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Abstract

The solutions of a number of well known boundary value problems of
complex analysis (for instance, the Riemann boundary value problem) can
be found in the form of curvilinear integrals over the boundaries of do-
mains under consideration. In this connection the classical results on that
problems concern domains with rectifiable boundaries only. On the other
hand, the boundary value problems themselves keep their sense for non-
rectifiable boundaries. This is the reason for recent development of the-
ory of generalized integration over non-rectifiable plane Jordan curves and
arcs. The existence of that generalized integrations over non-rectifiable
arcs depends on certain geometry properties of the arcs in neighborhoods
of their ends. Here we consider connections of generalized integration and
so called torsions of the path of integration at its end points.
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Introduction

Let us consider first a well known boundary-value problem of complex analysis
— so called Riemann problem on a simple Jordan arc (see, for instance, [1, 2, 3]).

Given a directed Jordan arc I' in the complex plane C with beginning and
end at points a; and ay relatively, and two functions G(t), g(¢), t € . Find
all holomorphic in C \ T' functions ®(z) which vanish at oo and have boundary
limits ®*(¢) from the left and from the right correspondingly at any point
t € T'\ {a1, a2} such that

T () =Gt)d (t) + g(t), teTl\{ar,az}. (1)

In addition, the desired function ® must satisfy certain conditions on its growth
at the end points aq 2.



In numerous classical works (see [1, 2, 3] and many other) the solutions of
this problem are obtained in terms of Cauchy type integrals. Particularly, a
solution of so called jump problem

OT(t) =07 (t) +g(t), tel\{ayaz}, (2)

on piecewise - smooth arc I is representable as the Cauchy type integral

@(z):%/M, 2 ¢T. (3)
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As a result, in all classical works on this problem the boundary I' is assumed rec-
tifiable, although the formulation of the problem does not imply this restriction.
It keeps the sense for non-rectifiable arcs, too.

The Riemann boundary-value problem for non-rectifiable boundaries was
solved first in the papers [4, 5, 6, 7). The main result of these studies is the
following. Let H,(T'), v € (0,1], stand for the set of all defined on I" functions
g(t) satistying the Holder condition

() — g(t)]

h’l/(g?F) = Sup{ |t_t/|l, .t7tler7t#t/}<+oo (4)

If g(t) € H ('), then the jump problem on a closed Jordan curve I' has a
solution under restriction

1 —
V>§dmf, (5)

and this condition cannot be improved. The symbol dm stands here for the
upper Minkowskii dimension, which is known also as box dimension and upper
metric dimension (see [8]). It is defined for any compact set K C C by formula

dm K = lim sup 22N
r—0 —logr

where N (K, r) is the least number of disks of radius r covering K. As known, the
Minkowskii dimension of any rectifiable curve equals to 1 (see, for instance, [9]),
and for rectifiable curves this result turns to the theorems of E.M. Dynkin [10]
and T.Salimov [11] on continuity of the Cauchy type integral. The mentioned
above exactness of condition (5) means that for any values v € (0,1] and d €
[2v,2) we can find a curve I' and a function g(¢) such that dm " = d, g(t) satisfies
on I' the Holder condition with exponent v, and the corresponding jump problem
has not solution. On the other hand, there exist curves and jumps such that
condition (5) is broken, but the corresponding jump problem has a solution.
Analogous results are valid for arcs.

Later this result was improved in terms of so called Marcinkiewicz exponents
[12]. We will introduce this concept in the next section.

All mentioned results concerning non-rectifiable paths were obtained with-
out using of the Cauchy type integral because that integral is not defined for



non-rectifiable paths of integration. But this situation leads to the problem of
generalization of concept of curvilinear integral

/udz—deE

T

for non-rectifiable paths I'. It seems that the first attempt in this direction was
made in article [13]. The jump problem on non-rectifiable arc and the task of
integration over that paths turned out to be closely related.

Presently there are published numerous papers on this subject, see, for in-
stance, [14]-[27]. In the next section we formulate the definition of integration
over non-rectifiable paths using constructions of these works. This definition is
based on the concept of integrator (see below). In section 1 we show that the
offered construction of integrator is closely connected with so called torsion of
arc I'. Almost all published until now results on this subject concern arcs of
moderate torsion. Then we describe new construction of generalized integration
over non-rectifiable paths, which enables us to integrate over arcs of high torsion
(see definitions of arcs of moderate and high torsion below). Then we apply this
construction for study of the Riemann boundary value problem.

1 Arcs of moderate torsion

1.1 Generalization of curvilinear integral

First we describe a recent version of definition of integral over non-rectifiable
arc I'. Let I' be a Jordan arc of null plane measure beginning at point a; and
ending in as.

Definition 1 Let function f(t) be defined on T'\ {a1,as}. A defined in C\ T
Junction F(z) is called an integrator of f on dz, if it has limit values FT(t)
and F~(t) from the left and from the right correspondingly at every point t €
'\ {a1,a2}, and

Frt)—F~(t) = f(t), teT\{ay,a},

support of F is compact set, F is continuously differentiable in C \ T', and
integrable together with its derivative Fs in C.

A integrator F is called continuous if it is integrable together with Fz in a
power p > 2.

If functions u(¢) has integrator U(z), then in the case of piecewise-smooth arc
I" the Green formula implies equality

/u(z)dz = —// %—gdzd?.
T C

It is source of the following definition of integration over non-rectifiable arc.



Definition 2 If defined on T'\ E function u(t) has integrator U(z), then map-
ping
ou
ClawH/uwdz::—//a—fjdsz (6)
z
r c

is called a (generalized) integration of u on dz over T.

Remark 1 If we replace in these two definitions derivative Fz by F, and map-
ping (6) by o
ClawH/uwdE:://Tdesz, (7)
r c

then we obtain the definitions of integrator and integration on dZ.

One can show easily, that if u; » and v; 2 belong C' and w1 = ug, v1 = V2 in
a neighborhood of T', then

/u1~dz:/u2~dz, /U1~d§:/’02'd27

r r r r
i.e., these mappings are defined on the spaces of I'—germs of C!(C)-functions
and (1,1) — forms.
1.2 Existence of integrators

Here we obtain the conditions of existence of integrators in terms of Marcinkiew-
icz exponents. -
Let us consider single-valued in C\ T" branch of logarithm

1 Z— Qg

—~ In ,
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vanishing at the infinity point. We denote this function Kr(z), and call it loga-
rithmic kernel of arc T'. Obviously, it has unit jump on I'. Let xr(z) € C§°(C)
be a smooth function with compact support equaling to unit in a neighborhood
of T'. Then product xr K1 will be an integrator (a continuous integrator) of unit
on arc I' if Kt is integrable (square integrable) in neighborhoods of ends a; ».
In this connection we introduce concept of torsion of arc I'.

Definition 3 The torsion of arc I' at point a;, j = 1,2 is a value

7; := inf {p >0 :/ | K1 (2)|YPdx dy < oo},

where integral is taken over a neighborhood of a;. If T; < 1, then we say that
the arc has moderate torsion at point aj, otherwise its torsion is high.

This value characterizes the rate of curling of I' around the point a;.



Example 1 Consider arc I' such that there exists a smooth arc vy with beginning
a1 which has not other common points with T in a neighborhood of a1. Then the
difference Kr(z) — K, (z) is bounded near the point a1, i.e., Kr has logarithmic
growth at the point a;. Hence, it is integrable with any positive power near this
point, and has zero torsion.

In particular, if I' is smooth at point a;, then it has zero torsion in this point.
Logarithmic spiral has zero torsion at its focus, too.

Example 2 Let
Sy = {z=rexp2mir?:0<r <1}, p>0.

It is a spiral-like arc with beginning at the origin and end point 1. Denote
I:=10,1] the segment of real azxis with the same beginning and end. These arc
and segment intersect at points x, =n~P . n=1,2,.... Let us consider finite
domains A,, bounded by segments [Tp41,x,] and arcs o, = {z = rexp2nr =P :

Tpy1 <7 <xp}, n=1,2,.... Clearly, Ks,(2) — K1(2) = — Y xn(2), where
n=1

Xn(2) is characteristic function of domain A,,. In this domain
2| P —1<n<|z7P,

and, consequently, near the origin we have
i
Ks, (2) = —|z|7P + %ln|z| + O(1).

Clearly, the torsion of this spiral at the origin is p/2.

We will seek an integrator U(z) of a defined on T function u(t) # 1 in the
form of product
U(z) = u™(2)xr(2)Kr(2), (8)

where u*(2) is a continuation of u(¢) on the whole complex plane. An universal
tool for building of this continuation is the Whitney extension operator &, (see,
for instance, [32]). If a function () is continuous on a compact set A C C, then
its Whitney extension Eyu(z) from this set is continuous in the whole complex
plane function such that its restriction on A coincides with u(¢), and in C\ A it
has partial derivatives of all orders. In addition, if v € H,(A), v € (0,1], then
Eou € H,(C), and its partial derivatives satisfy inequation

hy(u, A)
~ dist™ "V (2, A)

‘amma’“(z) 2 eC\ A

oxmoy™

This estimation implies the mentioned above condition (5) of solvability of the
jump problem on a non-rectifiable curve.

In the present paper we will use another characteristics of I' — so called
Marcinkiewicz exponents.



Let B(t;r):=={z:|z—t|<r},r>0,p>0,teTI. Weput

(t:7) // dx dy
dist?(x + 4y, ')’

If t # a1 2 and 7 is sufficiently small, then I' divides the disk B(¢;7) into two
parts BE(t;7) lying on the left-hand side and on the right-hand side of T' corre-

spondingly, and we put
t // dx dy
r)
dist? (z + iy, T)

B*(t;r)
As above, we consider that I' is a simple Jordan arc of null plane measure.

Definition 4 Left and right Marcinkiewicz exponents of an arc I' at the point
t € '\ {a1,a2} are equal to

m*(I;t) := sup{p : lim I;E(t; r) < oo}
r—0

The value
m(T;t) := max{m™*(I;t),m™ ([;t)}

is called its Marcinkiewicz exponent at the point t € T'\ {a1, a2}, and
m(T;a;) :=sup{p: lim I,(a;;7) < o0}, j=1,2,
r—0

are Marcinkiewicz exponents at end points a1 and as.

These characteristics were introduced first in [28]. Later (see, for example, [12])
the following their properties were proved:

— all Marcinkiewicz exponents of I' at any its point does not exceed 1;

— any Marcinkiewicz exponent of I' at any its point is greater or equal to
2 — d, where d = dm N is the upper metric dimension of any neighborhood of
this point in I". Let us refer an example of calculation of the Marcinkiewicz
exponents at end point.

Example 3 We fix two decreasing and converging to zero sequences of positive
values {a,} and {b,}, a1 = by = 1. Arc X begins at point a; # 0, ends at the
origin, and consists of successive segments [a1,a1 + ib1], [a1 + @by, —ay + iby],

[—a1 +ib1, —a1 —Z'bﬂ, [—a1 —’ibl, as —ibl], [a2 —ibl, ao —l—ibg], [ag —‘ribg, —as +Zb2]
o0 o0

and so on. If at least one of series > an, >, b, diverges, then length of this
n=1 n=1

broken line is infinite. The convergence of integral [[ m is equivalent

|z|<r
to convergence of series of of integrals of the same function over trapezoids
with vertices £(an + iby), £(ant1 + ibpi1) (horizontal trapezoids), with vertices
Ap, + tbpy Gpt1 +ibpt1, Gni1 — by, ay —iby—1 (Tight vertical trapezoids) and over
analogous left vertical trapezoids. In turn, these series of integrals converge if



oo o0
and only if there converge series Y. an(by —bp1)t7P and > by(an—an+1)t7P.

n=1 n=1
Particularly, for a, =n~%, b, =n"?, 0 < a,B < 1 these series converge for
p > max {‘1%5, %‘g}, i.e.,
a+p8 a+p
m(\;0) = ma .
(%;0) X{ 1+a’ 148 }

We will prove a theorem on existence of integrators on arcs of moderate
torsion in terms of local Holder condition. Let us define it.

Definition 5 Let V : T'+— [v,1],v > 0 be a given mapping. We denote Hy (T")
the class of all defined on T' functions u(t) satisfying the following assumption:

— any point t € T' has a neighborhood N (t) in C such that the restriction of
u on I'(t) := N(t) N T belongs to the Holder space Hy ) (T'(t)).

Theorem 1 Let I' be an arc with moderate torsion at both its ends, and u €
Hy(T). If
V() >1—m(T;t) 9)

at any its inner point t € '\ {a1 2} and
Viaj) > 1 -m(l5a;)(1 = 7), =12, (10)

at its end points, then function u(t) has an integrator. If

Vi) >1— %m(l“;t) (11)
foranyt € '\ {a12} and
Via)> 1 (5 - m)mTiay), j=12, (12

then it has a continuous integrator.

Proof. We consider without loss of generality that the neighborhoods N(t) are
disks: N(t) = B(t,r), and their radii » = r(t) > 0 are sufficiently small. These
disks cover I', and we can select finite covering by disks B;, j = 1,2,...,m,
B; = B(t;,r;). We consider that enumeration of these disks corresponds the
direction of I', t1 = aq, t,, = as.

Let ¢;, 7 = 1,2,...,m, be a smooth partition of unit subordinated to the
covering Bj, ¢;(t;) =1,j =1,2,...,m. We put u; := ut;, and built integrators
for these functions in the following way.

If ¢; is not end point of I', then I' divides the disk B; onto two parts Bji
lying from the left and from the right of I" correspondingly. Let x;(z) be the
characteristic function of Bj for m™(T';¢) > m~(I';¢) and characteristic function

of B, with sign minus otherwise, and put

Uj(2) =1, (2)x;(2)Eu(z).



Obviously, this product has jump u; on I', and its first partial derivatives are
integrable near t; with any power lesser than m(I';¢;)/(1—V (¢;)). Hence, under
restriction (9) it is integrable, i.e., U; is integrator of u;, and under restriction
(11) it is integrable with some power greater 2, and U; is continuous integrator
of u;.

Now let ¢; be one of the end points of I'. Then we put

U;(z) == v, (2)Kr(2)Eu(z).

It also has jump u; on I'. The first partial derivatives of product ;(z)Eu(z)
are integrable with the same powers as in the previous case. The logarithmic
kernel of I is integrable near end point a; with any power lesser than T{l, where
7; is the torsion. Hence, the first partial derivatives are integrable near a; with
any power less than m(I'; a;)/(m(T; a;)7; +1 —V (¢;)). Hence, under restriction
(10) it is integrable, i.e., U; is integrator of w;, and under restriction (12) it
is integrable with some power greater 2, and U; is continuous integrator of u;.
The sum of appropriate integrators u; gives integrator or continuous integrator
of u. The theorem is proved.

Remark 2 The conditions (10) and (12) imply that the arc T has moderate
torsion.

Remark 3 The obtained in the proof of Theorem 1 integrator U has the fol-
lowing additional property:

—any point t € T'\ {a12} has sufficiently small neighborhood B(t,r) such
that U(z) satisfies the Holder condition with exponent V (t) in the both semi-
neighborhoods B*(t,r).

Remark 4 Integration on dz exists under just the same conditions.

The assumptions of Theorem are less restrictive than in the theorems on
generalized integrability over arcs from works [24]-[26].

1.3 Uniqueness of integration

Let us call to our mind the concepts of Hausdorff dimension and Hausdorff
measure. As above, we denote B(z,r) the disk of radius r with center z, and
put for a fixed compact set A C C and positive r, A

H)(A) :inf{Zr,;\:Ac U B(wg,mk), 21 € E,0 <71y ST}-

k=1 k=1

Then
HANA) = hfg HIMA)

is A-dimensional Hausdorff measure of A, and

dmh(E) = inf{\ > 0: H*(A) = 0}



is the Hausdorff dimension of this set. Its properties are well-known (see, for
instance, [8]).

As known (see, for instance, [30]), if dmhT = A > 1 and H*(T') > 0, then
there exists a non-trivial continuous in C and holomorphic in C\T function H(z).
We consider it as integrator of zero, because it has zero jump on the arc I'. If U
is an integrator of u, then U + H is its integrator, too, i.e., in general integrator
cannot be unique. But different integrators can determine equal integrations.
In this connection we introduce the following two definitions.

Definition 6 A continuous in C\T' function U(z) belongs to class HOy (T') if
any point t € T'\ {a1,2} is a center of a small disk B(t,r) such that T’ divides
this disk on left-hand and right-hand parts B*(t,r), and U satisfies the Hélder
condition with exponent V (t) in both these parts.

Definition 7 Let any point t € IT'\{a1 2} is a center of a small disk B(t,r) such
that dmh B(t,r)NT = h(t). Then function h(t) is the local Hausdorff dimension
of arc T.

Theorem 2 Let T' be an arc with a local Hausdorff dimension h(t) < 2, a

function u(t) is defined on this arc, and Uy,Us are two its integrators. If Uy —
U; € HO\/(F), and

V(t)>h(t)—1, tel\{aiz}, (13)
then these integrators determine the same integration.

Proof. Denote U := U; — Uy. We have to prove that

owlU _
// 5% dzdz =0
ol

for any w € C'(C). Any point ¢t € I' \ {a1 2} is a center of a small disk B(t,r)
from the definition 7, and the end points a; o are centers of small disks where
derivative Uz is integrable. All these disks together cover I', and we can select
from them the finite covering B(t;,7;), = 1,2,---. Assume that t; and ¢,, are
the end points of I'. We construct a smooth partition of unit ¥;,5 =1,2,...,m,
subordinated to this covering, and denote I'; := I' N B(t;,7;), w; = wi,.

Obviously,
owU _— i an'U —
C =1 c

and we can select the radii »q and r,, such that the first and last terms of this
sum are arbitrarily small.

Let 1 < j <m, i.e., t; is not the end point of I'. We fix the value o > h(¢;).
Then the Hausdorff measure of order « for I'; is zero, and for any € > 0 we
can cover I'; by a finite family of disks By, = B(zk,7j%),j = 1,2,..., such that
rik <eand ) g Ty < e/m. Let A be a boundary of union B = Uy~ By.




‘We have

|//8U“’1dcr +/ijdz.
A

The first term of the right-hand side vanishes for ¢ — 0, because by assumptions
of the theorem I' has null plane measure and U is integrable together with its
first derivative. It remains to show that the second term has null limit, too.
We consider without loss of generality that any disk of the last covering is
not covered by union of other disks. Number these disks in order of increasing

radii, and put Ay = By, Ay = By \ Ay, Az = Bs'\ U Ay, Ay = By )\ U A,

and so on. As a result, we represent B as a umon of finite number of non-
overlapping simply connected domains Ay C Bj such that their boundaries
A = OAy, consist of arcs of circles of radii > r; lying inside B; ;. Therefore,
length of A, does not exceed 277 ;. Obviously,

/ijdz:Z/ Uw;dz,
A o

and

Uwjdz= | Ul(zp)wj(z)dz+ / (U(z) — Ul(z))wj(z) dz.
Ak Ak Ak

/}\’c U(zg)wj(z)dz = //Ak U(zk)%dzd?,

and by virtue of boundedness of the function U %il

We have

< c[B|,

U(zg)wj(z) dz

Ak

where |- | stands for the plane Jordan measure. Thus, this sum vanishes together
with ¢ — 0. Finally,

<chk <CZ Tk

for V(t;) > o — 1, and the last sum also tends to zero for ¢ — 0. The theorem
is proved.

U(zi)wj(z) dz

)\k

Remark 5 Under assumptions of the theorem the integrators Uy and Us gen-
erate equal integrations on the differential dz, too.

10



1.4 Cauchy type integral over arc of moderate torsion

Let us introduce a generalization of the Cauchy type integral (3) for a non-
rectifiable arc I' of moderate torsion. We consider first a smooth version €2 of
the Cauchy kernel.

If ze C\T, 0 < p < dist(z,I"), then we assume that (¢, z) is smooth as
function of ¢ € C, vanishes in the disk B(z, p), and equals to the Cauchy kernel
(2mi(t — z)) for t € T

Definition 8 If a defined on arc T function u has integrator U, then its gener-
alized Cauchy type integral is a result of application of mapping (6) to the kernel
Q(t, z) as a function of variable t.

The Green formula immediately leads to the following representation for the
Cauchy type integral over arc I':

=U(z)

1 [ u(t)dt 1 / oU dr dr
- [ = (14)

ori | t—=z 27 oF 7—2
r

The double integral in the right-hand side is a so-called Cauchy potential. Its

properties are well-known (see, for instance, [31]). In particular, if derivative

F

—— is integrable in C in a power p > 2 (i.e., if the integrator U is continuous),
-

then this integral determines continuous in the whole complex plane function of

variable z, and, consequently, the generalized Cauchy integral (14) has jump u
on the curve I'. Thus, by means of Theorem 1 we obtain the following result.

Theorem 3 Let I' be an arc with moderate torsion at both its ends, and u €
Hy (T). If there are valid conditions (11) and (12), then the Cauchy type integral
(14) is defined, and has the following properties:

1. it is holomorphic in C\ T function;

2. this function vanishes at the point at infinity;

3. at any point t € T'\ {a1 2} it has limit values from the left and from the
right, and difference of these values equals to u(t);

4. any point t € I'\ {a1,2} has a neighborhood N (t) such that restriction of
the mentioned in previous property limit values from the left and from the right
belong to the Hélder space Hyy ) (I'(t)), T'(t) := N(t) N T, where W (t) is any
value satisfying inequality

W) <1—2(1-V(¢t)/m(T;t); (15)
5. at the ends of T' the Cauchy type integral equals to Kr(2)Eu(z) + O(1).

Proof. The properties 1 and 2 are obvious. According to Theorem 1, under
restrictions (11) and (12) the function u has continuous integrator U, and the
Cauchy potential in formula (14) is continuous in the whole complex plane,
what implies the property 3. As we have seen in the proof of this theorem,
any point ¢ € T'\ {a12} has a neighborhood N(¢) such that the derivative

11



Uz is integrable near t; with any power less than p; := m(I';¢;)/(1 — V(¢;)).
Hence (see, for instance, [31]), the Cauchy potential in (14) satisfies near ¢;
the Holder condition with any exponent less than W (¢;) = 1 — 2/p,, i.e., this
value is meaning of function (15) at the point ¢;. This assertion implies the
property 4. Finally, for continuous integrator the Cauchy potential is continuous
at the points a; 2. Therefore, at these points the Cauchy type integral equals
to U(z) + O(1) = Kr(2)€u(z) + O(1). The theorem is proved.

1.5 Riemann problem on arc of moderate torsion

Here we solve certain cases of the Riemann boundary value problem on non-
rectifiable arc I' of moderate torsion.

We consider first the jump problem in the following statement.

Given jump g € Hy (T'). Find holomorphic in C\T function ®(z) such that it
vanishes at the infinity, satisfies boundary-value condition (2), and is integrable
with a power greater than 2 near the end points of the arc.

The previous theorem implies immediately the following condition on solv-
ability of this problem.

Corollary 1 Let I' be an arc with moderate torsion at both its ends, and g €
Hy (). If there are valid inequalities (11) and (12), then the Cauchy type
integral of g is a solution of the formulated jump problem.

As known, if I is rectifiable, then the solution of the jump problem is unique.
According to the cited above E.P.Dolzhenko’s theorem [30], the uniqueness is
not valid for non-rectifiable arcs. But we can ensure it by means of the following
result.

We refer a function ®(z) to class HCy (T') if any point ¢t € '\ {a1 2} has
neighborhood B(t,r) such that ®(z) satisfies the Holder condition with exponent
V(t) in the both its parts BE(¢,7). As above, B*(t,r) are parts on which T
divides B(t,r)

Theorem 4 Let I' be an arc with moderate torsion at both its ends with local
Hausdorf dimension h(t). If a function ®(z) is continuous in a domain D DT,
holomorphic in D\ T, belongs to the class HCy ('), and exponent V (t) satisfies
condition (13), then ®(z) is holomorphic in D.

Proof is analogous to the proof of E.P. Dolzhenko’s theorem [30]; it contains
also considerations from the proof of Theorem 2 of the present paper.

The last theorem means, that the jump problem has a unique solution of
the class HCy (T') if

1-2(1-=V())/m(;t); > h(t) — 1. (16)
Hence, there is valid

Corollary 2 Let ' be arc with moderate torsion at both its ends with local
Hausdorff dimension h(t), and g € Hy(T). If there are valid inequalities (11),

12



(12) and (16), then the Cauchy type integral of g is a unique solution of the
formulated above jump problem.

Now we study the homogeneous Riemann boundary value problem on an arc
of moderate torsion in the following formulation.

Given function G € Hy (TI'). Find holomorphic in C \ I' function ®(z) such
that it vanishes at the infinity, satisfies boundary value condition

T(t) =GP (), teT\{aa}, (17)

and is either bounded or integrable with a power greater than two near the end
points of the arc.

Assume that G(t) does not vanish on I'. Then G(t) = exp f(t), f € Hy(I).
Let F'(z) be an integrator of f. We consider the generalized Cauchy type integral
with density f

o= [R20 =R g [[ 5w
C

Tomi ) t—=z
I

and a function X (z) := exp F (z). Obviously, under restrictions of Theorem 3 it
has the following properties:

i. it is holomorphic in C\T function, and equals to 1 at the point at infinity;

ii. at any point ¢t € I' \ {a1,2} it has limit values from the left and from the
right, and ratio of these values equals to G(t);

ili. any point ¢ € I'\ {a12} has a neighborhood N(t) such that restriction
of the mentioned in previous property limit values from the left and from the
right belong to the Holder space Hyy 1) (I'(t)), I'(t) := N(t) N I', where W(t) is
any value satisfying inequality (15);

iv. near the ends of I it satisfies inequations

ClexpRe Kr(2)&f(2) < |X(2)] < CexpRe Kr(2)&f(2), C > 1.

Clearly, under restriction (16) any solution of the homogeneous Riemann
boundary value problem in the class HCy (T') is representable as

D(z) = (¢1(2) + ¢2(2)) X (2), (19)

where ¢, (z) is holomorphic in C\ {a;}, j = 1,2, and ¢1(c0) = ¢2(c0) = 0. This
solution is bounded at the end points of the arc if and only if

|65 (2)| < Cexp(=Re Kr(2)&0f(2)), j=1,2.

Obviously,
1 Z — Qg
K =A —1
r(?) 1“(Z)Jr27m' n z—ayl|’
where branch of argument
1 Z— Qs
A = —

r(z) = o —arg — o
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satisfy the condition Ar(co) = 0. Let us restrict ourself here by arcs satisfying
inequations

Ar(z) =0(|z — a4|7%), z—a;, j=1,2. (20)

We will say in this case that order of I" at the end a; does not exceed ¢;. Clearly,
then the torsion of I' at the point a; is greater or equal the half of its order, and
the order of arc with moderate torsion is less than 2. Vice versa, if the order is
less than 2, then the arc has moderate torsion.

We assume that the orders of T" at the points a; is less than V(a;), j = 1,2.
Then Kr(2)&f(2) = f(a;)Kr(z) 4+ O(1), and the boundedness of product (19)
is equivalent to condition

|65(2)| < Cexp(—Re f(a;)Kr(2)), j=1,2.

Denote f(a;) = uj+vj, where u; and v; are real. Then the last condition turns
into

|6;(2)] < Cexp(—ula;)Ar(2) — (2m) 7 (=1)v(ay) In|z — a5]), j=1,2.

We put
fB; := liminf 7u(aj) r(z)
J =

j=1,2. 21
z—a; In|z —a;|’ J=5 (21)

Easy considerations enable us to prove

Corollary 3 Let I' be an arc of orders q; at its ends with local Hausdorff di-
mension h(t), and function G € Hy (') does not vanish on T'. If there are valid
relations (11), (12), (16), g¢; < V(a;), 7 = 1,2, and at least one of limits (21)
equals to +o0o, then the homogeneous Riemann boundary value problem (17) has
infinite family of linearly independent bounded solutions in class HCy (T).

Remark 6 If both limits B;, 7 — 1,2, are finite, then the number of linearly
independent bounded solutions in class HCy (') of problem (17) is finite, too.

Remark 7 These results keep validity for the homogeneous Riemann boundary
value problem (17) for functions, which are integrable with power greater than
two at the end points of the arc.

It is of interest to research inhomogeneous Riemann boundary value problem
(1) under assumptions of the last corollary. It seems that problem is more
sophisticated.

1.6 J-integrations

Let us consider one more approach to generalization of curvilinear integral on
non-rectifiable arcs.

In subsection 1.4 we have seen that the Cauchy type integral can be gener-
alized on non-rectifiable arc of moderate torsion by formula (14). The left-hand
side of this formula is (formally) an integral of function w(t)((2mi)(t — 2))~! of
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variable t over arc I'. This fact leads to the following construction. If a function
u(t) is defined on T', then we fix a point z, and put

1 u(t)
2mit — 2z

f@) =

According to formula (14), we have

T

Here u(t) = 2mi(t — 2) f(t), and U is its integrator. We obtain a new version
of integration over non-rectifiable arc. Clearly, it is closely connected with the
previous one: the value (22) is meaning at the point z of the result of application
of mapping (6) to the generalization of the Cauchy kernel from subsection 1.4.

Let the point z be fixed outside of support of integrator U. Then the function
of variable ( € C\ T

FQ)i= g

is an integrator for f(t). Clearly, U(¢) = 27i({ —2)F(¢), and we obtain formula

[rwa / / O e dt (23)
N

for J-integration. Thus, for arcs with moderate torsion J-integration is a result
of application of mapping (6) to function w = 1. Particularly, it is independent
on the point z.

The next step of the generalization is a replacement of the Cauchy type in-
tegral by any solution of the jump problem. If ®(z) is a holomorphic in C\ T
function satisfying boundary value condition (2) and ®(co) = 0, then its mean-
g(t)
1t — 2
of variable t over arc I'.  We will call this operation J—interation. Clearly,
the formulation of the jump problem must be supplied by conditions ensuring
uniqueness of its solution. In the preceding subsection we have described a
version of that conditions for arcs of moderate torsion.

Unlike integrations defined in subsection 1.1, J-integration is functional.

For closed non-rectifiable curves the idea of generalization of curvilinear
integral in terms of the Cauchy type integral is offered by Liu Hua [35].

ing at a fixed point z € C\T can be considered as integral of function —

2 Arcs of high torsion

The results of subsections 1.1 — 1.5 loose their validity for arcs of high torsion,
because we do not know analogs of Theorem 1 for that paths. In this section we
introduce other integrations in terms of restrictions of mapping (6) on certain
subspaces of C! and J—integrations.

15



2.1 Integration of functions, vanishing at the end points.

We consider here integration of functions with nulls of sufficiently large orders
at the ends of arc of high torssion.

Let weight w(z) be a differentiable in D := C\{a1 2} function, which vanishes
at the points {a;} and {as} only, and wHy (T') stands for set of all defined on T’
functions u representable as products u = wug, ug € Hy (T'). Theorem 1 implies
the following result.

Corollary 4 LetT' be an arc with high torsion, and u € wHy (T"). If the product
w(z)Kr(z) is integrable together with its derivative %Kp(z) near I', then under
conditions (9) and (10) function u(t) has an integrator. If this product and its
derivative on Z are integrable with power greater than 2 near I', then under
conditions (11) and (12) function u(t) has a continuous integrator.

There is valid analogous condition of integrability on dz.

Proof. We repeat considerations from the proof of Theorem 1 for the factor ug,
and obtain function Uy. Generally speaking, it is not integrator for ug, because
the conditions of integrability can be broken near the ends of I'. But the product
wUy is integrator for u. The corollary is proved.

We consider also the Cauchy type integral over arc of high torsion with
density from the class wHy (T'). There is valid

Corollary 5 Let ' be an arc with high torsion, and the product w(z)Kr(z) is
integrable together with its derivative %—%’Kp(z) near I' with power greater than
2. If conditions (11) and (12) are fulfilled, then the Cauchy type integral (14)
with density u € wHy (T) exists and preserves the properties 1-4 from Theorem
(3). The property 5 from this theorem must be replaced by

5. at the ends of T' this Cauchy type integral equals to w(z)Kr(z)Eu(z) +
O(1).

Obviously, the analogs of corollaries 1 and 2 are valid for the jump problem
on arcs with high torsion and jump of class wHy (I").

Example 4 In Example 2 we define arc S, with end points 0 and 1, and show
that near the origin Kg, (2) = —|2| 7P+ 5= In|2z|+O(1). The torsion of this spiral
at the origin is p/2, and it is an arc of high torsion for p > 2. At the end point
1 its torsion s 0.

We consider a weight w(z) = 2™ with positive integer n. The product wKs,
is integrable with power greater than two for p —n < 2. We put n = [p] — 1,
where brackets [-] stand for the entire part. Thus, the results of this subsection
are walid for functions u(t) =t~ ug(t),ug € Hy (S,),p > 2.

2.2 Holomorphic polynomials.

We pass to the case where u(t) does not vanish at the end points of I', and begin
from holomorphic polynomials of degree m, i.e.,

w(t) = cpt™ 4 1 t™ et + co.
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Clearly, the product u(z)Kr(z) has jump u(t) on I' \ {a12}. We have at the
infinity point

u(z)Kr(z) = Qza —a2 ur(z) + Ur(z),

YUX
k=1

where ur(z) is a holomorphic polynomial of degree m — 1

m

k
LE 2™ kg —a Crn—ktj
27 ; 2)Cm—tcts:
Jj=1

k=1

and Ur(z) vanishes at the infinity and is holomorphic near it. Thus, there is
valid

Proposition 1 The function
Ur(z) = u(2)Kr(z) — ur(z)

is holomorphic in C\T', vanishes at the point oo, and satisfies the boundary-value
condition

UE (1)~ Up (1) = u(t), teT\ {ara}. (24)

Any point t € T'\ {a12} has semi-neighborhoods, where Ur(z) satisfies the
Hélder condition with exponent 1, and at the end points a1 2 we have Up(z) =
u(aj)Kp(z) + O(l)

Strictly speaking, Ur is not a solution of the jump problem with jump u, because
it can have singularities of high order at the end points of the arc. Let us consider
its connection with the jump problem in the following statement. We can use
it as generalization of the Cauchy type integral with polynomial density, and as
a source of j-integration with polynomial density. Immediate calculation shows
that J-integral of holomorphic polinomial u(z) equals to difference P(agz) —
P(ay), where P(z) is a holomorphic polynomial such that P’(z) = u(z).

2.3 General polynomials.

Here we are dealing with a non-holomorphic polynomials

u(z) = Z cra2"z. (25)

We seek a holomorphic in C\T" function ®(2) satisfying on I'\{a1, as} boundary-
value condition
OT(t) — @7 (t) = u(t), (26)

but first let us detail our restrictions on the arc I'.
A point ¢t € T is a point of smooth touch if there exists a smooth arc A with
end ¢ such that U A = ¢. The set of points of smooth touch is dense in T' (see,
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for instance, [6]. Therefore, we can fix one of that points ag dividing T on two
arcs: I'y beginning at the point a; and ending at ag, and I's beginning at ag
and ending at a2. The point a is point of smooth touch for arcs I'; 2, and both
these arcs have null torsion at this point.

We assume that arcs I'y 5 are determined by equations

INo={2z=a12+r(r)expifi2(7) : 0 < 7 < 1}, (27)

where r1 5(7) and 6 2(7) are real functions, 7 2(7) are continuous on [0, 1],
r1,2(0) = 0, 01 2(7) are continuous on (0, 1], and ay 2 + 71,2(1) exp by 2(1) = ao.
Similar arcs are studied in the articles [33, 34], but these arcs have monotone
angular functions 0(r) such that }13(1) O(r) is either +o00 or —oo. Here we study

more extensive class of arcs; in particular, we do not require the monotonicity
of angle function.

In what follows we need certain regularity conditions on the arcs.

Let I; » be the segments of straight lines connecting the points a; » and ao,
and By :=T1 2N 11 2. Let T(a1) be the classes of arcs 'y such that

i. the intersection B; is a countable set of points x¢y = ag,z1,x2,..., con-
densing at the point ag;

ii. every point x, € B is a unique point of intersection of the circle C), :=
{2z : ]|z — a1]| = |zn|} with the arc I'y.

We number the points of the set B in the order of traversal from aq to a;.

We also define the analogous class 7 (az). Obviously, classes T (a1,2) are
more extensive than classes of arcs considered in [33, 34]. Let class T consist of
arcs I' such that I'; € T(q;), j =1, 2.

Let us find a holomorphic in C\T'; function ®(z) satisfying boundary-value
condition (26) on I'y \ {a1,a0}.

The points of set B; divide arc I'; and segment I; onto arcs 7, and segments
I,, correspondingly, n = 1,2,3,.... The arc v, and segment I, begin at point
x, and end at x,,_1, and both these paths belong to the ring R,, := {z : |z, | <
|z —a1] < |zp_1|}. We denote A,, finite domain bounded by union of ~, and
I,,, and put s, = +1 if subsegment I,, is positively oriented with respect to A,,,
and s,, = —1 otherwise. Then

+oo
KFI(Z) - Kll (Z) - Z San(Z)a

n=1

where x,,(z) is the characteristic function of domain A,,.

Some domains A, does not contain the point a;. That domains does not
overlap, and the sum of their characteristic functions is bounded. Let us denote
Pr, (z) (correspondingly, N, (z)) the sum of characteristic functions of domains
A, such that a; € A,, and s,, = +1 (correspondingly, s, = —1.) The functions
Pr, (z) and Nr, (z) are defined in C\ a4, real, positive and integer-valued. Thus,
there is valid

Proposition 2 IfT'y € T(a1), then near the point a;
Kr,(2) = K1, (2) + Pr,(2) = N, (2) + O(1). (28)
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The arc I' has high torsion at the point ai if the difference Pr,(z) — Np,(z) is
not integrable in a neighborhood of this point.

Analogous result is valid for the arc I'y and end-point as.

The arc 7y, and the subsegment I,, divide the ring R, = {|zp+1]| < |z —
a1| < |zn|} onto two domains. We denote D,, the one that lies on the left
from ~,. The boundary 0D, consists of an arc 7, a segment I,, (oriented in
the opposite I direction), and, maybe, one of circles C,,, Cp,+1 or both these
circles. We put o,, = +1 (correspondingly, ¢,, = —1) if 9D,, contains positively
(correspondingly, negatively) directed circle Cy,, and o, = 0 if dD,, does not
contain this circle. Analogously, n, = 41 (correspondingly, n, = —1) if 4D,
contains positively (correspondingly, negatively) directed circle Cy, 41, and 7, =
0 if 9D,, does not contain this circle.

Obviously, z — a; = |z,|*(z — a1)~! for z € C,. Let us consider function

lil;n(z) equaling to |z,|?(z — a1)*~! in the disk |z — a;| < z,, and 0 outside of
this disk. Then sum

=V = Y et (2)

0<k+Ii<m

has jump u(t) on positively directed circle C,,, and sum
Vi(z) =) BN (2) (29)
n=1

has jump u(t) on system of circles US ;0,C),, where factor o,, means that the
circle C,, is directed positively for o, = +1, negatively for o, = —1, and this
term is missed for o, = 0.

We introduce an analogous function ¥4 for end point as and an arc I's, and
put U = \Ifl + \IIQ.

Let us consider one more jump problem

Qt(t) —Q () =u(t), teA, (30)

where A is a union of all boundaries of domains D,,, and Q1, Q™ stand for limit
values of function €2 from these domains and from the opposite side respectively.
Clearly, this jump problem has solution

+oo =
n() =Y (wea) - o [[ ) (31)

n=1 D,

where Yy, is the characteristic function of domain D,,. The domains D,, does
not overlap. Hence, the solution €2 is bounded.
On the other hand,

Q1(2) = @1(2) — @1, (2) + Vi (2),
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where ®4(z) is a desired solution of jump problem (26) on arc I'y,

r.(2) 1 /ut) dt (32)

:% t—=z
I

is a customary integral of Cauchy type over segment I, and ¥y(2) is function
(29). Hence,
D1(2) = Q(2) + D, (2) — Uy (2).

Clearly, the boundary values <I>1i(t) satisfy the Holder condition with any expo-
nent lesser 1 in a neighborhood of any point ¢ € I'y \ {a1,a0}.

Analogous considerations enable us to find function ®5(z) with the same
properties on the arc I'. The sum

O =Py + Py =Q1(2) + Pr, (2) — Vi(2) + Qa2(2) + Pr, (2) — Va(z) (33)
satisfies the boundary condition (26) for t € I' \ {a1,2}. Thus, there is valid

Theorem 5 If u is a polynomial (25), then there exists a holomorphic in C\T
function ®(z) such that

— it vanishes at the infinity;

— at any point t € T'\ {a1,2} it has boundary values from both sides related
by equation (26);

— its boundary values ®*(t) satisfy the Hélder condition with any exponent
less than 1 in a neighborhood of any point t € T'1 \ {a1,a0}.

One of that functions is given by formula (33).

Clearly, the determined by formula (33) solution ® at end points of T' has
asymptotic

O(2) = —V;(2) +ula;)Kr,(2) +O(1), z—a;, j=1,2. (34)

This result can be improved. Indeed, the polynomial (25) is representable as

the following sum:
m !/
g ckﬁozk + E ck,lzkzl
k=0 1<k+I<m

where prime means that any term contain Z. The first of these polynomials h(z)
is holomorphic, and by virtue of the previous subsection there exists a function
H(z) with jump h and asymptotic H(z) = h(a;)Kr(z)+O(1) at the end points.
For the second polynomial v(z) = u(z) — h(z) we apply the considerations from
the proof of preceding theorem. As a result, we obtain

Corollary 6 For any polynomial (25) we can find a holomorphic in C\T func-
tion ®*(z) satisfying all properties of function ®(z) from theorem 5, and such
that

®*(2) = —Vj(2) + u(a;) K1, (2) + h(a;)Kr(z) + O(1), z—a;, j=1,2,

where W3 is an analog of function W; for polynomial v.
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2.4 Taylor-differentiable jumps
In this subsection we consider on arc I' functions representable as sums

2
u(z) = Zﬂj(z) + w(z)v(z), (35)
j=1

where .

L) = Y. dlz—a)E-a), j=12
0<k+I<m;

are the Taylor polynomials of orders m; for function u(z) at points a;, j = 1, 2,
weight w(z) has zeros of orders greater or equal than m; at end points a;,
j = 1,2, and function v is continuous on I.

We refer a function u to class H(I'), m = (mq, mo) if it is representable in
the form (35) with v € Hy (T).

Let order of an arc I' € T at its end a; does not exceed ¢;, j = 1,2. Denote
class of all that arcs as T9, where q = (g1, ¢2)-

The results of three previous subsections imply

Theorem 6 Let an arc I' belong to class T9, v € HPMT), and m; > q;, j =
1,2. If conditions (11) and (12) are fulfilled, then there exists a holomorphic in
C\T function ®(z) such that

— it vanishes at the infinity;

- at any point t € T'\ {a1,2} it has boundary values from both sides related
by equality (26);

— its boundary values ®*(t) satisfy the Hélder condition with any exponent
less than (15) in a neighborhood of any point t € T'1 \ {a1,a0};

— at the ends of T' this function has asymptotic (34), where W;(z) is an
analog of sum (29) for polynomial I1;(z), j = 1,2.

One of functions with these properties is the sum of functions built in the
previous subsections for polynomials II;, j = 1,2, and for product wv. Its
terms corresponding polynomials II; can be improved as it is done in Corollary
6.

2.5 Riemann problem on arc with high torsion.

We consider here the jump problem and homogeneous Riemann problem.

The results of preceding subsection enable us to obtain a function ® with
given jump g € H{P(T') on open arc I' \ {a1 2}. It remains to study its behavior
at end points. Let g(a;) = 0. According to formulas (34) and (29), function @
from Theorem 6 has asymptotic

oo

O(z) = —U1(2) +O(1) = =D on Y. el (2)+0(1)
1 0<k+I<m

n=
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at point aq, where cgl) are the Taylor coefficients of g at this point. We rewrite

the definition of functions & ,ilfn(z) as

e () = leal? (2 — a)F XD (2),

where x4 (2) is the characteristic function of disk {z:]z—a1| <z,}. Then

()=—> o0 Y. ez~ a)) XD () + 0).

n=1  0<k+l<m

Easy calculations show that < Cl|z — a1|™%, where C is a positive

&)
> (2)

constant. Therefore, the function ® is bounded at the end point a; if c,(cll) =0
for k — [ — ¢; < 0. The asymptotic at the point as is analogous.

We obtain the following result concerning the jump problem on arcs of high
torsion.

Theorem 7 LetI' € T4, g € HP(T'), m; > q; for j = 1,2, and the Taylor
coefficients of jump g at end-points of I' satisfy the conditions c,(g,l) = 0 for
k—1—gq; <0. If there are valid inequations (11), (12), then the jump problem
has a solution in the class of bounded functions. Additionally, under condition
(16) this solution is unique in the class HCy(T'). Here h(t) stands for local
Hausdorff dimension of an arc T.

Let us pass to homogeneous Riemann problem (17) on arcs of high torsion
in the class of bounded functions. We assume that I' € 79 and G(t) = exp f(t),
f e HPT), m; > ¢; for j = 1,2. By means of Theorem 6 we build the
function F(z) with jump f on open arc I' \ {a1,2} (here we does not require
its boundedness) and put X(z) := exp F (2). In just same way as for arcs of
moderate torsion we conclude that any bounded solution of the problem (17)
in class HCy (T") is representable as ®(z) = X (z)F(z), where function F(z) is
holomorphic in C\ {a1,2}. Then ®(2) = X (2)(F1((z —a1)™!) + F2((z —a1) ™),
where F; and F5 are entire functions. The estimations of this subsection show
that order of F; does not exceed ¢;, and

oo
_ 1 -
[Fu(z—a) ) < CexpRe Y 0w Y lzal(z = a) XD (2),
n=1 0<k+I<m
where c,(f % are the Taylor coefficients of function f at point a;. Let us consider
rational functions

Rj(z) := Z c,(j?(z —a))"l =12,
0<k+Ii<m

and sets
Zj:={z:ReRj(z) =0}, j=1,2.
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If R1(z) has either zero or pole of order p; > 0 at point aj, then set Z; in
a sufficiently small neighborhood of a; is a union of p; smooth arcs dividing
this neighborhood into 2p; curvilinear sectors with angles 7/p; at this point.
Function Fj((z — a;)~?!) is bounded on this set. Therefore, by virtue of the
Phragmen — Lindel6f principle (see, for instance, [36]) for p; > ¢ the function
F; is bounded. Then this function is constant. But the product CX(z) is
bounded in a neighborhood of a; for C' # 0 if and only if the Taylor polynomial
of function f at this point is identical zero. Thus, there is valid

Theorem 8 LetT' € T4, f € HP(T), m; > q; for j = 1,2, G(t) = exp f(t),
and Taylor coefficients of jump g at end-points of I' are not identical zeros. If
these polynomials generate rational functions R; with zeros or poles of orders
p1 > q1 at points ay 2, and conditions (11), (12), (16) are fulfilled, then the
unique bounded solution of problem 17 in the class HCy (T') is identical zero.

Clearly, this result concerns only one special case of the Riemann boundary-
value problem on arc with high torsion, and basically this problem is open.
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