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Abstract

We provide in this article an investigation of the globally modified Navier-Stokes problem
coupled with the heat equation. After deriving the variational formulation of this problem,
we prove the existence and the uniqueness of the solution using the method of Faedo-Galerkin
and some compactness results. Next, we propose a time discretization of these equations based
on Euler’s implicit scheme. We prove the existence of solution with the aid of Brouwer’s fixed
point and study the stability of discrete in time solution by using the energy approach.
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1 Governing equations and its mathematical setting

1.1 Formulation of the problem

Let Ω ⊂ R3 be an open bounded set with regular boundary Γ = ∂Ω. We define the function
FN : R+ → R+ by

FN (r) = min{1, N/r}, r ∈ R+, (1.1)
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for N ∈ R+ and taking T̃ > 0, we consider the following globally modified Navier-Stokes equations
coupled with the heat equations (GMNSEHE)

ut − ν∆u + FN (‖u‖V)(u · ∇)u +∇p = f in Ω× (0, T̃ ) ,

div u = 0 in Ω× (0, T̃ ),

Tt − α∆T + FN (‖(u, T )‖V)(u · ∇)T = g in Ω× (0, T̃ ) ,
u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω ,

u = 0, and T = Tb on Γ× (0, T̃ ) ,

(1.2)

where ‖u‖V and ‖(u, T )‖V are defined as in (1.6) and (1.7) below. As usual, u, T and p represent
respectively the fluid velocity, the temperature and the pressure. ν is the constant viscosity of the
fluid, and α represent the thermal conductivity. f is the external force acting on the fluid while g
is the radiant heating. u0 is the initial velocity and T0 is the initial heat.

The GMNSEHE (1.2) is inspired from the globally modified Navier-Stokes equations (GMNSE)
studied in [4]. As clearly demonstrated in [4], FN (‖u‖V) prevents the rapid grow of velocity gra-
dient and helps to obtain uniqueness of weak solution in 3d, property which is lacking for Navier
Stokes in 3D. Hence Mathematically, the globally modified Navier Stokes has an advantage for
now over the Navier Stokes equations. In this work, we show that the factors FN (‖u‖) and
FN (‖(u, T )‖V) help us to control the values of ‖u‖V and ‖(u, T )‖V and subsequently permit us
the establish uniqueness of weak solution of (1.2). As we are aware of, this remarkable property
is unreachable for (1.2) without the weighted terms (see [2, 22]). It is worth noting that many
challenges in the mathematical and numerical analysis of the full 3D Navier-Stokes equation are
still lacking at present. Since the uniqueness theorem for the global weak solutions (or the global
existence of strong solutions) of the initial-value problem of the 3D Navier-Stokes system is not
yet proved, the known theory of global attractors of infinite-dimensional dynamical systems is not
applicable to the 3D Navier-Stokes system. Thus, the use of “regularized approximation equa-
tions” to study the classical 3D Navier-Stokes systems has become an effective tool both from the
numerical and the theoretical point of views. just like it has been noted in [23], many works make
use of the LANS-α model to approximate many problems related to turbulence flows.
In [4], the authors proposed a three-dimensional system of a globally modified Navier-Stokes equa-
tions (GMNSE). They studied the existence and uniqueness of strong solutions and established the
existence of global V-attractors. Also, using a limiting argument they obtained the existence of
bounded entire weak solutions of the three dimensional Navier-Stokes equations (NSE) with time
independent forcing. As noted in [4], the GMNSE prevents large gradients dominating the dynamic
and leading to explosion. Several articles are devoted to the mathematical analysis of the modified
problems involving Navier-Stokes equations, see for instance [5, 6, 9, 11, 12, 15, 16, 17, 18, 19], as
well as the review paper [7] in which the authors present some recent developments on the GMNSE
The globally modified Navier-Stokes equations are useful in obtaining new results about the 3D
NSE. Indeed there were used in [12] to show that the attainability set of weak solutions of the
3D NSE is weakly compact and weakly connected. We refer the reader to [8, 18, 19] for other
modifications on the nonlinear terms in some mathematical models.
Motivated by the above works, we consider in the present article the globally modified of the
model (1.2). More precisely, we propose a time semi-discretization of the time-dependent globally
modified Navier-Stokes problem coupled with the heat equation (GMNSHE). The outline of the
paper is as follows:

• We recall in section 2 the variational formulation of the problem. We also present the
mathematical tools for its resolution.

• In section 3, we establish the existence of strong solutions of the GMNSHE in three-dimensions
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and their continuous dependence on N and on the initial value in the space V. In addition,
we show that the weak solution of the GMNSHE is unique in the class of weak solutions. We
also investigate the relationship between the Galerkin approximations of the GMNSHE and
the NSHE for a fixed finite dimension.

• Section 4 is devoted to the time semi-discretization of GMNSHE. We present a numerical
scheme to approximate the unique solution obtained in section 3 and study its stability.

1.2 Mathematical setting

Let us now recall from [20] the functional spaces of the model (1.2) and its abstract formulation.
Unless otherwise specified, the domain of interest Ω is bounded connected, and have a boundary
∂Ω = Γ that is at least C0,1, i.e Lipschitz-continuous. Let k = (k1, k2, k3) be a triplet of non-
negative integers and set |k| = k1 + k2 + k3, we define the partial derivative ∂k of order |k| by

∂kφ =
∂|k|φ

∂k1x1∂k2x2∂k3x3
.

The usual definitions of Lp spaces and Hm spaces applies with the scalar product of L2 being
denoted by (·, ·). These definitions are extended directly to vector-valued functions, with the
notation

L2(Ω) := (L2(Ω))3, Hm(Ω) := (Hm(Ω))3, Hm0 (Ω) := (Hm
0 (Ω))3,L2

0(Ω) := (L2
0(Ω))3

where L2
0(Ω) =

{
q ∈ L2(Ω);

∫
Ω

q(x)dx = 0

}
. It is noted that for a vector w we set

‖w‖rLr(Ω) =

∫
Ω

|w(x)|rdx

where | · | denotes the Euclidean norm |w|2 = w ·w. We shall frequently use Sobolev imbedding:
for a real number p ∈ R, 1 ≤ p ≤ 6, the space H1(Ω) is imbedded into Lp(Ω). In particular, there
exists a constant cp (that depends only on p, Ω and d = 3) such that

for all v ∈ H1
0, ‖v‖Lp(Ω) ≤ cp‖∇v‖ . (1.3)

When p = 2, this is Poincare’s inequality and c2 is Poincare’s constant. In the case of the maximum
norm, the following imbedding holds

for all r > d = 3, W1,r(Ω) ⊂ L∞(Ω)

in particular, for each r > d = 3, there exists c∞,r such that

for all v ∈ H1
0(Ω) ∩W1,r, ‖v‖L∞(Ω) ≤ c∞,r‖∇v‖Lr(Ω) . (1.4)

Owing to Poincare’s inequality, the semi-norm | · | is a norm on H1
0(Ω), equivalent to the full norm.

As it is directly related gradient operator, we take this semi-norm as norm on H1
0(Ω), and we use

it to define the dual norm on its dual space H−1(Ω):

for all f ∈ H−1(Ω), ‖f‖H−1(Ω) = sup
v∈H1

0 (Ω)

〈f ,v〉
‖∇v‖

3



where 〈·〉 is the duality pairing between H−1(Ω) and H1
0(Ω) . We also introduce the following spaces

V =
{
u ∈ (C∞c (Ω))3 : divu = 0

}
,

V = the closure of V in H1
0(Ω) ,

H =
{
u ∈ L2(M) : divu = 0 and u = 0 on Γ

}
,

H = H× L2(Ω) ,
V = V×H1(Ω) ,
H1 =

{
T ∈ L2(Ω) : T = Tb on Γ

}
,

V1 =
{
T ∈ H1(Ω) : T = Tb on Γ

}
.

We have (see[20])
V ↪→ H ↪→ V′ (1.5)

where the first injection is compact. We endow H with the inner product of L2(Ω) and the norm
of L2(Ω) denoted respectively by (·, ·)H and | · |H.
We equip V thanks to Poincaré’s inequality with the following inner product

((u,v))V = (∇u,∇v)H .

and the norm

‖u‖V = (∇u,∇u)H . (1.6)

Hereafter, we set

((u, T ), (v, S))V = (∇u,∇v)H + (∇T,∇S) and ‖(u,v)‖2V = ‖u‖2V + ‖v‖2 , (1.7)

where ‖·‖ denotes the norm in H1(Ω) and (·, ·) denotes the scalar product in L2(Ω). The dual
spaces of V and Hm

0 (Ω) are denoted by V ′ and H−m(Ω) respectively and their norms by ‖·‖V ′
and ‖·‖−m respectively. We will also use the following operators A and A1 defined from V to V′

and V1 to V ′1 respectively by

〈Au,v〉 = (∇u,∇v)H for all u,v ∈ V ,

〈A1T, S〉 = (∇T,∇S) for all T, S ∈ V1 .

From the regularity theory for the Stokes equation [20, 21], it is known that

D(A) = H2(Ω) ∩V ,

D(A1) = H2(Ω) ∩ V1 ,

and the following holds true
D(A) ⊂ V ⊂ H ,

D(A1) ⊂ V1 ⊂ H1 ,
(1.8)

each injection being continuous and compact; hence

|u|H ≤
1√
λ
‖u‖V for all u ∈ V, |T | ≤ 1√

λ1
‖T‖ for all T ∈ H1

0 (Ω) (1.9)

where λ, λ1 are respectively the first eigenvalues of the compact operators A−1 from H into
itself and A−1

1 from H1 into itself. |.| and ‖.‖ represent respectively the norm in L2(Ω) and H1(Ω).
In addition, the following Agmon type inequality holds (See [21], page 30):
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‖u‖L∞(Ω) ≤ C |∇u|
1/2
H |Au|1/2H . (1.10)

Also, of importance in this part are the bilinear forms B,BN from V×V to V′ defined by

〈B(u1,u2),u3〉V′,V = b(u1,u2,u3) ,

〈BN (u1,u2),u3〉V′,V = bN (u1,u2,u3) ,

for all ui ∈ V(i = 1, 2, 3), where b(·, ·, ·) is a continuous trilinear form defined on H1(Ω) ×
H1(Ω)×H1(Ω) by

b(u,v,w) =

3∑
i,j=1

∫
Ω

ui
∂vj
∂xi

wjdx ,

bN (u,v,w) = FN (‖u‖V)b(u,v,w) .

Similarly, we also introduce the bilinear form B1,BN,1 from V× V1 to V ′1 defined by

(B1(u, T1), T2) = b1(u, T1, T2) ,

(BN,1(u, T1), T2) = bN,1(u, T1, T2) ,

for all u ∈ V, T1, T2 ∈ V1, where bN,1 is a continuous operator defined on V×H1(Ω)×H1(Ω)
by

b1(u,v,w) =

3∑
i=1

∫
Ω

ui
∂v

∂xi
wdx ,

bN,1(u,v,w) = FN (‖u‖V)b1(u,v,w) .

We will also use the bilinear forms a0(·, ·) and a1(·, ·) given by:

a0(u,v) = (∇u,∇v)H, u,v ∈ V ,

a1(T, S) = (∇T,∇S), T, S ∈ H1(Ω) ,

a2(u, q) = −(q,divu) u ∈ H1(Ω), q ∈ L2(Ω) .

From (1.10) and (1.9), we deduce most of the properties of the forms b(·, ·, ·) and bN (·, ·, ·), given in
the following lemmas where Cb is a positive constant (depending on the domain) which can vary
from one line to another.

Lemma 1.1 [4, 14]

1. b(u,v,w) = −b(u,w,v), and bN (u,v,v) = 0 ∀u,v ∈ V ,

2. |bN (u,v,w)| ≤ Cb |u|1/4H ‖u‖3/4V |v|1/4H ‖v‖3/4V ‖w‖V , u,v,w ∈ V ,

3. |bN (u,v,w)| ≤ NCb ‖u‖V ‖w‖V , u,v,w ∈ V ,

4. |b(u,v,w)| ≤ Cb ‖u‖1/2V |Au|1/2H ‖v‖V |w|H ,∀u ∈ D(A), v ∈ V, w ∈ H .

5. |b(u,v,w)| ≤ Cb ‖u‖V ‖v‖V |w|
1/2
H ‖w‖1/2V , ∀u, v, w ∈ V .

Lemma 1.2 [4, 15] For all u,v ∈ V with v 6= 0,

1. |FN (‖u‖V)− FN (‖v‖V)| ≤ ‖u−v‖V‖v‖V
.
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2. |FN (‖u‖V)− FN (‖v‖V)| ≤ ‖u−v‖VN FN (‖u‖V)FN (‖v‖V) .

Lemma 1.3 [4] For all M, N, p, r ∈ R+,

|FM (p)− FN (r)| ≤ |M −N |
r

+
|p− r|
r

.

Remark 1.1 Similar properties are satisfied by b1(·, ·, ·) and bN1(·, ·, ·) .

In the following, we shall use, if necessary, the notation φ(t) for the function

x→ φ(x, t) .

As usual for handling time dependent problems, it is convenient to consider functions defined on a
time interval (a, b) with values in a functional space, say Y (see [3]). More precisely, we let ‖ · ‖Y
be the norm on Y and for any number r with 1 ≤ r ≤ ∞, we define

Lr(a, b;Y ) =

{
w measurable in (a, b) ;

∫ b

a

‖w(t)‖rY dt <∞

}

equipped with the norm

‖w‖r
Lr(a,b;Y )

=

∫ b

a

‖w(t)‖rY dt

with the usual modification if r =∞. It is Banach space if Y is a Banach space, and when r = 2,
it is a Hilbert space if Y is also a Hilbert space. Of particular interest here will be the space
L2(0, T̃ ;H), L2(0, T̃ ;H1

0(Ω)), etc...
The analysis of (1.2) will required the following

Lemma 1.4 Let T̃ > 0 and let κ be a non-negative function in L1(0, T̃ ). Let c > 0 be a constant

and ψ ∈ C0(0, T̃ ) a function that satisfies

for all t ∈ [0, T̃ ] , 0 ≤ ψ(t) ≤ c+

∫ t

0

κ(s)ψ(s)ds ,

then ψ satisfies the bound

for all t ∈ [0, T̃ ] , ψ(t) ≤ c exp

(∫ t

0

κ(s)ds

)
.

We will require the following compactness in time result to pass to the limit [3, 13]

Theorem 1.1 Let E,F,G be three Banach spaces with continuous imbedding E ⊂ F ⊂ G, such
that the imbedding of E into F being compact. Then for any number q ∈ [1,∞], the space

{v ∈ Lq(0, T̃ ;E), ∂tv ∈ L1(0, T̃ ;G)}

is compactly imbedded into Lq(0, T̃ ;F ).

In the next paragraph, we propose a weak formulation of our problem.
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1.3 Variational formulation

We propose here a weak formulation of Problem (1.2) given by the following definition.

Definition 1.1 Suppose that (u0, T0) ∈ H and f ∈ L2(0, T̃ ;H−1(Ω)), g ∈ L2(0, T̃ ;H−1(Ω)). A

weak solution to (1.2) is any pair (u, T ) ∈ L2(0, T̃ ;V)× L2(0, T̃ ;H1) such that

du

dt
+ νAu + BN (u,u) = f in D(0, T̃ ;V′) ,

d T

dt
+ αA1T + BN1(u, T ) = g in D(0, T̃ ;V ′1) ,

u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω ,

u = 0 and T = Tb on Γ× (0, T̃ ) .

(1.11)

or equivalently for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),

〈
du(t)

dt
,v

〉
+ νa0(u(t),v) + bN (u(t),u(t),v) = 〈f(t) ,v〉 ,〈

d T (t)

dt
, S

〉
+ αa1(T (t), S) + bN1(u(t), T (t), S) = 〈g(t) , S〉 ,

u(x, 0) = u0(x), T (x, 0) = T0(x) in Ω ,

u = 0, and T = Tb on Γ× (0, T̃ ) .

(1.12)

Remark 1.2 The previous definition provides also the variational formulation of problem (1.2)
which is, due to the density of D(Ω) in L2(Ω) and H1

0 (Ω) equivalent to it.

Remark 1.3 If the couple (u, T ) belong to L2(0, T̃ ;V)×L2(0, T̃ ;V1) and satisfies (1.11)1−(1.11)2,

then

(
du

dt
,
d T

dt

)
∈ L2(0, T̃ ;V′), and we deduce from [20] that (u, T ) ∈ C([0, T̃ ;H). In fact,

BN (u,u) ∈ L2(0, T̃ ;V′), νAu ∈ L2(0, T̃ ;H) ⊂ L2(0, T̃ ;V′), f ∈ L2(0, T̃ ;H−1) ⊂ L2(0, T̃ ;V′)

and BN1(u, T ) ∈ L2(0, T̃ ;V ′1), αA1T ∈ L2(0, T̃ ;H1) ⊂ L2(0, T̃ ;V ′1), g ∈ L2(0, T̃ ;H−1
1 ) ⊂

L2(0, T̃ ;V ′1).

Before stating the existence result, it is clear that we need to take care of the boundary condition
involving the temperature. For that purpose, invoking to the trace’s result, we letR be a continuous
operator from H1/2(Ω) in to H1(Ω). Since Tb ∈ L2(0, T̃ ;H1/2(Γ)) we denote by T̄b the function

defined for a.e. 0 ≤ t ≤ T̃ by
T̄b(t) = RTb(t).

This function belongs to L2(0, T̃ ;H1(Ω)) and satisfies∥∥T̄b∥∥L2(0,T̃ ;H1(Ω))
≤ cΛ ‖Tb‖L2(0,T̃ ;H1/2(Γ)) ,∥∥T̄b∥∥L2(0,T̃ ;L4(Ω))
≤ ε ‖Tb‖L2(0,T̃ ;H1/2(Γ)) .

(1.13)

where ε > 0 is any reel number and cΛ is a positive constant depending only on Ω and R. When
setting T ∗ = T − T̄b, the new variational formulation of problem (1.2) is as follows:

we seek for (u, T ∗) ∈ L2(0, T̃ ; V)× L2(0, T̃ ;H1
0 (Ω)) such that
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du

dt
+ νAu + BN (u,u) = f , in D(0, T̃ ; V′) ,

d T ∗

dt
+ αA1T

∗ + FN (‖(u, T ∗ + T̄b)‖V)B1(u, T ∗) = g − d T̄b
dt

−αA1T̄b − FN (‖(u, T ∗ + T̄b)‖V)B1(u, T̄b) in D(0, T̃ ;V ′1) ,

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0) in Ω ,

u = 0, and T ∗ = 0 on Γ× (0, T̃ ) .

(1.14)

or equivalently for all (v, S) ∈ V×H1
0 (Ω),

〈
du(t)

dt
,v

〉
+ νa0(u(t),v) + bN (u(t),u(t),v) = 〈f(t),v〉 ,〈

d T ∗(t)

dt
, S

〉
+ αa1(T ∗(t), S) + FN (‖(u, T ∗ + T̄b)‖V)b1(u(t), T ∗(t), S)

= 〈g(t), S〉 −
(
d T̄b
dt

, S

)
− αa1(T̃b, S)− FN (‖(u, T ∗ + T̄b)‖V)b1(u(t), T̄b(t), S),

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0) in Ω,

u = 0, and T ∗ = 0 on Γ× (0, T̃ ) .

(1.15)

2 Existence theory and qualitative properties of the solu-
tion

2.1 Existence and uniqueness

Here, we prove that problem (1.12) has a unique weak solution which is, under some conditions
a strong one. In this section, we construct solutions by combining; Galerkin’s scheme, a priori
estimates and compactness results. The method of proof is classical (see [13]), but it is worth
mentioning that the nonlinearity involved here are particular. We give details proofs so as to
render our work self contained. As mentioned earlier, we would like to see how the added terms
can control de velocity gradient and help us to obtain uniqueness in 3d. We begin this journey
by showing that the weak solutions are properly defined (see theorem 2.1), next we show that the
solution is uniquely defined (see theorem 2.2).

Theorem 2.1 Suppose that f ∈ L2(0, T̃ ;H−1(Ω)), g ∈ L2(0, T̃ ;H−1(Ω)), Tb ∈ H1(0, T̃ ;H1/2(Γ)),
the initial temperature on the boundary T 0

b belongs to H1/2(Γ) and (u0, T0, ) ∈ H be given.
There exists a weak solution y = (u, T ) of (1.12), which is in fact a strong solution if (u0, T0) ∈ V,
in the sense that

y ∈ C(0, T̃ ;V) ∩ L2(0, T̃ ;D(A)×D(A1)). (2.1)

proof. It is done on several steps:

Step1: Faedo Galerkin Approximation.
Let {(φi, ψi), i = 1, 2, ...} ⊂ V be an orthonormal basis of H, where {φi, i = 1, 2, ....}, {ψi, i = 1, 2, ....}
are eigenvectors of A and A1 respectively. We set Vn ×Wn = span {(φ1, ψ1), ..., (φn, ψn)} and de-
note by Pn = (P 1

n , P
2
n), the orthogonal projector from H onto Vn×Wn for the scalar product (·, ·)H

defined before. Note that Pn is also the orthogonal projector from D(A×A1),V,V′ onto Vn×Wn.
In Vn ×Wn, a smooth Galerkin’s approximation of problem (1.14) is as follows:
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we look for (un, T
∗
n) =

(
n∑
i=1

uniφi,
n∑
i=1

Tniψi

)
∈ L2(0, T̃ ;Vn)× L2(0, T̃ ;Wn) such that



d

dt
un + νAun + BN (un,un) = P 1

nf in D(0, T̃ ;V ′n) ,

d

dt
T ∗n + αA1T

∗
n + FN (‖(un, T ∗n + T̄b)‖V)B1(un, T

∗
n) = P 2

ng−
d

dt
T̄b − αA1T̄b − FN (‖(un, T ∗n + T̄b)‖V)B1(un, T̄b) in D(0, T̃ ;W ′n) ,

un(x, 0) = P 1
nu0(x), T ∗n(x, 0) = P 2

nT0(x)− P 2
n T̄b(x, 0) in Ω ,

un = 0, and T ∗n = 0 on Γ× (0, T̃ ) .

(2.2)

or equivalently for all (v, S) ∈ Vn ×Wn,

〈
d

dt
un(t),v

〉
=
〈
P 1
nf(t),v

〉
− ν(Aun(t),v)− bN (un(t),un(t),v) ,〈

d

dt
T ∗n(t), S

〉
=
〈
P 2
ng(t), S

〉
− α(A1T

∗
n(t), S)− FN (‖(un, T ∗n + T̄b)‖V)b1(un(t), T ∗n(t), S)−(

d

dt
T̄b, S

)
− α(A1T̄b(t), S)− FN (‖(un, T ∗n + T̄b)‖V)b1(un(t), T̄b(t), S) ,

un(x, 0) = P 1
nu0(x), T ∗n(x, 0) = P 2

nT0(x)− P 2
n T̄b(x, 0) in Ω ,

un = 0, and T ∗n = 0 on Γ× (0, T̃ ) ,
(2.3)

where uni(t), Tni(t) are C1 functions,
〈
P 1
nf(t),u

〉
= 〈f(t),un〉 and

〈
P 2
ng(t), T

〉
= 〈g(t), Tn〉 for

(u, T ) ∈ V. (2.3) is a Cauchy problem and the mapping

(v, s) −→

 P 1
nf + νAv − BN (v,v)

P 2
ng −

d

dt
T b − αA1T b − FN (

∥∥(v, s+ T̄b)
∥∥
V)B1(v, T b)−

FN (
∥∥(v, s+ T̄b)

∥∥
V)B1(v, s)− αA1s


is locally Lipschitz-continuous on H1(Ω)×H1(Ω) (see Appendix).
It follows from the Cauchy-Lipschitz theorem that problem (2.2) has a unique solution (un, T

∗
n) ∈

C(0, T̃n;Vn)×C(0, T̃n;Wn) for some T̃n ≤ T̃ and the problem is to show that T̃n is in fact indepen-
dent of time. The following a priori estimates (see lemma 2.1 and lemma 2.2) on un and T ∗n , will

be enough to conclude that T̃n = T̃ .

We next want to construct the limit of (un, T
∗
n) given via the equations (2.3), and we hope that

the limit will solve (1.15). For that purpose, we next derive some a priori estimates and next we
use compactness results to pass to the limit in (2.3).

Step2: A priori estimates and passage to the limit

Lemma 2.1 The functions un and T ∗n are uniformly bounded on L2(0, T̃ ;V) ∩ L∞(0, T̃ ;H) and

L2(0, T̃ ;H1
0 (Ω)) ∩ L∞(0, T̃ ;L2(Ω)) respectively.
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proof Taking v = un(t) in (2.3)1 and S = Tn(t) in (2.3)2 and using Lemma 1.1, we obtain

1

2

d

dt
|un(t)|2H + ν |∇un(t)|2H ≤ c1 ‖f(t)‖V′ ‖un(t)‖V ,

1

2

d

dt
|T ∗n(t)|2 + α |∇T ∗n(t)|2 ≤ c2 ‖g(t)‖−1 ‖T

∗
n(t)‖+ c3

∥∥∥∥ ddt T̄b(t)
∥∥∥∥ ‖T ∗n(t)‖+

αc4
∣∣∇T̄b(t)∣∣ |∇T ∗n(t)|+ N∥∥(un(t), T̄b(t))

∥∥
V
c5 ‖un(t)‖V

∥∥T̄b(t)∥∥ ‖T ∗n(t)‖ .

(2.4)

Which leads to

1

2

d

dt
|un(t)|2H + ν ‖un(t)‖2V ≤

c21
2ν
‖f(t)‖2V′ +

ν

2
‖un(t)‖2V ,

1

2

d

dt
|T ∗n(t)|2 + α ‖T ∗n(t)‖2 ≤ c22

α
‖g(t)‖2−1 +

α

8
‖T ∗n(t)‖2 +

2c23
α

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

+
α

8
‖T ∗n(t)‖2

2c24
∥∥T̄b(t)∥∥2

+
α

8
‖T ∗n(t)‖2 +

2N2c25
α

∥∥T̄b(t)∥∥2
+
α

8
‖T ∗n(t)‖2 .

(2.5)

Hence

|un(t)|2H + ν

∫ T̃

0

‖un(t)‖2V dt ≤
c21
ν

∫ T̃

0

‖f(t)‖2V′ dt+ |u0|2H ,

|T ∗n(t)|2 + α

∫ T̃

0

‖T ∗n(t)‖2 dt ≤ 2c22
α

∫ T̃

0

‖g(t)‖2−1 dt+
4c23
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

dt+(
4c24 +

4N2c25
α

)∫ T̃

0

∥∥T̄b(t)∥∥2
dt+ |T ∗0 |

2
.

(2.6)

�

From (2.6), we infer that ‖un‖L∞(0,T̃ ;H) , ‖un‖L2(0,T̃ ;V), ‖Tn‖L∞(0,T̃ ;L2(Ω)) , ‖Tn‖L2(0,T̃ ;H1
0 (Ω))

are uniformly bounded independently of n. Then, considering also (1.5), we use Theorem 1.1 to
extract a subsequence of (un, T

∗
n) denoted again by (un, T

∗
n) satisfying

(un, T
∗
n)→ (u, T ∗)


weak-star in L∞(0, T ;H) ,

weakly in L2(0, T ; V×H1
0 (Ω)) ,

strongly in L2(0, T ;H) ,

a.e., in (0, T )× Ω ,

(2.7)

with (u, T ∗) ∈ L∞(0, T ;H) ∩ L2(0, T ; V×H1
0 (Ω)).

With the weak convergence (2.7), we can pass to the limit in the linear terms in (2.3), meaning
that as n→∞ , 〈

d

dt
un(t),v

〉
→
〈
d

dt
u(t),v

〉
,

(Aun(t),v)→ (Au(t),v) ,〈
d

dt
T ∗n(t), S

〉
→
〈
d

dt
T ∗(t), S

〉
,

(A1T
∗
n(t), S)→ (A1T

∗(t), S) .

(2.8)
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Now, it remains to deal with terms involving nonlinearities and projections in (2.3). Starting with
nonlinear terms, it is worth noticing that the weak convergence in L2(0, T ; V × H1

0 (Ω)) is not
enough to ensure that

FN (‖un‖V)→ FN (‖u‖V) as n→∞ ,

FN (‖(un, T ∗n)‖V)→ FN (‖(u, T ∗)‖V) as n→∞ .

Hence we need to derive stronger a priori estimates and this is the goal of our next result.

Lemma 2.2 The functions un and T ∗n are uniformly bounded on L∞(0, T̃ ;V) ∩ L2(0, T̃ ;D(A))

and L∞(0, T̃ ;H1
0 (Ω)) ∩ L2(0, T̃ ;D(A1)) respectively .

proof. Taking the inner product of (2.2)1 by Aun(t) and the inner product of (2.2)2 by
A1T

∗
n(t), we obtain

1

2

d

dt
‖un(t)‖2V + ν |Aun(t)|2H ≤ 〈f(t),Aun(t)〉 − FN (‖un‖V)b(un,un,Aun),

1

2

d

dt
‖T ∗n(t)‖2 + α |A1T

∗
n(t)|2 ≤ 〈g(t),A1T

∗
n(t)〉Ω − (

d

dt
T̄b(t),A1T

∗
n(t))−

α(∇T̄b(t),A1T
∗
n(t))− FN (

∥∥(un(t), T̄b(t) + T ∗n(t))
∥∥
V)b1(un(t), T̄b(t),A1T

∗
n(t))

− FN (
∥∥(un(t), T̄b(t) + T ∗n(t))

∥∥
V)b1(un(t), T ∗n(t),A1T

∗
n(t)) .

(2.9)

Using Lemma 1.1 and Young’s inequality, we have the following estimates:

|−FN (‖un‖V)b(un,un,Aun)| ≤ 3(cbN)4

4ν
‖un‖2V +

ν

4
|Aun(t)|2H (2.10)

|〈f(t),Aun(t)〉Ω| ≤
c2

ν
‖f(t)‖2V′ +

ν

4
|Aun(t)|2H (2.11)

|〈g(t),A1T
∗
n(t)〉Ω| ≤

4c21
α
‖g(t)‖2−1 +

α

16
|A1T

∗
n(t)|2 (2.12)∣∣∣∣−(

d

dt
T̄b(t),A1T

∗
n(t))

∣∣∣∣ ≤ 4c22
α

∥∥dtT̄b(t)∥∥2
+
α

16
|A1T

∗
n(t)|2 (2.13)

∣∣−α(∇T̄b(t),A1T
∗
n(t))

∣∣ ≤ 4c23
α

∣∣∇T̄b(t)∣∣2 +
α

16
|A1T

∗
n(t)|2 (2.14)∣∣−FN (

∥∥(un(t), T̄b(t) + T ∗n(t))
∥∥
V)b1(un(t), T̄b(t),A1T

∗
n(t))

∣∣ ≤ 3(cbN)4

α
‖un(t)‖2V +

α

16
|A1T

∗
n(t)|2

(2.15)∣∣−FN (
∥∥(un(t), T̄b(t) + T ∗n(t))

∥∥
V)b1(un(t), T ∗n(t),A1T

∗
n(t))

∣∣ ≤ 3(cbN)4

4α
‖un(t)‖2V +

α

4
|A1T

∗
n(t)|2 .

(2.16)
Then using (2.10)- (2.16) in (2.9), we have

d

dt
‖un(t)‖2V + ν |Aun(t)|2H ≤

2c2

ν
‖f(t)‖2V′ +

3(cbN)4

2ν
‖un(t)‖2V ,

and

d

dt
‖T ∗n(t)‖2 + α |A1T

∗
n(t)|2 ≤ 8c21

α
‖g(t)‖2−1 +

8c22
α

∥∥dtT̄b(t)∥∥2
+

8c23
α

∥∥T̄b(t)∥∥2
+

15(Ncb)
4

4α
‖un(t)‖2V .

(2.17)
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Hence

‖un(t)‖2V + ν

∫ T̃

0

|Au
¯n

(t)|2H dt ≤ 2c2

ν

∫ T̃

0

‖f(t)‖2V′ dt+
3(cbN)4

2ν

∫ T̃

0

‖un(t)‖2V dt+ ‖u0‖2H ,

and

‖T ∗n(t)‖2 + α

∫ T̃

0

|A1T
∗
n(t)|2 dt ≤ 8c21

α

∫ T̃

0

‖g(t)‖2−1 dt+
8c22
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

dt+

8c23
α

∫ T̃

0

∥∥T̄b(t)∥∥2
dt+

15(Ncb)
4

4α

∫ T̃

0

‖un(t)‖2V dt+ ‖T ∗0 ‖
2
.

(2.18)
and the lemma is proved. �

From (2.2), we have
d

dt
un(t) = −νAun(t)− BN (un(t),un(t)) + P 1

nf(t) ,

d

dt
T ∗n(t) = −αA1T

∗
n(t)− FN (‖(un, T ∗n + T̄b)‖V)B1(un(t), T ∗n(t)) + P 2

ng(t)−
d

dt
T̄b − αA1T̄b(t)− FN (‖(un, T ∗n + T̄b)‖V)B1(un(t), T̄b(t)) ,

(2.19)

It follows from (2.19) and Lemma 1.1 that

(
d

dt
un,

d

dt
T ∗n

)
is also bounded in L2(0, T̃ ,H).

Using Lemma 2.2, (1.8), and the compactness result (Theorem 1.1), there exists an element

(u, T ∗) ∈ L2(0, T̃ ; V ×H1
0 (Ω)) ∩ L2(0, T̃ ;D(A) × D(A1)) and a subsequence of (un, T

∗
n) denoted

again by (un, T
∗
n) satisfying

(un, T
∗
n)→ (u, T ∗)


weak-star in L∞(0, T̃ ; V×H1

0 (Ω)),

weakly in L2(0, T̃ ;D(A)×D(A1)),

strongly in L2(0, T̃ ; V×H1
0 (Ω)),

a.e., in (0, T )× Ω,

(2.20)

and (
d

dt
un,

d

dt
T ∗n

)
→
(
d

dt
u,

d

dt
T ∗
)

weakly in L2(0, T̃ ; H×H1
0 (Ω)) . (2.21)

From (2.20), we infer that

FN (‖un‖V)→ FN (‖u‖V) as n→∞ ,

FN (‖(un, T ∗n + T̄b)‖V)→ FN (‖(u, T ∗ + T̄b)‖V) as n→∞ .
(2.22)
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Our next task is to compute the limit when n goes to infinity of FN (‖(un, T ∗n + T̄b)‖V)b1(un, T
∗
n , S)

and FN (‖(un, T ∗n + T̄b)‖V)b1(un, T̄b, S) for (v, S) ∈ Vn ×Wn. Firstly,

FN (‖(un, T ∗n + T̄b)‖V)b1(un, T
∗
n , S) = FN (‖(un, T ∗n + T̄b)‖V)

∫
Ω

(un(t) · ∇)T ∗n(t)Sdx

= FN (‖(un, T ∗n + T̄b)‖V)

3∑
i,j=1

∫
Ω

uin(t)∂iT
∗j
n (t)Sjdx

=

3∑
i,j=1

∫
Ω

FN (‖(un, T ∗n + T̄b)‖V)umin (t)∂iT
∗j
n (t)Sjdx

= −
3∑

i,j=1

∫
Ω

FN (‖(un, T ∗n + T̄b)‖V)uin(t)T ∗jn (t)∂iS
jdx .

But ∥∥uin(t)T ∗jn (t)
∥∥
L3/2(Ω)

=

(∫
Ω

∣∣uin(t)T ∗jn (t)
∣∣3/2 dx)2/3

≤
(∫

Ω

∣∣uin(t)
∣∣3/2×4/3

dx

)2/3×3/4(∫
Ω

∣∣T ∗jn (t)
∣∣3/2×4

dx

)2/3×1/4

=

(∫
Ω

∣∣uin(t)
∣∣2 dx)1/2(∫

Ω

∣∣T ∗jn (t)
∣∣6 dx)1/6

=
∣∣uin(t)

∣∣
H

∥∥T ∗jn (t)
∥∥
L6(Ω)

≤C |un(t)|H ‖T
∗
n(t)‖ .

Hence, uinT
∗j
n is bounded in L2(0, T ;L3/2(Ω)) . Next, we note that

0 < FN (‖(un, T ∗n + T̄b)‖V) ≤ 1 , and

FN (‖(un, T ∗n + T̄b)‖V)uinT
∗j
n is still bounded in L2(0, T ;L3/2(Ω)) ⊂ L3/2(0, T ;L3/2(Ω)) .

Thus there exists χij ∈ L3/2(0, T ;L3/2(Ω)) such that

FN (‖(un, T ∗n + T̄b)‖V)uinT
∗j
n → χij in L

3/2(0, T ;L3/2(Ω))− weak . (2.23)

In addition, relation (2.22) implies

FN (‖(un, T ∗n + T̄b)‖V)uinT
∗j
n → FN (‖(u, T ∗ + T̄b)‖V)uiT ∗j a.e. in (0, T )× Ω . (2.24)

Then we apply Lemma 1.3 in [13] to conclude from (2.23) and (2.24) that

FN (‖(un, T ∗n + T̄b)‖V)uinT
∗j
n → FN (‖(u, T ∗ + T̄b)‖V)uiT ∗j in L3/2(0, T ;L3/2(Ω)) weak ,

which implies the following convergence result

−
3∑

i,j=1

∫
Ω

FN (‖(un, T ∗n+T̄b)‖V)uin(t)T ∗jn (t)∂iSjdx→ −
3∑

i,j=1

∫
Ω

FN (‖(u, T ∗+T̄b)‖V)ui(t)T ∗j(t)∂iSjdx .

Hence,

FN (‖(un, T ∗n + T̄b)‖V)b1(un, T
∗
n , S)→ FN (‖(un, T ∗n + T̄b)‖V)b1(u, T ∗, S), S ∈Wn . (2.25)
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Secondly,

FN (‖(un, T ∗n + T̄b)‖V)b1(un, T̄b, S) =FN (‖(un, T ∗n + T̄b)‖V)

∫
Ω

(un(t).∇)T̄b(t)Sdx

=FN (‖(un, T ∗n + T̄b)‖V)

3∑
i,j=1

∫
Ω

uin(t)∂iT̄
j
b (t)Sjdx

=

3∑
i,j=1

∫
Ω

FN (‖(un, T ∗n + T̄b)‖V)umin (t)∂iT̄
j
b (t)Sjdx

=−
3∑

i,j=1

∫
Ω

FN (‖(un, T ∗n + T̄b)‖V)uin(t)T̄ jb (t)∂iS
jdx .

Using (2.7) and (2.22) one obtains the following∫
Ω

FN (‖(un, T ∗n + T̄b)‖V)uin(t)T̄ jb (t)∂iS
jdx→

∫
Ω

FN (‖(u, T ∗ + T̄b)‖V)ui(t)T̄ jb (t)∂iS
jdx ,

thus

FN (‖(un, T ∗n + T̄b)‖V)b1(un, T̄b, S)→ FN (‖(un, T ∗n + T̄b)‖V)b1(u, T̄b, S), S ∈Wn . (2.26)

For the initial data, we have
Pn(u0, T

∗
0 )→ (u0, T

∗
0 ) in H. (2.27)

Indeed, Pn(u0, T
∗
0 ) = (un(0), T ∗n(0)). Since (un, T

∗
n) ∈ C([0, T ];H) and (un, T

∗
n)→ (u, T ∗) strongly

in H; then (2.27) follows.
In addition, since

〈
P 1
nf(t),u

〉
= 〈f(t),un〉 and un → u strongly in H, then〈

P 1
nf(t),u

〉
→ 〈f(t),u〉 .

Similarly, we prove that 〈
P 2
ng(t), T

〉
→ 〈g(t), T 〉 .

Step 3: recovering the pressure

The method is standard and proceed as follows. First, we integrate the first equation of (1.15)
respecting to t, we define the functional for all L by: for all v ∈ H1(Ω),

L(v) =

∫ t

0

((f(s),v)− νa0(u(s),v)− bN (u(s),u(s), v)) ds− (u(s),v) + (u0,v)

which is a continuous linear functional on H1(Ω) and vanish on V. Hence from [10], there exists a
unique function P (t) ∈ L2

0(Ω) such that for all v ∈ H1
0(Ω), for all t ∈ (0, T̃ )

L(v) = −(divv, P (t))H

|P (t)| ≤ sup
v∈H1

0(Ω)

L(v)

‖v‖V
(2.28)

By defining p(t) =
d

dt
P (t), we conclude that (u, p, T = T ∗ + T b) is the weak solution of problem

(1.2).
Hence we have constructed the weak solutions of problem (1.2) . �

We now show that problem (1.2) has a unique solution.
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Theorem 2.2 Suppose that f ∈ L2(0, T̃ ;H−1(Ω)), g ∈ L2(0, T̃ ;H−1(Ω)), Tb ∈ H1(0, T̃ ;H1/2(Γ)),
the initial temperature on the boundary T 0

b belongs to H1/2(Γ) and (u0, T0, ) ∈ H be given.
The weak solution of problem (1.2) given by theorem 2.1 is unique.

proof Let (u1,T 1) and (u2,T 2) two weak solutions of (1.11), then we have when setting
u = u1 − u2 and T = T1 − T2,

d

dt
u(t) + νAu(t) ≤ −BN (u1(t),u1(t)) +BN (u2(t),u2(t))

d

dt
T (t) + αA1T (t) ≤ −BN,1(u1(t), T1(t)) +BN,1(u2(t), T2(t))

(u(0), T (0)) = (0, 0) .

(2.29)

or for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),

〈
d

dt
u(t),v

〉
+ ν(Au(t),v) ≤ −bN (u1(t),u1(t),v) + bN (u2(t),u2(t),v)〈

d

dt
T (t), S

〉
+ α(A1T (t), S) ≤ −bN,1(u1(t), T1(t), S) + bN,1(u2(t), T2(t), S)

(u(0), T (0)) = (0, 0).

(2.30)

Taking v = u(t) in (2.30)1 and S = T (t) in (2.30)2, we have
1

2

d

dt
|u(t)|2H + ν ‖u(t)‖2V ≤ −bN (u1(t),u1(t),u(t)) + bN (u2(t),u2(t),u(t))

1

2

d

dt
|T (t)|2 + α ‖T (t)‖2 ≤ −bN,1(u1(t), T1(t), T (t)) + bN,1(u2(t), T2(t), T (t))

(u(0), T (0)) = (0, 0) .

(2.31)

Now, we estimate each term of the right hand side of (2.30). First,

− bN (u1(t),u1(t),u(t)) + bN (u2(t),u2(t),u(t))

= −FN (‖u1(t)‖V)b(u(t),u1(t),u(t))− (FN (‖u1(t)‖V)− FN (‖u2(t)‖V)) b(u2(t),u1(t),u(t)) .

But using standard inequalities

|−FN (‖u1(t)‖V)b(u(t),u1(t),u(t))| ≤ cb
N

‖u1(t)‖V
‖u(t)‖V ‖u1(t)‖V |u(t)|1/2H ‖u(t)‖1/2V

= Ncb ‖u(t)‖3/2V |u(t)|1/2H

≤ ν

4
‖u(t)‖2V +

3(Ncb)
4

4ν
|u(t)|2H ,

(2.32)

and

|− (FN (‖u1(t)‖V)− FN (‖u2(t)‖V)) b(u2(t),u1(t),u(t))|

≤
‖u2(t)− u1(t)‖V

N
|b(u2(t),u1(t),u(t))|FN (‖u1(t)‖V)FN (‖u2(t)‖V)

≤ cbFN (‖u1(t)‖V)FN (‖u2(t)‖V)
‖u(t)‖V

N
‖u2(t)‖V ‖u1(t)‖V |u(t)|1/2H ‖u(t)‖1/2V

= Ncb ‖u(t)‖3/2V |u(t)|1/2H

≤ ν

4
‖u(t)‖2V +

3(Ncb)
4

4ν
|u(t)|2H .

(2.33)
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Similarly

− bN1(u1(t), T1(t), T (t)) + bN1(u2(t), T2(t), T (t))

= −FN (‖(u1(t), T1(t))‖V)b1(u(t), T1(t), T (t))

− (FN (‖(u1(t), T1(t))‖V)− FN (‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t), T (t)) .

Again, with usual inequalities one has

|−FN (‖(u1(t), T1(t)‖V)b1(u(t), T1(t), T (t))|

≤ cb
N

‖(u1(t), T1(t))‖V
‖u(t)‖V ‖T1(t)‖ |T (t)|1/2 ‖T (t)‖1/2

≤ Ncb ‖u(t)‖V |T (t)|1/2 ‖T (t)‖1/2

≤ α

4
‖u(t)‖2V +

α

4
‖T (t)‖2 +

(Ncb)
4

α3
|T (t)|2 ,

(2.34)

and

|− (FN (‖(u1(t), T1(t))‖V)− FN (‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t), T (t))|

≤
‖(u(t), T (t))‖V

N
|b1(u2(t), T1(t), T (t))|FN (‖(u1(t), T1(t))‖V)FN (‖(u2(t), T2(t))‖)

≤cbFN (‖(u1(t), T1(t))‖V)FN (‖(u2(t), T2(t))‖V)
‖(u(t), T (t))‖V

N
‖u2(t)‖V ‖T1(t)‖ |T (t)|1/2×

‖T (t)‖1/2

=Ncb ‖(u(t), T (t))‖3/2V |T (t)|1/2

≤α
4
‖(u(t), T (t))‖2V +

3(Ncb)
4

4α
|T (t)|2.

=
α

4
‖u(t)‖2V +

α

4
‖T (t)‖2 +

3(Ncb)
4

4α
|T (t)|2 .

(2.35)
Using (2.32) - (2.35) in (2.29), we obtain

d

dt
|u(t)|2H + ν ‖u(t)‖2V ≤

3(Ncb)
4

2ν
|u(t)|2H

d
dt |T (t)|2 + α ‖T (t)‖2 ≤ α ‖u(t)‖2V +

(
2(Ncb)

4

α3 + 3(Ncb)
4

2α

)
|T (t)|2

(u(0), T (0)) = (0, 0) .

(2.36)

Dropping momentarily the term ν ‖u(t)‖2V in (2.36)1 and using lemma 1.4, we have

|u(t)|2H ≤ |u(0)|2H e
3(Ncb)

4

2ν t,

consequently, u1(t) = u2(t) since u(0) = 0.
Using this in (2.36)2 and Lemma 1.4 again, we have

|T (t)|2 ≤ |T (0)|2V e

(
2(Ncb)

4

α3 +
3(Ncb)

4

2α

)
t
,

hence, T1(t) = T2(t) since T (0) = 0 and the theorem is proved . �
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2.2 Continuous dependence on initial values and the parameter N

The goal of the paragraph is to show that the solution (u(t), T (t), p(t)) of (1.2) depends continu-
ously on the parameter N as well as on the initial value (u0, T0). This result was already obtained
when the temperature is zero in [4]. The non trivial task here is to re-adapt their proof by taking
into account the coupling between the velocity and temperature. More precisely, we prove the
following result

Theorem 2.3 Let f ∈ L2(0, T̃ ;L2(Ω)), g ∈ L2(0, T̃ ;L2(Ω)), Ni > 0, (u0i, T0i) ∈ V, i = 1; 2 be
given. Assume y = (ui, Ti) be the solutions of (1.2) corresponding to the parameter Ni and the
initial values y0i = (u0i, T0i), i = 1; 2. Then

(u1, T1)→ (u2, T2) in C(0, T̃ ;V) ∩ D(0, T̃ ;D(A)×D(A1))

when N1 → N2 and (u02, T01)→ (u02, T02). More precisely, the following estimates hold true.

‖(u(t), T (t))‖2V ≤

{
‖(u(0), T (0))‖2V +

12c2b
α3
|N1 −N2|2

∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}
×

exp

(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
. (2.37)

and

α3

∫ T̃

0

(|Au(t)|2H + |A1T (t)|2 dt ≤{
‖(u(0), T (0))‖2V +

12c2b
α3
|N1 −N2|2

∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}
×

[
1 +

(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
× exp

[
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

]]
(2.38)

α3, α4 will be defined later.

proof Setting u = u1 − u2 and T = T1 − T2, we have for almost every t ∈ (0, T̃ )
d

dt
u(t) + νAu(t) ≤ −BN1

(u1(t),u1(t)) +BN2
(u2(t),u2(t))

d

dt
T (t) + αA1T (t) ≤ −BN1,1(u1(t), T1(t)) +BN2,1(u2(t), T2(t)) .

(2.39)

Taking the inner product of (2.39)1 with Au(t) and of (2.39)2 with A1T (t), we have


1

2

dt

dt
‖u(t)‖2V + ν |Au(t)|2H ≤ −bN1

(u1(t),u1(t),Au(t)) + bN2
(u2(t),u2(t),Au(t))

1

2

d

dt
‖T (t)‖2 + α |A1T (t)|2 ≤ −bN1,1(u1(t), T1(t),A1T (t)) + bN2,1(u2(t), T2(t),A1T (t)) .

(2.40)
We now need to treat the right hand side of (2.40). First from the linearity one has

−bN1
(u1(t),u1(t),Au(t)) + bN1

(u2(t),u2(t),Au(t))
= −FN1

(‖u1(t)‖V)b(u(t),u1(t),Au(t))− FN2
(‖u2(t)‖V)b(u2(t),u(t),Au(t))

− (FN1
(‖u1(t)‖V)− FN2

(‖u2(t)‖V)) b(u2(t),u1(t),Au(t)) .
(2.41)
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The right hand side of (2.41) is treated using standard inequalities as follows;

|−FN1
(‖u1(t)‖V)b(u(t),u1(t),Au(t))| ≤ cb

N1

‖u1(t)‖V
‖u(t)‖1/2V ‖u1(t)‖V |Au(t)|3/2H

= N1cb ‖u(t)‖1/2V |Au(t)|3/2H

≤ ν
8 |Au(t)|2H + 3(N1cb)

4

2ν ‖u(t)‖2V .

(2.42)

|− (FN1
(‖u1(t)‖V)− FN2

(‖u2(t)‖V)) b(u2(t),u1(t),Au(t))|

≤
(
|N1 −N2|
‖u1(t)‖V

+
‖u(t)‖V
‖u1(t)‖V

)
cb |Au2(t)|H ‖u1(t)‖V |Au(t)|H

≤ 2

ν1
(|N1 −N2|+ ‖u(t)‖V)

2
c2b |Au2(t)|2H +

ν1

8
|Au(t)|2H

≤2

ν

(
|N1 −N2|2 + ‖u(t)‖2V

)
c2b |Au2(t)|2H +

ν

8
|Au(t)|2H ,

(2.43)

and

|−FN2
(‖u2(t)‖V)b(u2(t),u(t),Au(t))| ≤ |b(u2(t),u(t),Au(t))|

≤ cb |Au2(t)|H ‖u(t)‖V |Au(t)|H
≤ ν

4 |Au(t)|2H +
c2b
ν |Au2(t)|2H ‖u(t)‖2V .

(2.44)

Secondly, exploiting the same linearity one has

− bN1,1(u1(t), T1(t), T (t)) + bN2,1(u2(t), T2(t),A1T (t))

=− FN1
(‖(u1(t), T1(t))‖V)b1(u(t), T1(t),A1T (t))− FN2

(‖(u2(t), T2(t))‖V)b1(u2(t), T (t),A1T (t))

− (FN1
(‖(u1(t), T1(t))‖V)− FN2

(‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t),A1T (t)) .
(2.45)

Again, we treat the right hand side of (2.45) using standard inequalities as follows;

|−FN1(‖(u1(t), T1(t)‖V)b1(u(t), T1(t),A1T (t))| ≤cb
N1

‖(u1(t), T1(t))‖V
‖u(t)‖1/2V ‖T1(t)‖ |A1T (t)|3/2

=N1cb ‖u(t)‖1/2V |A1T (t)|3/2

≤α
8
|A1T (t)|2 +

3(N1cb)
4

2α
‖u(t)‖2V .

(2.46)

|− (FN1(‖(u1(t), T1(t))‖V)− FN2(‖(u2(t), T2(t))‖V)) b1(u2(t), T1(t),A1T (t))|

≤
(

|N1 −N2|
‖(u1(t), T1(t))‖V

+
‖y(t)‖V

‖(u1(t), T1(t)‖V

)
cb |Au2(t)|H ‖T1(t)‖ |A1T (t)|

≤ 2

α
(|N1 −N2|+ ‖y(t)‖V)

2
c2b |Au2(t)|2H +

α

8
|A1T (t)|2

≤ 4

α

(
|N1 −N2|2 + ‖y(t)‖2V

)
c2b |Au2(t)|2H +

α

8
|A1T (t)|2 ,

(2.47)

and

|−FN2
(‖(u2(t), T2(t))‖V)b1(u2(t), T (t),A1T (t))| ≤ |b1(u2(t), T (t),A1T (t))|

=cb |Au2(t)|H ‖T (t)‖ |A1T (t)|

≤α
4
|A1T (t)|2 +

c2b
α
|Au2(t)|2H ‖T (t)‖2 .

(2.48)
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Using (2.42) - (2.48) in (2.40), we obtain



d

dt
‖u(t)‖2V + ν |Au(t)|2H ≤

(
3(N1cb)

4

ν +
6c2b
ν |Au2(t)|2H

)
‖u(t)‖2V +

4c2b
ν |N1 −N2|2 |Au2(t)|2H

d

dt
‖T (t)‖2 + α |A1T (t)|2 ≤

{
3(N1cb)

4

α +
8c2b
α |Au2(t)|2H

}
‖u(t)‖2V +

8c2b
α |N1 −N2|2 |Au2(t)|2H +

10c2b
α |Au2(t)|2H ‖T (t)‖2 .

(2.49)

Adding these two inequalities, we obtain

d

dt
‖(u(t), T (t))‖2V + α3(|Au(t)|2H + |A1T (t)|2 +

12c2b
α3
|N1 −N2|2

(
|Au2(t)|2H + |A1T (t)|2

)
≤
(

6(Ncb)
4

α3
+ α4 |Au2(t)|2H

)
‖(u(t), T (t))‖2V (2.50)

where α3 = min (ν1, α) ;α4 =
14c2b
α3

+
10c2b
α .

Dropping momentarily the term α3(|Au(t)|2H + |A1T (t)|2) in (2.50) and using Lemma 1.4, we have

‖(u(t), T (t))‖2V ≤

{
‖(u(0), T (0))‖2V +

12c2b
α3
|N1 −N2|2

∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}
×

exp

(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
. (2.51)

Using (2.51) in (2.50), we get

α3

∫ T̃

0

(|Au(t)|2H + |A1T (t)|2 dt ≤

{
‖(u(0), T (0))‖2V +

12c2b
α3
|N1 −N2|2

∫ T̃

0

(|Au2(s)|2H + |A1T2(s)|2)ds

}
×

[
1 +

(
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

)
× exp

[
6(Ncb)

4

α3
T̃ + α4

∫ T̃

0

|Au2(t)|2H dt

]]
(2.52)

the proof of Theorem (2.3) follows. �

2.3 Comparison of Galerkin solutions of the GMNSHE and NSHE

We first note that NSHE stands for Navier-Stokes equation coupled with the heat equation. In
this paragraph, we prove that the Galerkin’s approximations of the GMNSHE (2.54) below are
the same as the Galerkin’s approximations for the NSHE (associated with the same initial value

(u0, T0) over the time interval [0, T̃ ]) for some value of N . The following inequalities (see [4]) will
also be used:

|Aun|H ≤ λn|un|H, ‖un‖V ≤ (λn)1/2|un|H,
|A1Tn| ≤ λ1

n|Tn|, ‖Tn‖ ≤ (λ1
n)1/2|Tn|,

λ1|un|2H ≤ ‖un‖2V, λ1
1|Tn|2 ≤ ‖Tn‖2,

(2.53)
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where λj and λ1
j are the corresponding eigenvalues of the operators A and A1. our next result

establishes a link between GMNSHE and NSHE. We claim that

Theorem 2.4 We assume that f ∈ L∞(0, T̃ ;L2(Ω)), g ∈ L∞(0, T̃ ;L2(Ω)) for all T̃ > 0, and
we consider the Galerkin’s approximations of the GMNSHE and NSHE of fixed dimension n for
the same initial value (u0, T0) over the time interval [0, T̃ ]. Then there exists a subsequence

(u
(Nj)
n , T

(Nj)
n )j of the sequence (uNn , T

N
n )N which converges uniformly in C(0, T̃ ;R3) × C(0, T̃ ;R3)

to a function (u∞n , T
∞
n ) in C(0, T̃ ;R3) × C(0, T̃ ;R3) which is the corresponding solution of the

n-dimensional Galerkin’s approximations for the NSHE if N satisfies

N ≥ max

{
(λn)1/2K1/2

4 ;
(
λnK4 + 2

(
λ1
nK5 + c2Λ ‖Tb‖

2
H1/2(Γ)

))1/2
}

where K4 and K5 are defined below.

Proof. We set |f |H∞ = ‖f‖L∞(0,T̃ ;L2(Ω)) and |g|∞ = |g|L∞(0,T̃ ;L2(Ω)) . The Galerkin’s approx-

imations of the GMNSHE with the parameter N are given by

d

dt
uNn (t) + νAuNn (t) + BN (uNn (t),uNn (t)) = f(t),

d

dt
T ∗Nn (t) + αA1T

∗N
n (t) + FN (‖(uNn , T ∗Nn + T̄b)‖V)B1(uNn (t), T ∗Nn (t)) = g(t)−

d

dt
T̄b − αA1T̄b(t)− FN (‖(uNn , T ∗Nn + T̄b)‖V)B1(uNn (t), T̄b(t)),

u(x, 0) = u0(x), T ∗(x, 0) = T0(x)− T̄b(x, 0) .

(2.54)

We deduce from (2.5) and (2.53) that

d

dt

∣∣uNn (t)
∣∣2
H

+ νλ1

∣∣uNn (t)
∣∣2
H
≤ c21

ν
|f |2H∞ ,

d

dt
|T ∗n(t)|2 + αλ1

1

∣∣T ∗Nn (t)
∣∣2 ≤ 2c22

α
|g(t)|2∞ +

4c23
α

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

+(
4c24 +

4λnc
2
5

α

∣∣uNn (t)
∣∣2
H

)∥∥T̄b(t)∥∥2
.

(2.55)

Hence, the energy inequalities of the ODE (2.54) read

∣∣uNn (t)
∣∣2
H
≤ |u0|2H +

c21
λ1ν2 |f |2H∞ ,∣∣T ∗Nn (t)

∣∣2 ≤ |T ∗0 |2 +
2c22
α T̃ |g|2∞ +

4c23
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

dt+(
4c24 +

4λnc
2
5

α K4

)∫ T̃

0

∥∥T̄b(t)∥∥2
dt .

(2.56)

where K4 = |u0|2H +
c21
λ1ν2 |f |2H∞ . In addition, from (2.54), (2.55) and (1.1), we have∣∣∣∣ ddtuNn (t)

∣∣∣∣
H

≤ ν
∣∣AuNn ∣∣H +

∣∣BN (uNn ,u
N
n )
∣∣
H

+ |f |H
≤ |νAuNn |H +

∣∣B(uNn ,u
N
n )
∣∣
H

+ |f |H∞
≤ νλn|uNn |H + cb‖uNn ‖

3/2
V |AuNn |

1/2
H + |f |H∞

≤ νλnK1/2
4 + cbλ

5/4
n K4 + |f |H∞ .

(2.57)
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On the other hand, also from (2.54), (2.55) and (1.1),∣∣∣∣ ddtT ∗Nn (t)

∣∣∣∣
≤α

∣∣A1T
∗N
n (t)

∣∣+ FN (‖(uNn , T ∗Nn + T̄b)‖V)
∣∣B1(uNn (t), T ∗Nn (t))

∣∣+

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣

+ FN (‖(uNn , T ∗Nn + T̄b)‖V)
∣∣B1(uNn (t), T̄b(t))

∣∣+ |g(t)|

≤α
∣∣A1T

∗N
n (t)

∣∣+
∣∣B1(uNn (t), T ∗Nn (t))

∣∣+

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣+
∣∣B1(uNn (t), T̄b(t))

∣∣+ |g(t)|

≤α
∣∣A1T

∗N
n (t)

∣∣+ cb
∣∣AuNn ∣∣H ∥∥T ∗Nn ∥∥+

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣+ cb

∣∣AuNn ∣∣H ∥∥T̄b∥∥+ |g(t)|∞

≤αλ1
n

∣∣T ∗Nn (t)
∣∣+ cbλn

∣∣uNn ∣∣H (λ1
n)1/2

∣∣T ∗Nn ∣∣+

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣+ cbλn

∣∣uNn ∣∣H ∥∥T̄b∥∥+ |g(t)|∞

≤αλ1
nK5 + cbλn(λ1

n)1/2K4K5 +

∣∣∣∣ ddt T̄b
∣∣∣∣+ α

∣∣A1T̄b(t)
∣∣+ cbλnK4

∥∥T̄b∥∥+ |g(t)|∞ ,

(2.58)

where K5 = |T ∗0 |
2

+
2c22
α T̃ |g|2∞ +

4c23
α

∫ T̃

0

∥∥∥∥ ddt T̄b(t)
∥∥∥∥2

dt+

(
4c24 +

4λnc
2
5

α
K4

)∫ T̃

0

∥∥T̄b(t)∥∥2
dt.

Using these estimates (providing the uniformly boundaries in both N and n of (uNn , T
∗N
n )N and(

d

dt
uNn ,

d

dt
T ∗Nn

)
, it follows from the Ascoli theorem that there exists a subsequence (u

Nj
n , T

∗Nj
n )j

of (uNn , T
∗N
n )N which converges uniformly to a function (u∞n , T

∗∞
n ) in

C(0, T̃ ;R3) × C(0, T̃ ;R3). Setting T∞n = T ∗∞n + T̄b, (u∞n , T
∞
n ) is the corresponding solution of

the n−dimensional Galerkin ODE for NSHE. This follows from the uniqueness of solutions of the
Galerkin ODE for a given initial value and the fact that

1 ≥ FN
(
‖uNn ‖V

)
= min

(
1,

N

‖uNn ‖V

)
≥ min

(
1,

N

(λn)1/2K1/2
4

)
, (2.59)

1 ≥ FN
(
‖
(
uNn , T

∗N
n + T̄b

)
‖V
)

= min

(
1,

N

‖
(
uNn , T

∗N
n + T̄b

)
‖V

)

≥ min

1,
N(

λnK4 + 2
(
λ1
nK5 + c2Λ ‖Tb‖

2
H1/2(Γ)

))1/2

 ,

(2.60)

so,
FN (‖uNn ‖V) = 1 and FN (‖(uNn , T ∗Nn + T̄b)‖V) = 1 for

N ≥ max

{
(λn)1/2K1/2

4 ;
(
λnK4 + 2

(
λ1
nK5 + c2Λ ‖Tb‖

2
H1/2(Γ)

))1/2
}
.

�

3 Time discretization of problem (1.2)

In this section our goals are as follows; formulate the time discrete scheme and analyse it. By
analysing, we mean: existence, uniqueness and stability.
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3.1 Numerical scheme

We propose in this paragraph the time semi-discretization of problem (1.2) based on a backward

Euler’s scheme. As in [9], we divide the interval [0, T̃ ] in to M intervals of equal length. Let k = T̃
M

the time step. We associate with k and the functions f, g and Tb the elements

fm =
1

k

∫ mk

(m−1)k

f(t)dt, gm =
1

k

∫ mk

(m−1)k

g(t)dt, Tmb =
1

k

∫ mk

(m−1)k

Tb(t)dt ,

with m = 1, 2, ...M. Most of time, we will use (u, T ) instead of (u(t), T (t)).

For any data (f , g, Tb) ∈ C(0, T̃ ;H−1(Ω)) × C(0, T̃ ;H−1(Ω)) × C(0, T̃ ;H1/2(Γ)), (u0, T0) ∈ V ×
H1(Ω). We consider the following scheme: for all m = 1, 2, ...,M, a.e. t ∈ (0, T̃ ) find (um, Tm) ∈
V×H(Ω) such that 

u0 = u0, T
0 = T0 on Ω ,

Tm = Tmb on Γ ,
um − um−1

k
+ νAum + BN (um,um) = fm ,

Tm − Tm−1

k
+ αA1T

m + BN1(um, Tm) = gm .

(3.1)

Following the analysis in the continuous case, it is suitable to lift the boundary data Tmb . For this
purpose, according to the analysis done before, we set T̄mb = RTmb where∥∥T̄mb ∥∥L2(0,T̃ ;H1(Ω))

≤ cΛ ‖Tmb ‖H1/2(Γ) and
∥∥T̄mb ∥∥L2(0,T̃ ;L4(Ω))

≤ ε ‖Tmb ‖L2(0,T̃ ;H1/2(Γ)) . (3.2)

We set T ∗m = Tm − T̄mb , we seek for (um, T ∗m) ∈ V×H1(Ω) such that

u0 = u0, T
∗0 = T0 − T̄ 0

b on Ω ,

Tm = Tmb , u
m = 0, T ∗m = 0 on Γ

um + kνAum + kBN (um,um) = um−1 + kfm ,

T ∗m + kαA1T
∗m + kFN (‖(um, T ∗m + T̄mb )‖V)B1(um, T ∗m) = Tm−1

+T̄m−1
b + kgm − kαA1T̄

m
b − kFN (‖(um, T ∗m + T̄mb )‖V)B1(um, T̄mb ) .

(3.3)

or equivalently for all (v, S) ∈ V×H1
0 (Ω),

u0 = u0, T
∗0 = T0 − T̄ 0

b on Ω ,
Tm = Tmb , u

m = 0, T ∗m = 0 on Γ
(um,v) + ka0(um,v) + kbN (um,um,v) = (um−1, v) + k 〈fm, v〉Ω ,
(T ∗m, S) + kαa1(T ∗m, S) + kFN (‖(um, T ∗m + T̄mb )‖V)b1(um, T ∗m, S) = (Tm−1, S)
+(T̄m−1

b , S) + k 〈gm, S〉Ω − kαa1(T̄mb , S)− kFN (‖(um, T ∗m + T̄mb )‖V)b1(um, T̄mb , S) .

(3.4)

3.2 Existence of solutions

Our goal in this paragraph is to construct the weak solutions to (3.4) by using; Galerkin’s scheme,
Brouwer’s fixe point, a priori estimates and compactness results.

Theorem 3.1 Assume that the data (f , g, Tb) belongs to C(0, T̃ ;H−1(Ω)×C(0, T̃ ;H−1(Ω)×C(0, T̃ ;H1/2(Γ)),
that the initial temperature on the boundary T 0

b belongs to H1/2(Γ) and (u0, T0) ∈ V × H1(Ω),
then problem (3.3) has at least one solution (um, T ∗m) ∈ D(A)×D(A1).
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proof Following [9], the existence of a solution ym = (um, T ∗m) of problem (3.3) is proved by
the Galerkin’s method in several steps as follows.

Step 1:Existence of approximate solutions.

Let p ≥ 1 be an integer, knowing (u1, T ∗1), ..., (um−1, T ∗m−1), we define an approximate solu-
tion of problem (3.3) by

ump =
p∑
i=1

gmipvi, T
∗m
p =

p∑
i=1

hmipwi, g
m
ip , h

m
ip ∈ R ,

u0
p = (u0)|〈v1,...,vp〉, T

∗0
p =

(
T0 − T̄ 0

b

)
|〈w1,...,wp〉 ,

Tmp = Tmb |〈w1,...,wp〉, u
m
p = 0, T ∗mp = 0 on Γ

ump + kνAump + kBN (ump ,u
m
p ) = um−1 + kfm ,

T ∗mp + kαA1T
∗m
p + kFN (‖(ump , T ∗mp + T̄mb )‖V)B1(ump , T

∗m
p ) = Tm−1

+T̄m−1
b + kgm − kαA1T̄

m
b − kFN (‖(ump , T ∗mp + T̄mb )‖V)B1(ump , T̄

m
b ) .

(3.5)

where (vi)1≤i≤p ⊂ D(A) and (wi)1≤i≤p ⊂ D(A1) are respectively the eigen-vectors of the operators
A and A1; Y |W is the restriction of Y on the space W. Let Zp = 〈v1, ..., vp〉×〈w1, ..., wp〉 the space
generated by the indicated vectors. To prove the existence of (ump , T

∗m
p ) defined via (3.5), we

consider the operator ϕ : Zp → Z ′p given as follows; for all U = (u, T ), V = (v, S) ∈ Zp,

〈ϕ(U), V 〉Zp,Z′p =(u,v) + (T, S) + kνa0(u,v) + kαa1(T, S) + kbN (u,u,v)− (Tm−1, S)− (T̄m−1
b , S)

+ kFN (‖(u, T + T̄mb )‖V)b1(u, T, S)− (um−1,v)− k 〈fm, v〉Ω
− k 〈gm, S〉Ω + kαa1(T̄mb , S) + kFN (‖(u, T + T̄mb )‖V)b1(u, T̄mb , S)

(3.6)
we apply a consequence of Brouwer’s fixed point theorem, see ([24], Lemma 41, page 23). So,
our task is to show that ϕ is continuous and 〈ϕ(U), U〉Zp,Z′p is positive outside a sphere.

Continuity of ϕ. Let (U)n = (un, T
∗
n)n ⊂ D(A) × D(A1) a sequence such that (un, T

∗
n) →

(u, T ∗) = U, it is enough to prove that ϕ(Un)→ ϕ(U). Note that there is no need to specify wether
it is weak or strong convergence since Zp is a finite dimensional space. Let V = (v, S) ∈ V×H1

0 (Ω),

〈ϕ(Un), V 〉Zp,Z′p = (un,v) + (T ∗n , S) + kνa0(un,v) + kαa1(T ∗n , S) + kbN (un,un,v)+

kFN (‖(un, T ∗n + T̄mb )‖V)b1(un, T
∗
n , S)− (um−1,v)− (Tm−1, S)− (T̄m−1

b , S)− k 〈fm,v〉−

k 〈gm, S〉Ω + kαa1(T̄mb , S) + kFN (‖(un, T ∗n + T̄mb )‖V)b1(un, T̄
m
b , S) . (3.7)

Taking the limit of (3.7) when n → +∞ and arguing as in the continuous case (see step 2 of the
proof theorem 2.1), we can show that ϕ(Un)→ ϕ(U) and the continuity of ϕ follows.
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Coercivity of ϕ. Let U = (u, T ), then

〈ϕ(U), U〉Zp,Z′p
=(u,u) + (T, T ) + kνa0(u,u) + kαa1(T, T ) + kbN (u,u,u)

+ kFN (‖(u, T + T̄mb )‖V)b1(u, T, T )− (um−1,u)− (Tm−1, T )− (T̄m−1
b , T )

− k 〈fm,u〉Ω − k 〈g
m, T 〉Ω + kαa1(T̄mb , T ) + kFN (‖(u, T + T̄mb )‖V)b1(u, T̄mb , T )

= |u|2H + |T |2 + kν ‖u‖2V + kα ‖T‖2 − (um−1,u)− (Tm−1, T )− (T̄m−1
b , T )

− k 〈fm,u〉Ω − k 〈g
m, T 〉Ω + kαa1(T̄mb , T ) + kFN (‖(u, T + T̄mb )‖V)b1(u, T̄mb , T )

≥min {kν, kα}
(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V
‖u‖V −

∥∥Tm−1
∥∥ ‖T‖ − ∥∥T̄m−1

b

∥∥ ‖T‖
− k ‖fm‖V′ ‖u‖V − k ‖g

m‖−1 ‖T‖ − kα
∥∥T̄mb ∥∥ ‖T‖+ k

∣∣FN (‖(u, T + T̄mb )‖V)b1(u, T̄mb , T )
∣∣

≥min {kν, kα}
(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V
‖u‖V −

∥∥Tm−1
∥∥ ‖T‖ − cΛ ∥∥Tm−1

b

∥∥
Γ
‖T‖

− k ‖fm‖V′ ‖u‖V − k ‖g
m‖−1 ‖T‖ − kαcΛ ‖T

m
b ‖Γ ‖T‖+

kεcΛ
2
‖Tmb ‖Γ

(
‖u‖2V + ‖T‖2

)
.

We choose ε such that εkcΛ ‖Tmb ‖Γ ≤ min {kν, kα} ; then

〈ϕ(U), U〉Zp,Z′p
≥min {kν, kα}

(
‖u‖2V + ‖T‖2

)
−
∥∥um−1

∥∥
V
‖u‖V −

∥∥Tm−1
∥∥ ‖T‖ − cΛ ∥∥Tm−1

b

∥∥
Γ
‖T‖

− k ‖fm‖V′ ‖u‖V − k ‖g
m‖−1 ‖T‖ − kαcΛ ‖T

m
b ‖Γ ‖T‖ .

Using now the fact that a ≤ (a2 + b2)1/2 for all a, b ∈ R, a ≥ 0, we have

〈ϕ(U), U〉Zp,Z′p

≥min {kν, kα}
(
‖u‖2V + ‖T‖2

)
−
(
‖u‖2V + ‖T‖2

)1/2

×{∥∥um−1
∥∥
V
−
∥∥Tm−1

∥∥− cΛ ∥∥Tm−1
b

∥∥
Γ
− k ‖fm‖V′ − k ‖g

m‖−1 − kαcΛ ‖T
m
b ‖Γ

}
=
(
‖u‖2V + ‖T‖2

)1/2
{

min {kν, kα}
(
‖u‖2V + ‖T‖2

)1/2
}

−
(
‖u‖2V + ‖T‖2

)1/2 {∥∥um−1
∥∥
V

+
∥∥Tm−1

∥∥+ cΛ
∥∥Tm−1

b

∥∥
Γ

}
−
{
k ‖fm‖V′ + k ‖gm‖−1 + kαcΛ ‖Tmb ‖Γ

}(
‖u‖2V + ‖T‖2

)1/2

.

So, 〈ϕ(U), U〉Zp,Z′p is nonnegative on the sphere of V×H1
0 (Ω) with radius

α ≥ 2

min {kν, kα}
{∥∥um−1

∥∥
V

+
∥∥Tm−1

∥∥+ cΛ
∥∥Tm−1

b

∥∥
Γ

+ k ‖fm‖V′ + k ‖gm‖−1 + kαcΛ ‖Tmb ‖Γ
}
.

Then we deduce the existence of (ump , T
∗p
p ) ∈ Zp, solution of (3.5) .

Step 2: Some a priori estimates.

At this step, we recall that k and m are kept fixed, and we want to obtain a priori estimates
on (ump , T

∗m
p ) independently of p and then pass to the limit on (3.5) as p goes to the infinity.

Taking the inner product of (3.5)4 with 2ump and Young’s inequality, we have
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∣∣ump ∣∣2H +
∣∣ump − um−1

p

∣∣2
H

+ kν
∥∥ump ∥∥2

V
≤
∣∣um−1
p

∣∣2
H

+
kc21
ν
‖fm‖2V′ . (3.8)

Similarly, taking the inner product of (3.5)5 with 2T ∗mp , we have

∣∣T ∗mp ∣∣2+
∣∣T ∗mp − Tm−1

p

∣∣2+kα
∥∥Tmp ∥∥2 ≤

∣∣Tm−1
p

∣∣2+
4kc22
α
‖gm‖2−1+4kαc24

∥∥T̄mb ∥∥2
+

2N2c25
α
K6 , (3.9)

with K6 =
∣∣um−1
p

∣∣2
H

+
kc21
ν ‖f

m‖2V′ . Now, we take the inner product of (3.5)4 with Aump and of
(3.5)5 with A1T

∗m
p . One obtains

kν
∣∣Aump ∣∣2 ≤k 〈fm,Aump 〉Ω − FN (

∥∥ump ∥∥V)b(ump ,u
m
p ,Aump )− (ump − um−1

p ,Aump ) ,

α
∣∣A1T

∗m
p

∣∣2 ≤k 〈gm,A1T
∗m
p

〉
Ω
− (T ∗mp − Tm−1

p ,A1T
∗m
p )− (T̄m−1

b ,A1T
∗m
p )

− kα(A1T̄
m
b ,A1T

∗m
p )− kFN (

∥∥(ump , T̄
m
b + T ∗mp )

∥∥
V)b1(ump , T̄

m
b ,A1T

∗m
p )

− kFN (
∥∥(ump , T̄

m
b + T ∗mp )

∥∥
V)b1(ump , T

∗m
p ,A1T

∗m
p ) .

(3.10)

This leads to

kν
∣∣Aump ∣∣2 ≤4kc2 ‖fm‖2V′ +

3kc4bN
4

ν

∥∥ump ∥∥2

V
+

2

kν

∣∣ump − um−1
p

∣∣2
H
,

α
∣∣A1T

∗m
p

∣∣2 ≤8kc21 ‖gm‖
2
−1 +

8c22
kα

∣∣T ∗mp − Tm−1
p

∣∣2 +
9kc4bN

4

α
K6 + 8αkc23

∣∣A1T̄
m
b

∣∣2
+

4

kα

∣∣A1T̄
m−1
b

∣∣2 .
(3.11)

Since k and m are kept fixed, we conclude from (3.11) that
{

(ump , T
∗m
p )

}
p

is bounded in D(A) ×
D(A1). As in the continuous case, we can extract a subsequence of

{
(ump , T

∗m
p )

}
p

still noted{
(ump , T

∗m
p )

}
p

such that

(ump , T
∗m
p )→ (um, T ∗m)

{
weakly in L2(0, T̃ ;D(A)×D(A1)),

strongly in L2(0, T̃ ; V×H1
0 (Ω)) .

(3.12)

Arguing as in the continuous case, we can prove that (um, T ∗m) is the solution of problem (3.3).

�

3.3 Stability of the Numerical scheme

The objectives here are twofold. First, we follow [20] by computing some a priori estimates on
(um, Tm), solution of problem (3.1). We would like these estimates to be uniform with respect to
m and k. In fact, discretization in time of evolution equations can lead to unstable or conditionally
stable schemes. Hence the importance of having uniform estimates with respect to approximation
parameter. Next, we use the a priori estimates to deduce the unique solvability of (3.1) .
We first claim that

Lemma 3.1

|um|2H ≤ |u0|2H +
1

ν

∫ T̃

0

‖f(t)‖2V′ dt . (3.13)
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k

M∑
m=1

‖um‖2V ≤
1

ν

[
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

]
. (3.14)

M∑
m=1

∣∣um − um−1
∣∣2
H
≤ |u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt . (3.15)

The quantity k
M∑
m=1

∥∥∥∥um − um−1

k

∥∥∥∥2

V′
is bounded independently of m and k .

Similarly,

|Tm|2 ≤ |T0|2 +
1

α

∫ T̃

0

‖g(t)‖2−1 dt . (3.16)

k

M∑
m=1

‖Tm‖2 ≤ 1

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]
. (3.17)

M∑
m=1

∣∣Tm − Tm−1
∣∣2 ≤ |T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt . (3.18)

The quantity k
M∑
m=1

∥∥∥∥Tm − Tm−1

k

∥∥∥∥2

V′1

is bounded independently of m and k.

Proof Taking the inner product of (3.1)3 with 2um and using Young’s inequality, we have

|um|2H +
∣∣um−1

∣∣2
H

+
∣∣um − um−1

∣∣2
H

+ kν ‖um‖2V ≤
k

ν
‖fm‖2V′

Summing this inequality over m, we obtain

|um|2H +

m∑
i=1

∣∣ui − ui−1
∣∣2
H

+ kν

m∑
i=1

∥∥ui∥∥2

V
≤ |u0|2H +

k

ν

m∑
i=1

∥∥f i∥∥2

V′
. (3.19)

We now would like to estimate the right hand side of (3.19).

∥∥f i∥∥2

V′
≤ 1

k2

[∫ ik

(i−1)k

‖f(t)‖V′ dt

]2

≤ 1

k2

(∫ ik

(i−1)k

‖f(t)‖2V′ dt

)1/2(∫ ik

(i−1)k

dt

)1/2
2

=
1

k

∫ ik

(i−1)k

‖f(t)‖2V′ dt .

Hence

k

ν

m∑
i=1

∥∥f i∥∥2

V′
≤

M∑
i=1

∫ ik

(i−1)k

‖f(t)‖2V′ dt ≤
∫ T̃

0

‖f(t)‖2V′ dt . (3.20)

Then (3.13), (3.14) and (3.15) follow. In addition, taking the norm in V′ of (3.1)3, we obtain∥∥∥∥um − um−1

k

∥∥∥∥
V′
≤ ‖fm‖V′ + ν ‖Aum‖V′ + ‖BN (um,um)‖V′

≤ ‖fm‖V′ + (cbN + ν2c) ‖um‖V .
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This leads to ∥∥∥∥um − um−1

k

∥∥∥∥2

V′
≤ 2 ‖fm‖2V′ + C ′ ‖um‖2V

where we have used the inequality (a+ b)p ≤ 2p−1(ap + bp), a ≥ 0; b ≥ 0;
1 ≤ p <∞, ([1], Lemma 2.24) . So, we conclude that

k
M∑
m=1

∥∥∥∥um − um−1

k

∥∥∥∥2

V′
≤ 2k

M∑
m=1
‖fm‖2V′ + 2C ′k

M∑
m=1
‖um‖2V

≤ 2

∫ T̃

0

‖f(t)‖2V′ dt+
2C ′

ν

[
|u0|2H +

1

ν

∫ T̃

0

|‖f(t)‖|2−1 dt

]

= 2
[
1 + C′

ν2

] ∫ T̃

0

‖f(t)‖2V′ dt+
2C ′

ν
|u0|2H .

Similarly, we take the inner product of (3.1)4 with 2Tm and use Young’s inequality to obtain

|Tm|2 +
∣∣Tm−1

∣∣2 +
∣∣Tm − Tm−1

∣∣2 + kα ‖Tm‖2 ≤ k

α
‖gm‖2−1 .

Summing this inequality over m we have

|Tm|2 +

m∑
i=1

∣∣T i − T i−1
∣∣2 + kα

m∑
i=1

∥∥T i∥∥2 ≤ |T0|2 +
k

α

m∑
i=1

∥∥gi∥∥2

−1
. (3.21)

As before, the right hand side of (3.21) gives

∥∥gi∥∥2

−1
≤ 1

k2

[∫ ik

(i−1)k

‖g(t)‖−1 dt

]2

≤ 1

k2

(∫ ik

(i−1)k

‖g(t)‖2−1 dt

)1/2(∫ ik

(i−1)k

dt

)1/2
2

=
1

k

∫ ik

(i−1)k

‖g(t)‖2−1 dt .

Hence

k

α

m∑
i=1

∥∥gi∥∥2

−1
≤

M∑
i=1

∫ ik

(i−1)k

‖g(t)‖2−1 dt ≤
∫ T̃

0

‖g(t)‖2−1 dt . (3.22)

Then (3.16), (3.17) and (3.18) follow. In addition, taking the norm in H−1(Ω) of (3.1), we obtain∥∥∥∥Tm − Tm−1

k

∥∥∥∥
V ′1

≤ ‖gm‖−1 + α ‖A1T
m‖V ′1 + ‖BN1(um, Tm)‖V ′1

≤ ‖gm‖−1 + (cbN + αc) ‖Tm‖ .

From which we have ∥∥∥∥Tm − Tm−1

k

∥∥∥∥2

V ′1

≤ 2 ‖gm‖2−1 + 2C ′ ‖Tm‖2V .
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Then

k
M∑
m=1

∥∥∥∥Tm − Tm−1

k

∥∥∥∥2

V ′1

≤ 2k
M∑
m=1
‖gm‖2−1 + 2C ′k

M∑
m=1
‖Tm‖2V

≤ 2

∫ T̃

0

‖g(t)‖2−1 dt+
2C ′

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]

= 2
[
1 + C′

α2

] ∫ T̃

0

‖g(t)‖2−1 dt+
2C ′

α
|T0|2 .

This ends the proof of Lemma 3.1 �

We need additional preparations to state the stability result. We recall from [20] the following
definition.

Definition 3.1 An infinite set of functions E is called Lp(0, T ;X) stable if and only if E is a
bounded subset of Lp(0, T ;X).

Let us introduce the approximate functions

uk : [0, T̃ ] −→ V
t 7−→ uk(t) = um pour t ∈ [(m− 1)k,mk], m = 1, ..., N ,

and
Tk : [0, T̃ ] −→ V1

t 7−→ Tk(t) = Tm pour t ∈ [(m− 1)k,mk], m = 1, ..., N .

Then we have the following stability result.

Theorem 3.2 The functions uk and Tk are respectively L∞(0, T̃ ;H)∩L2(0, T̃ ;V) and L∞(0, T̃ ;H1)∩
L2(0, T̃ ;V1) stable.

Proof Due to Lemma3.1, we have

sup
t∈[0,T̃ ]

|uk|H ≤

(
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

)1/2

,

∫ T̃

0

‖uk(t)‖2V dt ≤
1

ν

[
|u0|2H +

1

ν

∫ T̃

0

‖f(t)‖2V′ dt

]
,

sup
t∈[0,T̃ ]

|Tk| ≤

(
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

)1/2

,

∫ T̃

0

‖Tk(t)‖2 dt ≤ 1

α

[
|T0|2 +

1

α

∫ T̃

0

‖g(t)‖2−1 dt

]
.

Then, the theorem is proved . �

Theorem 3.3 Under the assumptions in theorem 3.1, and assuming that the discretization pa-
rameter k is such that

k < min

{
ν

3(Ncb)4
,

α

3(Ncb)4

}
, (3.23)

then is valid the problem (3.3) has only one solution (um, T ∗m) ∈ D(A)×D(A1) .
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Proof. It will be enough to prove that problem (3.1) has exactly one solution (um, Tm) ∈
D(A) × D(A1). Let (um1 ,T

m
1 ) and (um2 ,T

m
2 ) two weak solutions of (3.1), we set um = um1 − um2

and Tm = Tm1 − Tm2 , then um and Tm satisfy
um − um−1 + kνAum = −kBN (um1 ,u

m
1 ) + kBN (um2 ,u

m
2 )

Tm − Tm−1 + kαA1T
m = −kBN,1(um1 , T

m
1 ) + kBN,1(um2 , T

m
2 )

(um(0), Tm(0)) = (0, 0) .

(3.24)

Or for all (v, S) ∈ H1
0(Ω)×H1

0 (Ω),
〈
um − um−1,v

〉
+ kν(Aum,v) = −kbN (um1 ,u

m
1 ,v) + kbN (um2 ,u

m
2 ,v)〈

Tm − Tm−1, S
〉

+ kα(A1T
m, S) = −kbN,1(um1 , T

m
1 , S) + kbN,1(um2 , T

m
2 , S)

(um(0), Tm(0)) = (0, 0).

(3.25)

Taking v = um in (3.25)1 and S = Tm in (3.25)2, we have
|um|2H + kν ‖um‖2V ≤ −kbN (um1 ,u

m
1 ,u

m) + kbN (um2 ,u
m
2 ,u

m) + |um|H
∣∣um−1

∣∣
H

|Tm|2 + kα ‖Tm‖2 ≤ −kbN,1(um1 , T
m
1 , Tm) + kbN,1(um2 , T

m
2 , Tm) + |Tm|

∣∣Tm−1
∣∣

(um(0), Tm(0)) = (0, 0) .

(3.26)

Reasoning as deriving (2.32)-(2.35), we infer from (3.26) that
|um|2H + kν ‖um‖2V ≤

3k(Ncb)
4

2ν |um|2H + kν
2 ‖u

m‖2V + 1
2 |u

m|2H + 1
2

∣∣um−1
∣∣2
H
.

|Tm|2 + kα ‖Tm‖2 ≤ kα
2 ‖u

m‖2V + 3k(Ncb)
4

2α |Tm|2 + kα
2 ‖T

m‖2 + 1
2 |T

m|2 + 1
2

∣∣Tm−1
∣∣2 .

(um(0), Tm(0)) = (0, 0) .
(3.27)

Then, 
|um|2H + kν ‖um‖2V ≤

3k(Ncb)
4

ν |um|2H +
∣∣um−1

∣∣2
H
.

|Tm|2 + kα ‖Tm‖2 ≤ kα ‖um‖2V + 3k(Ncb)
4

α |Tm|2 +
∣∣Tm−1

∣∣2 .
(um(0), Tm(0)) = (0, 0)

(3.28)

At this stage, we continue the proof by induction on the space’s dimension m. First, we mention
that for m = 0, we just have u0 and T0.
Now, let m = 1. Using it in (3.28) and taking into account the fact that u0 = T 0 = 0, one obtains

∣∣u1
∣∣2
H

(
1− 3k(Ncb)

4

ν

)
+ kν

∥∥u1
∥∥2

V
≤ 0 .∣∣T 1

∣∣2 (1− 3k(Ncb)
4

α

)
+ kα

∥∥T 1
∥∥2 ≤ kα

∥∥u1
∥∥2

V
.

(3.29)

Then, u1
1 = u1

2 and T 1
1 = T 1

2 since (3.23) holds.
On the other hand, we suppose that the solution of problem (3.1) is unique for p = 1, 2, 3, ...,m
and we want to prove that it remains unique for p = m+ 1.
We recall that (um+1, Tm+1) verifies

∣∣um+1
∣∣2
H

+ kν
∥∥um+1

∥∥2

V
≤ 3k(Ncb)

4

ν

∣∣um+1
∣∣2
H

+ |um|2H .∣∣Tm+1
∣∣2 + kα

∥∥Tm+1
∥∥2 ≤ kα

∥∥um+1
∥∥2

V
+ 3k(Ncb)

4

α

∣∣Tm+1
∣∣2 + |Tm|2 .

(um+1(0), Tm+1(0)) = (0, 0) .

(3.30)
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By the induction hypothesis um = Tm = 0, we then infer from (3.30) that
∣∣um+1

∣∣2
H

(
1− 3k(Ncb)

4

ν

)
+ kν

∥∥um+1
∥∥2

V
≤ 0 .∣∣Tm+1

∣∣2 (1− 3k(Ncb)
4

α

)
+ kα

∥∥Tm+1
∥∥2 ≤ kα

∥∥um+1
∥∥2

V
.

Using again (3.23), we obtain um+1
1 = um+1

2 and Tm+1
1 = Tm+1

2 ; this end the proof of Theorem
3.3 . �

Remark 3.1 The condition (3.23) for uniqueness is restrictive, but we are all aware that for
nonlinear problems, uniqueness in general is not guaranteed without restrictions. On the other
hand even for Navier Stokes, there is a restriction on the discretization parameter in order ensure
uniqueness (see [20]). Hence having (3.23) is not surprising.
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Appendix

Theorem 3.4 The application

F : V×H1
0 (Ω) → V′ ×H−1(Ω)

(w, z) 7→ (F1(w, z), F2(w, z))

is locally lipschitz-continuous with

F1(w, z) = f − νAw − BN (w,w) ,

F2(w, z) = g − d

dt
T b − αA1T b − FN (

∥∥(w, z + T̄b)
∥∥
V)B1(w, T b)− FN (

∥∥(w, z + T̄b)
∥∥
V)B1(w, z)− αA1z.

Proof It is enough to show that F2 is locally lipschitz-continuous in V×H1
0 (Ω).

Let (w1, z1), (w2, z2) ∈ V ×H1
0 (Ω), we set w = w1 −w2, z = (z1 − z2), we look for a positive

constants C2 such that

‖F2(w1, z1)− F2(w2, z2)‖H−1(Ω) ≤ C2 ‖(w, z)‖V .

We have

F2(w1, z1)− F2(w2, z2) = −FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w1, z1) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, z2)

−FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w, T b) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, T̄b)−

αA1z1 + αA1z2 (3.31)

Using (3.31) and arguing like proving the uniqueness result, we obtain∣∣(−FN (
∥∥(w1, z1 + T̄b)

∥∥
V)B1(w1, z1) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, z2), z)

∣∣
≤ Ncb ‖w‖V ‖z‖+Ncb ‖(w, z)‖V ‖z‖ ;∣∣(−FN (

∥∥(w1, z1 + T̄b)
∥∥
V)B1(w, T b) + FN (

∥∥(w2, z2 + T̄b)
∥∥
V)B1(w2, T̄b), z)

∣∣
≤ Ncb ‖w‖V ‖z‖+Ncb ‖(w, z)‖V ‖z‖ ;

and |(−αA1z1 + αA1z2, z)| ≤ α ‖z‖2 . Then,
|((F2(w1, z1)− F2(w2, z2)), z)| ≤ (4Ncb + α) ‖(w, z)‖V ‖z‖; consequently

‖F2(w1, z1)− F2(w2, z2)‖H−1(Ω) ≤ (4Ncb + α) ‖(w, z)‖V

and we take C2 = 4Ncb + α. �
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