References
Akashi, K., Miyake, C., & Yokota, A. (2001). Citrulline, a novel
compatible solute in drought-tolerant wild watermelon leaves, is an
efficient hydroxyl radical scavenger. FEBS Letters , 508,
438–442. https://doi.org/10.1016/s0014-5793(01)03123-4
Aukema, K. G., Tassoulas, L. J., Robinson, S. L., Konopatski, J. F.,
Bygd, M. D., & Wackett, L. P. (2020). Cyanuric acid biodegradation via
biuret: physiology, taxonomy, and geospatial distribution. Applied
and Environmental Microbiology, 86, e01964-19.
https://doi.org/10.1128/AEM.01964-19
Baba A., Hasezawa S., Syōno K., (1986) Cultivation of rice protoplasts
and their transformation mediated
by Agrobacterium spheroplasts, Plant and Cell Physiology ,27, 463–471. https://doi.org/10.1093/oxfordjournals.pcp.a077122
Blume, C., Ost, J., Mühlenbruch, M., Peterhänsel, C., & Laxa, M.
(2019). Low CO2 induces urea cycle intermediate
accumulation in Arabidopsis thaliana. PloS One, 14, e0210342.
https://doi.org/10.1371/journal.pone.0210342
Caldana, C., Scheible, W. R., Mueller-Roeber, B., & Ruzicic, S. (2007).
A quantitative RT-PCR platform for high-throughput expression profiling
of 2500 rice transcription factors. Plant Methods, 3, 7.
https://doi.org/10.1186/1746-4811-3-7
Cameron, S. M., Durchschein, K., Richman, J. E., Sadowsky, M. J., &
Wackett, L. P. (2011). A new family of biuret hydrolases involved inS -triazine ring metabolism. ACS Catalysis, 2011,
1075–1082. https://doi.org/10.1021/cs200295n
Casartelli, A., Melino, V. J., Baumann, U., Riboni, M., Suchecki, R.,
Jayasinghe, N. S., Mendis, H., Watanabe, M., Erban, A., Zuther, E.,
Hoefgen, R., Roessner, U., Okamoto, M., & Heuer, S. (2019). Opposite
fates of the purine metabolite allantoin under water and nitrogen
limitations in bread wheat. Plant Molecular Biology, 99,
477–497. https://doi.org/10.1007/s11103-019-00831-z
Collier, R., & Tegeder, M. (2012). Soybean ureide transporters play a
critical role in nodule development, function and nitrogen export.The Plant Journal, 72, 355–367.
https://doi.org/10.1111/j.1365-313X.2012.05086.x
Desimone, M., Catoni, E., Ludewig, U., Hilpert, M., Schneider, A.,
Kunze, R., Tegeder, M., Frommer, W. B., & Schumacher, K. (2002). A
novel superfamily of transporters for allantoin and other oxo
derivatives of nitrogen heterocyclic compounds in Arabidopsis. The
Plant Cell, 14, 847–856. https://doi.org/10.1105/tpc.010458
Duran, V. A., & Todd, C. D. (2012). Four allantoinase genes are
expressed in nitrogen-fixing soybean. Plant Physiology and
Biochemistry, 54, 149–155.
https://doi.org/10.1016/j.plaphy.2012.03.002
Esquirol, L., Peat, T. S., Wilding, M., Lucent, D., French, N. G.,
Hartley, C. J., Newman, J., & Scott, C. (2018). Structural and
biochemical characterization of the biuret hydrolase (BiuH) from the
cyanuric acid catabolism pathway of Rhizobium leguminasorum bv.
viciae 3841. PLoS One , 13, e0192736.
https://doi.org/10.1371/journal.pone.0192736
Hewitt, E. J. (1966). The composition of the nutrient solution. In Sand
and Water Culture Methods Used in the Study of Plant Nutrition (eds E.
J. Hewitt), pp 190. Farnham Royal Bucks, Commonwealth Agricultural
Bureaux, Slough, UK.
Huang, X. Y., Li, M., Luo, R., Zhao, F. J., & Salt, D. E. (2019).
Epigenetic regulation of sulfur homeostasis in plants. Journal of
Experimental Botany, 70, 4171–4182. https://doi.org/10.1093/jxb/erz218
Joshi, V., & Fernie, A. R. (2017). Citrulline metabolism in plants.Amino Acids, 49, 1543–1559.
https://doi.org/10.1007/s00726-017-2468-4
Kaur, H., Chowrasia, S., Gaur, V. S., & Mondal T. K. (2021). Allantoin:
Emerging role in plant abiotic stress tolerance. Plant Molecular
Biology Reporter, 39, 648–661.
https://doi.org/10.1007/s11105-021-01280-z
Kawasaki, S., Miyake, C., Kohchi, T., Fujii, S., Uchida, M., & Yokota,
A. (2000). Responses of wild watermelon to drought stress: accumulation
of an ArgE homologue and citrulline in leaves during water deficits.Plant & Cell Physiology, 41, 864–873.
https://doi.org/10.1093/pcp/pcd005
Lee, D. K., Redillas, M., Jung, H., Choi, S., Kim, Y. S., & Kim, J. K.
(2018). A nitrogen molecular sensing system, comprised of the
ALLANTOINASE and UREIDE PERMEASE 1 genes, can be used to monitor N
status in rice. Frontiers in Plant Science, 9, 444.
https://doi.org/10.3389/fpls.2018.00444
Lescano, C. I., Martini, C., González, C. A., & Desimone, M. (2016).
Allantoin accumulation mediated by allantoinase downregulation and
transport by Ureide Permease 5 confers salt stress tolerance to
Arabidopsis plants. Plant Molecular Biology, 91, 581–595.
https://doi.org/10.1007/s11103-016-0490-7
Lescano, I., Devegili, A. M., Martini, C., Tessi, T. M., González, C.
A., & Desimone, M. (2020). Ureide metabolism in Arabidopsis thaliana is
modulated by C:N balance. Journal of plant research, 133,
739–749. https://doi.org/10.1007/s10265-020-01215-x
Mikkelsen R.L. (1990). Biuret in urea fertilizer. Fertilizer
research, 26, 311-318.
Nourimand, M., & Todd, C. D. (2016). Allantoin Increases Cadmium
Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms.Plant & Cell Physiology, 57, 2485–2496.
https://doi.org/10.1093/pcp/pcw162
Ochiai, K., Uesugi, A., Masuda, Y., Nishii, M., & Matoh, T. (2020).
Overexpression of exogenous biuret hydrolase in rice plants confers
tolerance to biuret toxicity. Plant Direct, 4, e00290.
https://doi.org/10.1002/pld3.290
Ogata T. & Yamamoto M. (1959). Effects of biuret on the metabolism of
germinating plant. I. Japanese Journal of Soil Science and Plant
Nutrition, 29, 549-555. (in Japanese )
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L.,
Barrette, M., Gauthier, C., Jacques, P. É., Li, S., & Xia, J. (2021).
MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional
insights. Nucleic Acids Research, 49, W388–W396.
https://doi.org/10.1093/nar/gkab382
Redillas, M., Bang, S. W., Lee, D. K., Kim, Y. S., Jung, H., Chung, P.
J., Suh, J. W., & Kim, J. K. (2019). Allantoin accumulation through
overexpression of ureide permease1 improves rice growth under
limited nitrogen conditions. Plant Biotechnology Journal, 17,
1289–1301. https://doi.org/10.1111/pbi.13054
Robinson, S. L., Badalamenti, J. P., Dodge, A. G., Tassoulas, L. J., &
Wackett, L. P. (2018). Microbial biodegradation of biuret: defining
biuret hydrolases within the isochorismatase superfamily.Environmental microbiology, 20, 2099–2111.
https://doi.org/10.1111/1462-2920.14094
Rocha, P. S., Sheikh, M., Melchiorre, R., Fagard, M., Boutet, S., Loach,
R., Moffatt, B., Wagner, C., Vaucheret, H., & Furner, I. (2005). The
Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for anS -adenosyl-L-homocysteine hydrolase required for DNA
methylation-dependent gene silencing. The Plant Cell, 17,
404–417. https://doi.org/10.1105/tpc.104.028332
Sakurai, N., Ara, T., Enomoto, M., Motegi, T., Morishita, Y.,
Kurabayashi, A., Iijima, Y., Ogata, Y., Nakajima, D., Suzuki, H., &
Shibata, D. (2014). Tools and databases of the KOMICS web portal for
preprocessing, mining, and dissemination of metabolomics data. BioMed
research international, 2014, 194812.
https://doi.org/10.1155/2014/194812
Schubert K. R. (1986). Products of biological nitrogen fixation in
higher plants: Synthesis, transport, and metabolism. Annual Review
of Plant Physiology, 37, 539–574.
Soltabayeva, A., Srivastava, S., Kurmanbayeva, A., Bekturova, A., Fluhr,
R., & Sagi, M. (2018). Early senescence in older leaves of low
nitrate-grown atxdh1 uncovers a role for purine catabolism in n supply.Plant Physiology, 178, 1027–1044.
https://doi.org/10.1104/pp.18.00795
Wang, P., Kong, C. H., Hu, F., & Xu, X. H. (2007). Allantoin involved
in species interactions with rice and other organisms in paddy soil.Plant and Soil, 296, 43–51.
https://doi.org/10.1007/s11104-007-9288-3
Watanabe, S., Matsumoto, M., Hakomori, Y., Takagi, H., Shimada, H., &
Sakamoto, A. (2014). The purine metabolite allantoin enhances abiotic
stress tolerance through synergistic activation of abscisic acid
metabolism. Plant, Cell & Environment, 37, 1022–1036.
https://doi.org/10.1111/pce.12218
Webster, G. C., Berner, R. A., & Gansa, A. N. (1957). The effect of
biuret on protein synthesis in plants. Plant Physiology, 32,
60–61. https://doi.org/10.1104/pp.32.1.60
Yamaji, N., & Ma, J. F. (2009). A transporter at the node responsible
for intervascular transfer of silicon in rice. The Plant Cell,
21, 2878–2883. https://doi.org/10.1105/tpc.109.069831
Young, E.Z., & Conway C.F. (1942). On the estimation of allantoin by
the riminischryver reaction. Journal of Biological Chemistry,142, 839-853, https://doi.org/10.1016/S0021-9258(18)45082-X