References
An J, Gonzalez-Avalos E, Chawla A, Jeong M, Lopez-Moyado IF, Li W,
et al. (2015). Acute loss of TET function results in aggressive myeloid
cancer in mice. Nat Commun 6: 10071.
Boucherat O, Vitry G, Trinh I, Paulin R, Provencher S, & Bonnet S
(2017). The cancer theory of pulmonary arterial hypertension. Pulm Circ
7: 285-299.
Briscoe J, & Therond PP (2013). The mechanisms of Hedgehog signalling
and its roles in development and disease. Nat Rev Mol Cell Biol
14: 416-429.
Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, et
al. (2019). Specific functions of TET1 and TET2 in regulating
mesenchymal cell lineage determination. Epigenetics Chromatin
12: 3.
Cheng X, Wang Y, & Du L (2019). Epigenetic Modulation in the Initiation
and Progression of Pulmonary Hypertension. Hypertension 74:733-739.
Chettimada S, Gupte R, Rawat D, Gebb SA, McMurtry IF, & Gupte SA
(2015). Hypoxia-induced glucose-6-phosphate dehydrogenase overexpression
and -activation in pulmonary artery smooth muscle cells: implication in
pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 308:L287-300.
Chettimada S, Rawat DK, Dey N, Kobelja R, Simms Z, Wolin MS, et
al. (2012). Glc-6-PD and PKG contribute to hypoxia-induced decrease in
smooth muscle cell contractile phenotype proteins in pulmonary artery.
Am J Physiol Lung Cell Mol Physiol 303: L64-74.
D’Alessandro A, El Kasmi KC, Plecita-Hlavata L, Jezek P, Li M, Zhang
H, et al. (2018). Hallmarks of Pulmonary Hypertension:
Mesenchymal and Inflammatory Cell Metabolic Reprogramming. Antioxid
Redox Signal 28: 230-250.
Dean A, Gregorc T, Docherty CK, Harvey KY, Nilsen M, Morrell NW,
et al. (2018). Role of the Aryl Hydrocarbon Receptor in Sugen
5416-induced Experimental Pulmonary Hypertension. Am J Respir Cell Mol
Biol 58: 320-330.
Farber HW, & Loscalzo J (2004). Pulmonary arterial hypertension. N Engl
J Med 351: 1655-1665.
Frismantiene A, Philippova M, Erne P, & Resink TJ (2018). Smooth muscle
cell-driven vascular diseases and molecular mechanisms of VSMC
plasticity. Cell Signal 52: 48-64.
Gupte SA, Li KX, Okada T, Sato K, & Oka M (2002). Inhibitors of pentose
phosphate pathway cause vasodilation: involvement of voltage-gated
potassium channels. J Pharmacol Exp Ther 301: 299-305.
Gupte SA, & Wolin MS (2012). Relationships between vascular oxygen
sensing mechanisms and hypertensive disease processes. Hypertension
60: 269-275.
Hamilton NM, Dawson M, Fairweather EE, Hamilton NS, Hitchin JR, James
DI, et al. (2012). Novel steroid inhibitors of glucose
6-phosphate dehydrogenase. J Med Chem 55: 4431-4445.
Hashimoto R, Lanier GM, Dhagia V, Joshi SR, Jordan A, Waddell I,
et al. (2020). Pluripotent hematopoietic stem cells augment
alpha-adrenergic receptor-mediated contraction of pulmonary artery and
contribute to the pathogenesis of pulmonary hypertension. Am J Physiol
Lung Cell Mol Physiol 318: L386-L401.
Hu CJ, Zhang H, Laux A, Pullamsetti SS, & Stenmark KR (2019).
Mechanisms contributing to persistently activated cell phenotypes in
pulmonary hypertension. J Physiol 597: 1103-1119.
Hu XQ, Dasgupta C, Chen M, Xiao D, Huang X, Han L, et al. (2017).
Pregnancy Reprograms Large-Conductance Ca(2+)-Activated K(+) Channel in
Uterine Arteries: Roles of Ten-Eleven Translocation Methylcytosine
Dioxygenase 1-Mediated Active Demethylation. Hypertension 69:1181-1191.
Joshi SR, Kitagawa A, Jacob C, Hashimoto R, Dhagia V, Ramesh A, et
al. (2020). Hypoxic Activation of G6PD Controls the Expression of Genes
Involved in the Pathogenesis of Pulmonary Hypertension Through the
Regulation of DNA Methylation. Am J Physiol Lung Cell Mol Physiol
Kwon AT, Arenillas DJ, Worsley Hunt R, & Wasserman WW (2012).
oPOSSUM-3: advanced analysis of regulatory motif over-representation
across genes or ChIP-Seq datasets. G3 2: 987-1002.
Lajoie AC, Lauziere G, Lega JC, Lacasse Y, Martin S, Simard S, et
al. (2016). Combination therapy versus monotherapy for pulmonary
arterial hypertension: a meta-analysis. Lancet Respir Med 4:291-305.
Liu A (2019). Proteostasis in the Hedgehog signaling pathway. Semin Cell
Dev Biol 93: 153-163.
Liu R, Jin Y, Tang WH, Qin L, Zhang X, Tellides G, et al. (2013).
Ten-eleven translocation-2 (TET2) is a master regulator of smooth muscle
cell plasticity. Circulation 128: 2047-2057.
Morrell NW, Adnot S, Archer SL, Dupuis J, Jones PL, MacLean MR, et
al. (2009). Cellular and molecular basis of pulmonary arterial
hypertension. J Am Coll Cardiol 54: S20-31.
Nakajima H, & Kunimoto H (2014). TET2 as an epigenetic master regulator
for normal and malignant hematopoiesis. Cancer Sci 105:1093-1099.
Runo JR, & Loyd JE (2003). Primary pulmonary hypertension. Lancet
361: 1533-1544.
Sahoo S, Meijles DN, Al Ghouleh I, Tandon M, Cifuentes-Pagano E, Sembrat
J, et al. (2016). MEF2C-MYOCD and Leiomodin1 Suppression by
miRNA-214 Promotes Smooth Muscle Cell Phenotype Switching in Pulmonary
Arterial Hypertension. PLoS One 11: e0153780.
Stenmark KR, Meyrick B, Galie N, Mooi WJ, & McMurtry IF (2009). Animal
models of pulmonary arterial hypertension: the hope for etiological
discovery and pharmacological cure. Am J Physiol Lung Cell Mol Physiol
297: L1013-1032.
Vitali SH, Hansmann G, Rose C, Fernandez-Gonzalez A, Scheid A, Mitsialis
SA, et al. (2014). The Sugen 5416/hypoxia mouse model of
pulmonary hypertension revisited: long-term follow-up. Pulm Circ
4: 619-629.
Warburg O, Wind F, & Negelein E (1927). The Metabolism of Tumors in the
Body. J Gen Physiol 8: 519-530.
Zhou W, Negash S, Liu J, & Raj JU (2009). Modulation of pulmonary
vascular smooth muscle cell phenotype in hypoxia: role of cGMP-dependent
protein kinase and myocardin. Am J Physiol Lung Cell Mol Physiol
296: L780-789.