References
Akashi, K., Miyake, C., & Yokota, A. (2001). Citrulline, a novel compatible solute in drought-tolerant wild watermelon leaves, is an efficient hydroxyl radical scavenger. FEBS Letters , 508, 438–442. https://doi.org/10.1016/s0014-5793(01)03123-4
Aukema, K. G., Tassoulas, L. J., Robinson, S. L., Konopatski, J. F., Bygd, M. D., & Wackett, L. P. (2020). Cyanuric acid biodegradation via biuret: physiology, taxonomy, and geospatial distribution. Applied and Environmental Microbiology, 86, e01964-19. https://doi.org/10.1128/AEM.01964-19
Baba A., Hasezawa S., Syōno K., (1986) Cultivation of rice protoplasts and their transformation mediated by Agrobacterium  spheroplasts, Plant and Cell Physiology ,27, 463–471. https://doi.org/10.1093/oxfordjournals.pcp.a077122
Blume, C., Ost, J., Mühlenbruch, M., Peterhänsel, C., & Laxa, M. (2019). Low CO2 induces urea cycle intermediate accumulation in Arabidopsis thaliana. PloS One, 14, e0210342. https://doi.org/10.1371/journal.pone.0210342
Caldana, C., Scheible, W. R., Mueller-Roeber, B., & Ruzicic, S. (2007). A quantitative RT-PCR platform for high-throughput expression profiling of 2500 rice transcription factors. Plant Methods, 3, 7. https://doi.org/10.1186/1746-4811-3-7
Cameron, S. M., Durchschein, K., Richman, J. E., Sadowsky, M. J., & Wackett, L. P. (2011). A new family of biuret hydrolases involved inS -triazine ring metabolism. ACS Catalysis, 2011, 1075–1082. https://doi.org/10.1021/cs200295n
Casartelli, A., Melino, V. J., Baumann, U., Riboni, M., Suchecki, R., Jayasinghe, N. S., Mendis, H., Watanabe, M., Erban, A., Zuther, E., Hoefgen, R., Roessner, U., Okamoto, M., & Heuer, S. (2019). Opposite fates of the purine metabolite allantoin under water and nitrogen limitations in bread wheat. Plant Molecular Biology, 99, 477–497. https://doi.org/10.1007/s11103-019-00831-z
Collier, R., & Tegeder, M. (2012). Soybean ureide transporters play a critical role in nodule development, function and nitrogen export.The Plant Journal, 72, 355–367. https://doi.org/10.1111/j.1365-313X.2012.05086.x
Desimone, M., Catoni, E., Ludewig, U., Hilpert, M., Schneider, A., Kunze, R., Tegeder, M., Frommer, W. B., & Schumacher, K. (2002). A novel superfamily of transporters for allantoin and other oxo derivatives of nitrogen heterocyclic compounds in Arabidopsis. The Plant Cell, 14, 847–856. https://doi.org/10.1105/tpc.010458
Duran, V. A., & Todd, C. D. (2012). Four allantoinase genes are expressed in nitrogen-fixing soybean. Plant Physiology and Biochemistry, 54, 149–155. https://doi.org/10.1016/j.plaphy.2012.03.002
Esquirol, L., Peat, T. S., Wilding, M., Lucent, D., French, N. G., Hartley, C. J., Newman, J., & Scott, C. (2018). Structural and biochemical characterization of the biuret hydrolase (BiuH) from the cyanuric acid catabolism pathway of Rhizobium leguminasorum bv. viciae 3841. PLoS One , 13, e0192736. https://doi.org/10.1371/journal.pone.0192736
Hewitt, E. J. (1966). The composition of the nutrient solution. In Sand and Water Culture Methods Used in the Study of Plant Nutrition (eds E. J. Hewitt), pp 190. Farnham Royal Bucks, Commonwealth Agricultural Bureaux, Slough, UK.
Huang, X. Y., Li, M., Luo, R., Zhao, F. J., & Salt, D. E. (2019). Epigenetic regulation of sulfur homeostasis in plants. Journal of Experimental Botany, 70, 4171–4182. https://doi.org/10.1093/jxb/erz218
Joshi, V., & Fernie, A. R. (2017). Citrulline metabolism in plants.Amino Acids, 49, 1543–1559. https://doi.org/10.1007/s00726-017-2468-4
Kaur, H., Chowrasia, S., Gaur, V. S., & Mondal T. K. (2021). Allantoin: Emerging role in plant abiotic stress tolerance. Plant Molecular Biology Reporter, 39, 648–661. https://doi.org/10.1007/s11105-021-01280-z
Kawasaki, S., Miyake, C., Kohchi, T., Fujii, S., Uchida, M., & Yokota, A. (2000). Responses of wild watermelon to drought stress: accumulation of an ArgE homologue and citrulline in leaves during water deficits.Plant & Cell Physiology, 41, 864–873. https://doi.org/10.1093/pcp/pcd005
Lee, D. K., Redillas, M., Jung, H., Choi, S., Kim, Y. S., & Kim, J. K. (2018). A nitrogen molecular sensing system, comprised of the ALLANTOINASE and UREIDE PERMEASE 1 genes, can be used to monitor N status in rice. Frontiers in Plant Science, 9, 444. https://doi.org/10.3389/fpls.2018.00444
Lescano, C. I., Martini, C., González, C. A., & Desimone, M. (2016). Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Molecular Biology, 91, 581–595. https://doi.org/10.1007/s11103-016-0490-7
Lescano, I., Devegili, A. M., Martini, C., Tessi, T. M., González, C. A., & Desimone, M. (2020). Ureide metabolism in Arabidopsis thaliana is modulated by C:N balance. Journal of plant research, 133, 739–749. https://doi.org/10.1007/s10265-020-01215-x
Mikkelsen R.L. (1990). Biuret in urea fertilizer. Fertilizer research, 26, 311-318.
Nourimand, M., & Todd, C. D. (2016). Allantoin Increases Cadmium Tolerance in Arabidopsis via Activation of Antioxidant Mechanisms.Plant & Cell Physiology, 57, 2485–2496. https://doi.org/10.1093/pcp/pcw162
Ochiai, K., Uesugi, A., Masuda, Y., Nishii, M., & Matoh, T. (2020). Overexpression of exogenous biuret hydrolase in rice plants confers tolerance to biuret toxicity. Plant Direct, 4, e00290. https://doi.org/10.1002/pld3.290
Ogata T. & Yamamoto M. (1959). Effects of biuret on the metabolism of germinating plant. I. Japanese Journal of Soil Science and Plant Nutrition, 29, 549-555. (in Japanese )
Pang, Z., Chong, J., Zhou, G., de Lima Morais, D. A., Chang, L., Barrette, M., Gauthier, C., Jacques, P. É., Li, S., & Xia, J. (2021). MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Research, 49, W388–W396. https://doi.org/10.1093/nar/gkab382
Redillas, M., Bang, S. W., Lee, D. K., Kim, Y. S., Jung, H., Chung, P. J., Suh, J. W., & Kim, J. K. (2019). Allantoin accumulation through overexpression of ureide permease1 improves rice growth under limited nitrogen conditions. Plant Biotechnology Journal, 17, 1289–1301. https://doi.org/10.1111/pbi.13054
Robinson, S. L., Badalamenti, J. P., Dodge, A. G., Tassoulas, L. J., & Wackett, L. P. (2018). Microbial biodegradation of biuret: defining biuret hydrolases within the isochorismatase superfamily.Environmental microbiology, 20, 2099–2111. https://doi.org/10.1111/1462-2920.14094
Rocha, P. S., Sheikh, M., Melchiorre, R., Fagard, M., Boutet, S., Loach, R., Moffatt, B., Wagner, C., Vaucheret, H., & Furner, I. (2005). The Arabidopsis HOMOLOGY-DEPENDENT GENE SILENCING1 gene codes for anS -adenosyl-L-homocysteine hydrolase required for DNA methylation-dependent gene silencing. The Plant Cell, 17, 404–417. https://doi.org/10.1105/tpc.104.028332
Sakurai, N., Ara, T., Enomoto, M., Motegi, T., Morishita, Y., Kurabayashi, A., Iijima, Y., Ogata, Y., Nakajima, D., Suzuki, H., & Shibata, D. (2014). Tools and databases of the KOMICS web portal for preprocessing, mining, and dissemination of metabolomics data. BioMed research international, 2014, 194812. https://doi.org/10.1155/2014/194812
Schubert K. R. (1986). Products of biological nitrogen fixation in higher plants: Synthesis, transport, and metabolism. Annual Review of Plant Physiology, 37, 539–574.
Soltabayeva, A., Srivastava, S., Kurmanbayeva, A., Bekturova, A., Fluhr, R., & Sagi, M. (2018). Early senescence in older leaves of low nitrate-grown atxdh1 uncovers a role for purine catabolism in n supply.Plant Physiology, 178, 1027–1044. https://doi.org/10.1104/pp.18.00795
Wang, P., Kong, C. H., Hu, F., & Xu, X. H. (2007). Allantoin involved in species interactions with rice and other organisms in paddy soil.Plant and Soil, 296, 43–51. https://doi.org/10.1007/s11104-007-9288-3
Watanabe, S., Matsumoto, M., Hakomori, Y., Takagi, H., Shimada, H., & Sakamoto, A. (2014). The purine metabolite allantoin enhances abiotic stress tolerance through synergistic activation of abscisic acid metabolism. Plant, Cell & Environment, 37, 1022–1036. https://doi.org/10.1111/pce.12218
Webster, G. C., Berner, R. A., & Gansa, A. N. (1957). The effect of biuret on protein synthesis in plants. Plant Physiology, 32, 60–61. https://doi.org/10.1104/pp.32.1.60
Yamaji, N., & Ma, J. F. (2009). A transporter at the node responsible for intervascular transfer of silicon in rice. The Plant Cell, 21, 2878–2883. https://doi.org/10.1105/tpc.109.069831
Young, E.Z., & Conway C.F. (1942). On the estimation of allantoin by the riminischryver reaction. Journal of Biological Chemistry,142, 839-853, https://doi.org/10.1016/S0021-9258(18)45082-X