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Summary

This study offers a general formulation for a class of fractional optimal
control problems (FOCPs) where the performance index is expressed as a
function of both control and state variables and the dynamic control sys-
tem depends on Caputo fractional derivatives. The operational matrices of
fractional Riemann-Liouville integration for Bernoulli polynomials and prop-
erties of Bernoulli polynomials are utilized to reduce the given optimization
problems to the nonlinear programming problem (NLP) by solving of which
we can approximate the optimal solution of FOCP. By implementing three
metaheuristic approaches called multi-verse optimizer (MVO), moth-flame
optimization (MFO), and whale optimization algorithm (WOA), the NLP is
solved and the best approximation solution of FOCP is obtained. A survey
on the superiority and the efficiency between these methods are consid-
ered by applying three numerical examples. Comprehensive analysis reveals
that the MFO considerably solves these examples. Moreover, the profits and
advantages of preference with its precision are demonstrated numerically. Sim-
ulation results obviously show that the objective functional value obtained by
MFO effectively decreased on three illustrative examples in comparison with
MVO and WOA.
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1 INTRODUCTION

Exact modeling of various dynamical systems leads to a set of fractional differential equations. Interested reader in
fractional calculus and fractional differential equations can study2,12 and references therein. The main purpose of
this paper is to introduce some efficient approaches for solving a class of OCPs with the Caputo fractional derivative
in a dynamical system12:

J =

1∫
0

F(t, x(t), u(t))dt, (1)

subject to
Dαx(t) = G(t, x(t)) + β(t)u(t), (2)
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with initial conditions
x(0) = x0, x′(t0) = x1, · · · , x[q]−1(t0) = x[q]−1, (3)

where f , g and β are smooth function of their arguments. We suppose without loss of generality that the interval of
integration in Equation (1) is [0, 1], since any finite interval [t0, tf ] can be transformed to interval [0, 1] by a linear
transformation. Analytical discussions about the existence and uniqueness of the optimal control problem (1)-(3) can
be found in15.
Because most of FOCPs do not chiefly have exact analytic solutions, this highlights the importance of accurate

approximated and numerical methods. The study of fractional variational problems with derivatives in the sense of
Caputo is a recent subject. All methods presented for solving OCPs are partitioned into two classes as direct and
indirect in which the former methods describe the continuous FOCPs to a finite-dimensional NLP and others are
based on the necessary optimality conditions of a OCP. An up-to-date bibliography on various numerical approaches
for solving FOCPs was lately reported by4 and7.
The direct computational method utilized in this essay consists of reducing FOCP to a NLP. Firstly, the fractional

state rate Dαx(t) and control function u(t) by an orthogonal polynomial with unknown coefficients. Approximations
attained by this technique satisfy all the initial conditions of the problem which is a substantial property. Then the
operational matrix of fractional integration have been utilized to the achieve a NLP, by solving of which we can
approximate the optimal solution of the main FOCP up to (3) in terms of the unknown coefficients.
At the final phase, we utilize three metaheuristic algorithms, called multi-verse optimizer (MVO), moth-flame

optimization (MFO), and whale optimization algorithm (WOA) to gain unknown coefficients in the resulted NLP.
An application of the new method based on Bernoulli polynomials and metaheuristic algorithms on three numerical
examples is presented. In what follows, some descriptions on the advantages of the MVO, MFO and WOA are
mentioned. It is valuable implying that, the metaheuristic algorithms are executed as the efficient approaches for
solving large-scale nonlinear programming problems; see Mirjalili et al.21, Mirjalili22, Mirjalili and Lewis23 and several
studies in the literature regarding the application of the MVO, MFO and WOA; see, e.g., Faris et al.24; Fathy and
Rezk25; Jangir et al.26; YÄśldÄśz and YÄśldÄśz27; Mei et al.28; Khalilpourazari and Khalilpourazary29; Aljarah et
al.30; Mafarja and Mirjalili31; Abdel-Basset et al.32. The FOCP is generally converted to a large-scale NLP; therefore,
the classical optimization methods might have defects for solving this problem due to the local optimum, considerable
time and challenging implementation, while the metaheuristic approaches are run efficiently and can gain reasonable
and satisfactory solutions concerning execution time and precision. These verifiable details as well as the following
reasons stimulate us to utilize the MVO, MFO and WOA to solve NLPs governed from FOCP:

• Global search: The predominant advantage of the MVO, MFO and WOA is the lower probability of fall in
local solutions compared to the exact-solution-based methods. So, the MVO, MFO and WOA are warranted to
converge to the global solution.

• Simplicity:These metaheuristic algorithms in this study followed a simple structure and had been inspired
from simple ideas in cosmology (MVO), navigation method of moths (MFO), and social behavior of humpback
whales(WOA).

• Black boxes: The MVO, MFO and WOA algorithms dealt with problems as black boxes, therefore they did not
require derivative information of the search region against classical and local search techniques.

• Flexible: The MVO, MFO and WOA approaches were exceedingly flexible, implying that they were easily
applicable to solve different NLPs without fundamental modifications. Actually, the problem statement become
more essential and meaningful than the optimizer when using the MVO, MFO and WOA algorithms.

• Effectiveness: Using the value of objective functional, we would be able to deduce the validity of three meta-
heuristic algorithms. The results of Tables 1 , 2 and 3 indicated that the MFO was the most effective approach
in comparison with MVO and WOA with respect to exact solutions and maximum absolute errors.

• Large-scale setting: Our NLP was a large-sized problem. The classical optimization algorithms were satisfactory
for small- or medium-sized problems. As reported in Tables 1 , 2 and 3 , the MVO, MFO and WOA algorithms
were appropriate for large-sized problems.
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• Application: To the best of our knowledge, MVO, MFO and WOA have not been executed to solve FOCP in
the literature.

This paper is unified as follows. In section 2, firstly, some definitions and mathematical preliminaries of fractional
calculus needed for our consequent development are described and then the Bernoulli operational matrices of the
fractional integration is given. The detailed implementation of direct methods and three metaheuristic to solve NLPs
governed from FOCP is presented in section 3. In Section 4, we report our numerical findings and demonstrate the
accuracy of the propounded numerical scheme by considering some numerical examples. Furthermore, comprehensive
comparisons between the MFO, MVO and WOA are represented to show the applicability of the developed approach.
Lastly, in section 5, the paper brings an end with a concise conclusion and some remarks.

2 PRELIMINARIES

This section consists of some principle definitions and properties of Bernoulli orthogonal polynomials, fractional
calculus and function approximation.

2.1 Bernoulli polynomials and their properties
The Bernoulli polynomials of order i are specified by a series16

Bi(t) =

i∑
k=0

(
i

k

)
αkt

i−k =

i∑
k=0

(
i

k

)
αi−kt

i (4)

where αi, i = 0, 1, · · · ,m are Bernoulli numbers. These numbers are a sequence of signed rational numbers which
arise in the series expansion of trigonometric functions20 and can be defined by the identity

t

et − 1
=

∞∑
i=0

αi
ti

i!
.

The first few Bernoulli numbers are

α0 = 1, α1 = −−1

2
, α2 =

1

6
, α4 =

−1

30
(5)

with α2i+1 = 0, i = 1, 2, 3, · · · . In16, Bernoulli numbers have been obtained by the following determinantal definition

α0 = 0

αi =
(−1)i

(i− 1)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
2

1
3

1
4 · · ·

1
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1
i+1
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0 2 3 · · · i− 1 i

0 0
(

3
2

)
· · ·
(
i−1

2

) (
i
2

)
...

...
...

. . .
...

...
0 0 0 · · ·

(
i−1
i−2

) (
i
i−2

)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. i = 1, 2, . . . . (6)

It is known that the Bernoulli polynomials form a complete basis over [0, 1], for more details see17. The first few
Bernoulli polynomials are

B0(t) = 1, B1(t) = t− 1

2
, B2(t) = t2 − t+

1

6
,

B3(t) = t3 − 3

2
t2 +

1

2
t.

These polynomials form a complete basis19 over the interval [0, 1] and satisfy the following equation14:
1∫

0

Bn(t)Bm(t) = (−1)n−1 m!n!

(m+ n)!
αn+m, m, n ≥ 1. (7)
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The function f(t) may be approximated by Bernoulli polynomial as follows:

f(t) ≈
m∑
j=0

γjBj(t) = γTB(t) (8)

where
B(t) = [B0(t),B1(t), · · · ,Bm(t)]T , (9)

γ = [γ0, γ1, · · · , γm]T . (10)

such that γ uniquely calculated by
γT 〈B(t),B(t)〉 = 〈f(t),B(t)〉. (11)

In equation (11), 〈B(t),B(t)〉 is square matrix of order m + 1 which is defined by (7). let D = 〈B(t),B(t)〉, so
γ = D−1〈f(t),B(t)〉.

Lemma 1. Suppose f(t) ∈ Cm+1[0, 1] and Sm = Span{B0(t),B1(t), · · · ,Bm(t)}. If γTB(t) is the best approximation
f(t) out of Sm, then10

||f(t)− γTB(t)||L2[0,1] ≤
K

(m+ 1)!
√

2m+ 3

where K = maxt∈[0,1] |fm+1(t)|.

For more details about best approximation see19. The exact value of the error of the estimated solution is given
in the next theorem.

Theorem 1. Suppose that H is a Hilbert space and Y is a finite-dimensional closed subspace of H and y0, y1, ..., ym
is any basis for Y . Let x be an arbitrary element in H and y0 be the unique best approximation to x from Y . Then

‖x− y0‖ =
G(x, y1, y2, · · · , yn)

G(y1, y2, · · · , yn)
,

where

G(x, y1, y2, · · · , yn) =

∣∣∣∣∣∣∣∣∣
〈x, x〉 〈x, y1〉 · · · 〈x, yn〉
〈y1, x〉 〈y1, y1〉 · · · 〈y1, yn〉

...
...

. . .
...

〈yn, x〉 〈yn, y1〉 · · · 〈yn, yn〉

∣∣∣∣∣∣∣∣∣ .

2.2 Fractional integral and derivative
There are various definitions of fractional integrations and derivatives. The FOCP in this paper in terms of the
RiemannâĂŞLiouville fractional integral and the Caputo fractional derivative.

Definition 1. The Riemann-Liouville fractional integral operator of order α, is defined by

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds, α > 0, t > 0.

where Γ(.) denotes the Gamma function and we set I0f(t) = f(t).

Definition 2. Let n = dαe(d.e denotes the ceiling function), the operator Dα, defined by

Dαf(t) = DnIn−αf(t),

is called the Riemann-Liouville fractional differential operator of order α. For α = 0, we set D0 = I, the identity
operator.

Definition 3. The Caputo fractional derivative of f ∈ L1[0, b], is defined as

Dα
∗ f(t) =

{
In−αDnf(t) n− 1 < α < n, n ∈ N,

dn

dtn f(t) α = n.
(12)
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Lemma 2. Let α, β ≥ 0, C1, C2 ∈ R and F(t),G(t),∈ L1[0, 1]. Then

1) IαIβF(t) = IβIαF(t),

2) IαIβF(t) = Iβ+αF(t),

3) The Caputo fractional differentiation is a linear operation
Dα(C1F(t) + C2G(t)) = C1D

αF(t) + C2D
αG(t).

4) The relation

IαDα
∗ f(t) = f(t)−

∑
f (k)(0+)

tk

k!

hold almost everywhere on [0, 1]. Note that for n− 1 < α < n, n ∈ N

5) Dα
∗ k = 0,(k is a constant).

6)

Dα
∗ t
ν =


0 forν ∈ N0andν < dαe

Γ(ν+1)
Γ(ν+1−−α) t

ν−α forν ∈ N0andν ≥ dαe
orν ∈ Nandν > dαe

(13)

Bernoulli operational matrix of the fractional integration The Rimann-Lioville fractional integration of
the vector B(t) in equation (9) can be expressed by

IαB(t) = F (α)B(t) (14)

where the square matrix F (α) of order m+ 1 is Riemann-Liouville fractional operational matrix of integration. This
matrix is given in18 as follows:

Fα =


θ0,0,0 θ0,1,0 · · · θ0,m,0∑1
r=0 θ

∑1
r=0 θ · · ·

∑1
r=0 θ

...
... · · ·

...∑m
r=0 θ

∑m
r=0 θ · · ·

∑m
r=0 θ

 (15)

where
θi,j,r = b

(α)
i,r cr,j . (16)

In equation (16), b(α)
i,r and cr,j is given by

b
(α)
i,r =

i!

(i− r)!Γ(r + 1 + α)
αi−r.

and cr,j are the coefficient expansion of function tq+r in terms of Bernoulli polynomials

tα+r ≈
m∑
j=0

cr,jBj(t).

This matrix for m = 5 and α = 0.8, 0.9, 1 are given as follows

F (0.8) =



0.596484 1.06274 −0.422194 0.930355 −0.535861 1.10955

−0.085212 0.0653276 0.734063 −0.590821 0.332406 −0.63479

−0.00149495 0.00646345 0.00458001 0.627878 −0.19236 0.288085

0.00840908 −0.00433996 0.00314778 0.0147215 0.339961 −0.0971617

0.000414977 −0.00182432 0.00833749 −0.0293234 0.0914694 0.230468

−0.00399701 0.00206342 −0.0132906 0.0130937 −0.211251 0.0900255



F (0.9) =



0.547239 1.03612 −0.193272 0.377605 −0.219211 0.433338

−0.0849164 0.0292591 0.611414 −0.247547 0.138349 −0.250288

−0.000725781 0.00276464 0.000839296 0.464273 −0.0844637 0.116276

0.00844276 −0.00212171 0.00150434 0.00473369 0.295352 −0.0436683

0.000202395 −0.000781233 0.00352227 −0.011622 0.0385064 0.219963

−0.0040171 0.00100958 −0.010285 0.00570285 −0.181167 0.0382047


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F (1) =



1
2 1 0 0 0 0

− 1
12 0 1

2 0 0 0

0 0 0 1
3 0 0

1
120 0 0 0 1

4 0

0 0 0 0 0 1
5

− 1
252 0 − 1

132 0 − 5
33 0


In10, an error upper bound for the operational matrix of the fractional integration Fα has given and demonstrate

with an increase in the number of Bernoulli polynomials, the error vector given in theorem 2 tend to zero vector.
Here, we restate this theorem.

Theorem 2. Suppose f(t) ∈ L2[0, 1] is approximated by γTB(t) where B(t) and γ are defined in equations (9) and
(10) then we have

limm→∞||f(t)− γTB(t)||L2[0,1] = 0

The error vector eqI = [eqI0, e
q
I1, · · · , e

q
Im]T = F (q)B(t)− IqB(t), Then10

||eqIi|| ≤
i∑

r=0

i!

(i− r)!Γ(r + 1 + q)
αi−r

(
G(tq+r,B0(t), · · · ,Bm(t))

G(B0(t), · · · ,Bm(t)))

) 1
2

, 0 ≤ i ≤ m. (17)

where G(tq+r,B0(t), · · · ,Bm(t)) and G(B0(t), · · · ,Bm(t)) is defined in theorem 1.

3 SOLUTION FRAMEWORK

3.1 Discretization of FOCP
In this section, implementation of the Bernoulli polynomials on FOCP in equations (1)-(3) is given. Firstly, the
control and fractional state rate functions are approximated in terms of Bernoulli polynomials of the form

Dαx(t) = X TB(t), (18)

u(t) = UTB(t) (19)

where
X T = [X0,X1, · · · ,Xm], UT = [U0,U1, · · · ,Um]. (20)

are unknown and B(t) is given in (9). The state functions x(t) can be obtained by using equations (13) and (14)

x(t) = IαDαx(t) + x(0) ≈ (X TF (α) + dT )B(t), (21)

where F q is fractional operational matrix of integration introduced in (15) and the constant vector d is dT = [x0, · · · , 0].

By using equations (18), (19) and (21) in dynamical system (2), we obtain

Q(t) = G
(
t, (X TF (α) + dT )B(t)

)
+ β(t)(UTB(t))−

(
X TB(t)

)
= 0 (22)

Now, we utilize collocation points τi+1 = 1
2

(
Cos

(
(iΠ)
m+1

)
+ 1
)
for i = 0, · · · ,m in (22), and (22) is converted to

Q(τi+1) = 0, i = 0, · · · ,m. (23)

For approximating the cost function stated in (1), we apply the GL quadrature after the appropriate interval
transformation and use (19) and (21), so we obtain

J (t) =

1∫
0

F(t, (X TF (α) + dT )B(t),UTB(t))dt

=
1

2

1∫
−1

F
(
δ + 1

2
), (X TF (α) + dT )B(

δ + 1

2
),UTB(

δ + 1

2
)

)
dδ
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≈ 1

2

m∑
i=0

ωiF
(
δi + 1

2
, (X TF (α) + dT )B(

δi + 1

2
),UTB(

δi + 1

2
)

)
(24)

where δi, i = 0, · · ·m are m + 1 zeros of Legendre polynomials and ωi are the corresponding weights5. The initial
condition (3) can be written as

x(0) = x0 = (X TF (α) + dT )B(0). (25)

Then, the FOCP in equations (1)-(3) has been reduced to a NLP with (24) as the objective function and (23) and
(25) as constraints. The next subsections are devoted to the description of MVO, MFO and WOA algorithms, to
solve NLP governed by FOCP.

3.2 Multi-Verse Optimizer
MVO is a novel population-based algorithm which was proposed by Mirjalili et al.21. This algorithm is virtually
extended based on the concepts of white hole and black hole. In MVO, the search space exploration is according to
the fundamental principles of the white hole and black hole. Also, the wormholes help MVO in exploiting the search
areas. Each solution was similar to a universe and each variable was an item in that universe. In addition, an inflation
rate was assigned to each solution, which was relative to the fitness function value.
A roulette wheel strategy was executed to model the white/black hole tunnels and swap the objects of universes.

The universes were sorted regarding their inflation rates and selected based on the roulette wheel for a white hole on
every iteration. The following steps were performed to carry out this.

U =


x1

1 x2
1 . . . xd1

x1
2 x2

2 . . . xd2
...

...
. . .

...
x1
n x

2
n . . . x

d
n


where d is the number of variables and n is the number of universes or candidate solutions:

xji =

{
xjk, r1 < NI(Ui)

xji , r1 ≥ NI(Ui)
(26)

where xji demonstrated the jth parameter of ith universe, Ui indicated the ith universe, NI(Ui) was normalized
inflation rate of the ith universe, r1 was a random number in the interval [0, 1], and xjk showed the jth parameter of
kth universe chosen by a roulette wheel selection strategy.
The pseudocodes for this step were as follows:

It can be seen in Eq. (26), the selection of white holes were performed by the roulette wheel, which was with respect

1: SU=Sorted universes
2: NI=Normalize inflation rate (fitness) of the universes
3: for each universe indexed by i do
4: Black hole index=i;
5: for each object indexed by j do
6: r1 = random([0, 1]);
7: if r1 < NI(Ui) then
8: White hole index= Roulette Wheel Selection(-NI);
9: U(Black hole index,j)= SU(White hole index,j);

10: end if
11: end for
12: end for

to the normalized inflation rate. The low inflation rate, the more probability of transferring objects by white/black



8 Asyieh Ebrahimzadeh et al

hole tunnels. Each universe had wormholes to send its objects over area randomly to keep the diversity of universes
and execute exploitation. The wormhole tunnels were always established between a universe and the best universe
obtained hitherto to ensure local changes for each universe and gain high probability of making better inflation rate
concerning wormholes. The mathematical model of this strategy was as follows:

xji =


{
xj + TDR× ((ubj − lbj)× r4 + lbj), r3 < 0.5

xj − TDR× ((ubj − lbj)× r4 + lbj), r3 ≥ 0.5
, r2 < WEP

xji , r2 ≥WEP

(27)

where xj demonstrated the jth parameter of best universe obtained hitherto, wormhole existence probability (WEP)
and traveling distance rate (TDR) were two coefficients, lbj indicated the lower bound of jth variable, ubj was the
upper bound of jth variable, xji showed the jth parameter of ith universe, and r2, r3, r4 were random numbers in the
interval [0, 1]. The pseudo codes were as follows (on the assumption that ub and lb showed upper bound and lower
bound of the decision variables):
The adaptive formula for WEP and TDR coefficients were as follows:

1: for each universe indexed by i do
2: for each object indexed by j do
3: r2 = random([0, 1]);

4: if r2 < Wormhole existance probability then
5: r3 = random([0, 1]);

6: r4 = random([0, 1]);

7: if r3 < 0.5 then
8: U(i, j)=Best universe(j) + Travelling distance rate ∗((ub(j)− lb(j)) ∗ r4 + lb(j));
9: else

10: U(i, j)=Best universe(j) - Travelling distance rate ∗((ub(j)− lb(j)) ∗ r4 + lb(j));
11: end if
12: end if
13: end for
14: end for

WEP = min+ l × (
max−min

L
) (28)

where min was 0.2, max was 1, l demonstrated the current iteration, and L indicated the maximum iterations.

TDR = 1− l
1
p

L
1
p

(29)

where p represented the exploitation precision over the iterations. The p was 6 in this study.
The steps of the MVO algorithm were specified as follows:

3.3 Moth-Flame Optimization
The MFO was a recently population based algorithm belonging to the class of nature-inspired approaches. It was
proposed and developed by Mirjalili22. In the MFO algorithm, the candidate solutions were moths and the variables
were the position of moths in the area. So, the moths could fly with varying their position vectors. The set of moths
was demonstrated in a matrix as follows:

M =


m1,1 m1,2 . . . m1,d

m2,1 m2,2 . . . m2,d

...
...

. . .
...

mn,1 mn,2 . . . mn,d

 (30)

where n was the number of moths and d was the number of variables.
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Algorithm 1 MVO algorithm

1: Generate random universes (U)
2: Initialize WER, TDR, and Best universe
3: SU=Sorted universes
4: NI=Normalize the inflation rate (fitnesses) of the universes
5: while the stopping criterion is not fulfilled do
6: Calculate the fitness of all universes
7: for each universe indexed by i do
8: Update WEP and TDR
9: Black hole index=i;

10: for each object indexed by j do
11: r1 = random([0, 1]);

12: if r1 < NI(Ui) then
13: White hole index= Roulette Wheel Selection(-NI);
14: U(Black hole index,j)=SU(White hole index,j);
15: end if
16: r2 = random([0, 1]);

17: if r2 < Wormhole existence probability then
18: r3 = random([0, 1]);

19: r4 = random([0, 1]);

20: if r3 < 0.5 then
21: U(i, j)=Best universe(j) + Traveling distance rate ∗((ub(j)− lb(j)) ∗ r4 + lb(j));
22: else
23: U(i, j)=Best universe(j) - Travelling distance rate ∗((ub(j)− lb(j)) ∗ r4 + lb(j));
24: end if
25: end if
26: end for
27: end for
28: end while

Also, an array for computing the fitness values of moths was considered:

OM =


OM1

OM2

...
OMn

 (31)

where n was the number of moths. On the other hand, a matrix was assigned to flames as follows:

F =


F1,1 F1,2 . . . F1,d

F2,1 F2,2 . . . F2,d

...
...

. . .
...

Fn,1 Fn,2 . . . Fn,d

 (32)

where n was the number of moths and d was the number of variables. Also, there was an array for computing the
fitness values of flames as follows:

OF =


OF1

OF2

...
OFn

 (33)
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where n was the number of moths. The moths were search agents that travel around the search area, while flames
were the best position of moths that achieved hitherto. So, each moth explored around a flame and updated it for
detecting a better solution. The MFO algorithm was a three-tuple that described as follows:

MFO = (I, P, T ) (34)

I was a function of moths and fitness values that was defined as follows:

I : φ→ {M,OM} (35)

The P was the main function, traveled the moths around the search area. This function gained the matrix of M and
gone back its updated.

P : M →M (36)

The T function considered true if the stopping criterion was fulfilled and false if the stopping criterion is not fulfilled:

T : M → {true, false} (37)

With I, P, andT, the MFO algorithm was described as follows: The function I had to create initial solutions and

1: M=I();
2: while T (M) is equal to false do
3: M = P (M);

4: end while

compute the objective functions. The following mechanism was applied as a random distribution in this function:

1: for i = 1 : n do
2: for j = 1 : d do
3: M(i, j) = (ub(i)− lb(i)) ∗ rand() + lb(i);

4: end for
5: end for
6: OM = FitnessFunction(M);

there are two other arrays called ub and lb. Two matrixes ub and lb given the upper and lower bounds of the variables
and were computed by:

ub = [ub1, ub2, ..., ubn−1, ubn] (38)

lb = [lb1, lb2, ..., lbn−1, lbn] (39)

Then, the P function was iteratively performed until the T function reflected true. The P function was the major
function that traveled the moths around the search area. Therefore, the situation of each moth was defined based on
the following equation:

Mi = S(Mi, Fj) (40)

where Mi demonstrated the i-th moth, Fj showed the j-th flame, and S was the spiral function.
A logarithmic spiral was described as the main update method of moths as follows:

S(Mi, Fj) = Di.e
bt.cos(2πt) + Fj (41)
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where Di showed the distance of the i-th moth for the j-th flame, b was a fixed value, and t was a random number
in the interval [−1, 1]. D was computed by:

Di = |Fj −Mi| (42)

where Mi demonstrated the i-th moth, Fj showed the j-th flame, and Di displayed the distance of the i-th moth for
the j-th flame.
Eq. (41) was in which the spiral flying path of moths was mimicked. To highlight exploitation, t was considered as

a random number in the interval [r, 1] in which r was linearly reduced from −1 to −2 on the iterations. The following
formula was used:

flame no = round(N − 1 ∗ N − 1

T
) (43)

The steps of the P function were as below. The P function was performed until the T function come back true.

1: Update flame no using Eq. (43)
2: OM = FitnessFunction(M);
3: if iteration == 1 then
4: F = sort(M);
5: OF = sort(OM);
6: else
7: F = sort(Mt−1,Mt);
8: OF =sort(Mt−1,Mt);
9: end if

10: for i = 1 : n do
11: for j = 1 : d do
12: Update r and t
13: Compute D using Eq. (42) based on the corresponding moth
14: Update M(i, j) using Eqs. (40) and (41) based on the corresponding moth
15: end for
16: end for

Then, the best moth was considered as the best achieved approximation of the minimum.

3.4 Whale Optimization Algorithm
WOA was a new nature-inspired metaheuristic approach which was introduced by Mirjalili and Lewis23 in the 2016s.
The encircling prey, spiral bubble-net feeding maneuver, and search for prey were three important elements of the
WOA algorithm. A brief description of related elements on WOA was discussed in the following.

3.4.1 Encircling prey
Humpback whales can identify the position of prey and surround them. Considering the location of the optimal prey
in the search region was not known, the present best candidate solution was the optimal prey or was close to the
minimum in the WOA. Subsequently the best search agent was determined, the other search agents would attempt
to update their locations in the direction of the best search agent. This action was shown by the following equations:

−→
D = |−→C .−→X∗(t)−−→X (t)| (44)
−→
X (t+ 1) =

−→
X∗(t)−−→A.−→D (45)
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where t demonstrated the current iteration, −→A and −→C were coefficient vectors, X∗ was the location vector of the best
solution achieved hitherto, and −→X was the location vector. The vectors −→A and −→C were computed as follows:

−→
A = 2−→a .−→r −−→a (46)
−→
C = 2.−→r (47)

where −→a was linearly reduced from 2 to 0 on the iterations and −→r was a random vector in the interval [0, 1].

3.4.2 Bubble-net attacking method
Two plans were considered to model the bubble-net behavior of humpback whales as follows:

1. Shrinking surrounding structure: This action was obtained by reducing the value of −→a in the Eq. (46). Also, the
fluctuation range of −→A was reduced by −→a . Especially −→A was a random value in [a, a] in which a was reduced
from 2 to 0 on the iterations. Considering random values for −→A in [1, 1], the new location of a search agent can
be determined between the original location of the agent and the location of the current best agent.

2. Spiral updating location: This action first computed the distance between the whale settled at (X,Y ) and prey
settled at (X∗, Y ∗). Then, a spiral equation was generated between the location of whale and prey to simulate
the helix-shaped movement of humpback whales by:

−→
X (t+ 1) =

−→
D

′
.ebl.cos(2πl) +

−→
X∗(t) (48)

where
−→
D

′
= |−→X∗(t)−−→X (t)| and demonstrated the distance of the ith whale to the prey, b was a fixed value for

describing the shape of the logarithmic spiral, and l was a random number in the interval [1, 1].

The humpback whales moved around the prey inside a shrinking ring and near a spiral-shaped path. On the other
hand, there was a probability of 50% to select between either the shrinking surrounding method or the spiral approach
to update the location of whales. This mechanism was formulated as follows:

−→
X (t+ 1) =

{ −→
X∗(t)−−→A.−→D, p < 0.5

−→
D

′
.ebl.cos(2πl) +

−→
X∗(t), p ≥ 0.5

(49)

where p was a random number in the interval [0, 1].

3.4.3 Search for prey
In this mechanism, humpback whales searched randomly with respect to the location of each other. So, −→A was applied
with the random values larger than 1 or smaller than 1 to restrict search agent to travel far away from a particular
whale. This method and |−→A | > 1 highlight exploration in the WOA algorithm to execute a global search as follows:

−→
D = |−→C .−−−→Xrand −

−→
X | (50)

−→
X (t+ 1) =

−−−→
Xrand −

−→
A.
−→
D (51)

where −−−→Xrand was a random whale selected from the present population.
The pseudo code of the WOA was stated by:

4 UTILIZATION OF THE PRESENTED APPROACH

In order to demonstrate and confirm the performance and the precision of our scheme, we propounded three following
examples. Matlab software had been utilized to dissolve these illustrative examples. After the discritization of main
problem with proposed method in subsection 3.1, the resulted NLP has been solved with three powerful optimization
methods MFO, MVO and WOA. We calculate the absolute error of the approximate optimal state and control
variables as follows

EX(τ) = |x∗(τ)− x(τ)|, Eu(τ) = |u∗(τ)− u(τ)|. (52)
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Algorithm 2 WOA algorithm

1: Initialize the whales population Xi(i = 1, 2, ..., n)

2: Evaluate the fitness of each search agent
3: X∗=the best search agent
4: while (t < maximum number of iterations) do
5: for each search agent do
6: Update a,A,C, l, and p
7: if 1 (p < 0.5) then
8: if 2 (|A| < 1) then
9: Update the location of the present search agent by the Eq. (44)

10: else2 (|A| ≥ 1)
11: Choose a random search agent (Xrand)
12: Update the location of the present search agent by the Eq. (51)
13: end if2
14: else1 (p ≥ 0.5)
15: Update the location of the present search by the Eq. (48)
16: end if1
17: end for
18: Check if any search agent goes beyond the search region and amend it
19: Evaluate the fitness of each search agent
20: Update X∗ if there is a better solution
21: t = t+ 1

22: end while
23: return X∗

4.1 Numerical examples
Example 1. Consider the following optimal control problem

min J =
1

2

∫
x2(t) + u2(t)dt (53)

contingent to fractional system dynamics

Dαx(t) = −x(t) + u(t), x(0) = 1. (54)

The exact solution for α = 1 is
x(t) = cosh(

√
2t) + η sinh(

√
2t),

u(t) = (1 +
√

2η) cosh(
√

2t) + (
√

2 + η)sinh(
√

2t).

where

η = −cosh(
√

2) +
√

2 sinh(
√

2)√
2 cosh(

√
2) + sinh(

√
2)
.

The maximum absolute error of our scheme for state and control variables for M = 5 and α = 1 are plotted in figures
1 and 2 . Table 1 demonstrates the value of objective functional obtained for M = 5, 6 and different values of α.
The numerical solutions of this FOCP are also comparable with other methods in the literature, for this purpose we
refer to18. It is found that the results obtained by the proposed method shows very good agreement with published
results in18. Moreover, our proposed method has obtained 7th order of accuracy.

Example 2. Consider the objective functional and state space equations as follows:

min J =

1∫
0

(
x2(t)− 2t

3
2x(t) + u2(t)− 3

√
π

4
e−tu(t) + e−t+t

3
2 u(t) + t3 +

9π

64
e−2t

−3
√
π

8
e−2t+t

3
2 +

1

4
e−2t+t

3
2 + e2t

)
dt (55)
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TABLE 1 The value of objective functional for example 1

M α MFO MVO WOA
5 0.8 0.0607742130726983 0.0607749705120333 0.0607752304090174

5 0.9 0.0564543252057422 0.0564758737200734 0.0570053588731675

5 1.0 0.0539772578587941 0.0547324421838168 0.0541010362352063

6 0.8 0.0604090556427560 0.0604093005209958 0.0604097171588314

6 0.9 0.0553258723321114 0.0553540556629651 0.0553309922852756

6 1.0 0.0527690492188603 0.0533263387871045 0.0529847532371575

0.0 0.2 0.4 0.6 0.8 1.0

0

2.×10-6

4.×10-6

6.×10-6

8.×10-6

FIGURE 1 The maximum absolute error Ex(t) in example 1

0.0 0.2 0.4 0.6 0.8 1.0

0

5.×10-7

1.×10-6

1.5×10-6

FIGURE 2 The maximum absolute error Eu(t) in example 1

subject to
D1.5x(t) = ex(t) + 2etu(t),
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x(0) = x′(0) = 0. (56)

The optimal control and state functions for this example are u∗(t) = 1
2e
−t
(
−et

3
2 + 3

√
π

4

)
and x∗(t) = t

3
2 . By utilizing

the procedure given in section 3, firstly the FOCP is discretized using the Bernoulli polynomials and its operational
matrix o and then the resulted NLP is optimized using the three given approaches MFO, MVO and WOA. The
value of cost functions for M = 2, 3 and 4 by using three optimization methods are given in Table 2 . The exact and
approximate state and control functions are plotted in Figures 3 and 4 . In these figures, the blue graph represents
the exact function and graph with red dots is approximate functions. For M = 4, the operational matrix of fractional
integration has been obtained as follows

F (1.5) =


0.300901 0.0644788 0.0023881 −0.00651301 −0.000678021

−0.0644788 −0.00835836 0.000976952 0.000918502 −0.00028223

0.0023881 −0.000976952 −0.000214317 0.00013026 0.0000644752

0.00651301 0.000918502 −0.00013026 −0.000108059 0.0000388495

−0.000678021 0.00028223 0.0000644752 −0.0000388495 −0.0000196873



0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

FIGURE 3 Exact and approximate state function for example 2

TABLE 2 The value of objective functional for example 2

M MFO MVO WOA
2 3.19454812683797 3.19454854799758 3.19454849446344

3 3.06165629681816 3.06165629836741 3.06165630045092

4 1.12915953267903 1.12915953355528 1.12915957556041

Example 3. Consider the following FOCP

min J =

1∫
0

(
− 2e1+t2+x(t) + e2(1+t2+x(t)) +

8
√
t√
π
u(t)− 2 sin(1 + t2)u(t) + u2(t)
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0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

FIGURE 4 Exact and approximate control function for example 2

16t

π
−

8
√
tsin(1 + t2)

√
π + sin2(1 + t2) + 1

)
dt

subject to
D1.5x(t) = sinx(t) + u(t), x(0) = −1, x′(0) = 0.

For this problem, we have x∗(t) = −1−t2 and u∗(t) = −4
√
t√

π
+sin(1+t2). The values of objective functional forM = 3

andM = 4 are given in Table 3 . The exact and approximate state and control functions are plotted in Figures 5 and
6 . In these figures, the blue graph represents the exact function and graph with red dots is approximate functions.

TABLE 3 The value of objective functional for example 3

M MFO MVO WOA
3 8.67774875395422E−05 8.72990185631438E−05 8.70333367712425E−05

4 3.90521852385846E−05 3.92991862076560E−05 3.92124829314838E−05

4.2 Discussion and convergence speed
Tables 1 , 2 and 3 provide the results of executing MFO, MVO and WOA algorithms on solving the controlled
fractional differential equations.Numerical results confirm the satisfactory performance of the MFO algorithm on
solving three illustrative examples. It is observed from Tables 1 , 2 and 3 that the MFO is much better than MVO
and WOA methods in precision that these results achieved the value of objective functional for different values of
M . This implies that the MVO and WOA obtain competitive solutions in comparison to the MFO algorithm. But,
the MFO algorithm outperforms the MVO and WOA methods and gets the best solutions on solving the controlled
fractional differential equations. On the other hand, the quality of the numerical solutions in Figs. 1 ,2 ,3 ,4 ,5 and
6 demonstrates that the MFO favourably converges to the exact solutions. The convergence behavior of the MFO,
MVO and WOA algorithms on Example 1 for M = 6, Example 2 for M = 2 and Example 3 for M = 4 are given in
Figs. 7 , 8 and 9 , respectively. The curves demonstrate that the MFO algorithm considerably becomes better its
performance during iterations. As the number of iterations ascends, the value of objective functional substantially
reduces. As a result, the MFO has the capability to solve the FOCP successfully. The results indicate that MFO has
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FIGURE 5 Exact and approximate control function for example 3
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FIGURE 6 Exact and approximate control function for example 3

the quick convergence speed and MVO and WOA BSO algorithms requires more evaluation functions to converge to
the exact solution. Lastly, the MVO algorithm gets the third degree in converging to the exact solution.

5 CONCLUSIONS

In this essay, a direct method has been propounded to solve a class of fractional optimal control problem (FOCP).
In this approach, the FOCP has been transmitted to a nonlinear programming problem (NLP) by using Bernoulli
polynomials and operational matrix of fractional integration. Then, the performances of three nature-inspired meta-
heuristics called multi-verse optimizer (MVO), moth-flame optimization (MFO), and whale optimization algorithm
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FIGURE 7 Convergence behaviors of the MFO, MVO and WOA algorithms when solving Example 1.

(WOA) have been investigated on three illustrative examples. The comparative study demonstrated that MFO rep-
resented promising solutions and surpass the MVO and WOA algorithms over three numerical examples. In addition,
more efficiency is provided by incorporating the new discretization technique into the metaheuristic algorithms in
solving FOCP. Also, numerical results show the simplicity and efficiency of the proposed method to dissolve the
FOCP. The first author would like to appreciate the research council of Farhangian University for supporting this
research. The second author would like to thank Gonbad Kavous University for supporting this research work. The
work also has been supported by research council of Young Researchers and Elite Club, North Tehran Branch, Islamic
Azad University, Tehran for the third author.
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