the input layer to the jth node of the hidden layer: 
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The output of the jth node of the hidden layer: 
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Output layer input: 
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Output layer output: 
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Since c=0, CN=0, then 
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Where, 
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 are corresponding transfer functions of hidden and output layer respectively. The BP-ANN neural network mapping model between CN-c was established by equation (18). Equation (18) combined with equation (12) or (13) was Langmuir-BP-ANN adsorption model. A large number of experimental data in chromatographic separation elution curves can meet the needs of neural network training set. Therefore, after combining the Langmuir-BP-ANN adsorption model with the chromatographic model, the adsorption parameters can be determined by inverse method and genetic algorithm. 
2.2 Determine the parameters of the Langmuir-BP-ANN adsorption models 

As the most commonly used chromatographic model, the equilibrium dispersive model (ED model) [30] can be expressed as:
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The initial and boundary conditions are:
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Where, x is the position, t the time, U the mobile phase linear velocity corresponding to the pump flow rate (Q), F the phase ratio, Da the apparent dispersion coefficient, 
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 the feeding concentration of substance i , 
[image: image31.wmf]p

t

 the injection time, ci and qi are the concentrations of component i in the mobile and the stationary phases, respectively. 

According to experimental elution curve, based on error calculation equation, the parameters of the Langmuir-BP-ANN adsorption model can be determined by the inverse method [31]. The inverse method is to minimize the error between the chromatographic elution curve 
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 of experimental elute at the kth time interval by optimization algorithm to determine the relevant parameters. The error calculation formula is:
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When training with several elution curves as samples, if concentration differences between the elution curves are large, the calculation error of a high concentration elution curve obtained from formula (23) will be much larger than that of an low concentration. In order to avoid the tendency to high concentration curves during parameter training, the training error function can be written as follows:
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Where, N is the number of elution curves, and K is the number of data points on each elution curves.
Genetic algorithm (GA) is an excellent optimization algorithm widely used in parameters determination [32-33], so the parameters in the Langmuir-BP-ANN adsorption models can be determined by inverse method combined with genetic algorithm.

2.3  Modeling process
The experimental data in this paper are from literature [34]. The process of modeling (showed in Fig. 2) is as follows: select the number of neurons in the hidden layer, determine the BP neural network structure, and randomly assign values to each parameter. Here, the value range of weights and thresholds was [-1, 1], the transfer functions of hidden and output layer were bipolar sigmoid function and linear function respectively. The calculated elution curves were obtained by solving the ED model under the input conditions of the training set, and the error was measured by comparing calculated and experimental results. According to the error size, the corresponding adaptation value of the genetic organism was given, so that the individuals with small error have better environmental adaptability, and then the new generation population was generated by genetic operators such as selection, crossover and mutation. The errors and fitness values of the individuals in the new population were calculated iteratively until the evolution was completed, and the weights and 
thresholds of each layer in the m-cresol and p-cresol adsorption equation were determined. A Langmuir competitive adsorption equation was selected according to the number of adsorption site types, and the separation of mixed cresol was predicted. Since the competitive adsorption equation has different forms due to the number of adsorption site types, it can be judged whether the previously selected Langmuir competitive adsorption equation should be adjusted according to the degree of agreement between the calculated results and the experimental results.
3 Results and discussion

3.1 Determination of p-cresol parameters

The elution curves of p-cresol under different conditions were shown in Fig. 3.  Fig. 3 showed that the shape of the elution curve changed significantly with the increase of p-cresol injection quality. When the concentration of p-cresol was 4.5 mg/mL and the injection time was 0.5 min (Fig. 3a), the peak of elution curve was in the form of Gauss. With the increase of injection concentration and feeding time (Fig.s 3b and c), the peak shape of the elution curve of p-cresol showed concave adsorption characteristics, and when the injection volume continued to increase (Fig.s 3d and e), it became convex. Langmuir, Freundlich and Toth adsorption isotherms cannot describe the adsorption characteristics of p-cresol, but the fitting effect of BET and Sips equations were not ideal, and their overall fitting errors are higher than 0.39 [34]. 

Neural network has excellent curve fitting ability, when the Langmuir-BP-ANN adsorption model is used to describe it, The number of neurons in the hidden layer affects the structure of BP network. Its influence on overall error Fun(se) were listed in Table 2. The parameters of the genetic algorithm during training were shown in Table 3.
It can be seen from Table 2, when the number of neurons in the hidden layer is 6, the training set error is the smallest. Its parameter values are as follows:
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The parameters obtained after training were brought into the training sample experiment, and the calculated elution curves were compared with the experimental results as shown in Fig. 3. The Langmuir-BP-ANN adsorption model can satisfactorily fit the characteristics of experimental elution curves for p-cresol under different conditions.
3.2 Determination of m-cresol parameters
The parameters of m-cresol adsorption model were determined according to the above process. The results are as follows:
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The comparison between the calculated results with the determined parameters and the experimental results were shown in Fig. 4. Fig. 4 showed that the calculated elution curves of m-cresol were in agreement with the experimental elution curves under different experimental conditions.

3.3 Determination of competitive adsorption model parameters
MIL-53 (Al) has a uniform pore structure, assuming that it has only one type of adsorption site when adsorbing mixed solution of m-cresol and p-cresol, the previously determined single-component Langmuir-BP-ANN adsorption model parameters of m-cresol and p-cresol were substituted into the two-component competition Langmuir-BP-ANN model formula (14) and used to predict the separation experiment of m-cresol and p-cresol. The predicted results were shown in Fig. 5.

Fig. 5 showed that the calculated results of mixed cresols were deviated from the experimental results. The reason for the deviation may be that there are more than one type of adsorption sites on MIL-53 (Al). Previous literature reported that when MIL-53 adsorbs guest molecules, “breathing effect” sometimes occur, resulting in two different types of adsorption sites: large pores and narrow pores [35-36]. Therefore, it is necessary to adjust the Langmuir-BP-ANN competitive adsorption model, that is, the formula (13) with two different types of adsorption sites should be adopted.

In order to determine the values of 
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 in formula (13) , taking the separation experiment of mixed cresol in Fig. 6 as sample, the three parameters were solved by inverse method and genetic algorithm, and the fitting effects were shown in Fig. 6 and optimized parameters were as follows:
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3.4 Experimental prediction of mixed cresol
The Langmuir-BP-ANN competitive adsorption model with two different types of adsorption sites and determined parameters were used for the prediction of the mixed cresol separation experiment, and the predicted results were shown in Fig. 7.

It can be seen from Fig. 7 that under different experimental conditions, the model calculation results of mixed cresol were in good agreement with the experimental results, indicating that MIL-53 (Al) may have two different types of adsorption sites when adsorbing m-cresol and p-cresol. 
4 Conclusion

According to different adsorption isotherms, the Langmuir adsorption formula was deduced. The Langmuir-BP-ANN adsorption model established by combining the deduced Langmuir adsorption formula and BP neural network has excellent curve fitting ability and can approximate the number of adsorption sites on adsorbent with the equation form. The combination of Langmuir-BP-ANN adsorption model and chromatographic model is suitable for the description of complex elution curve, whether the elution curve is concave, convex, flat, delayed or tailed. The fitting results showed that MIL-53 (Al) should not be one adsorption site type during adsorption of m- and p-cresols, but may have two different adsorption sites.
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